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Abstract: A convenient and effective binocular vision system is set up. Gesture information can be 

accurately extract from the complex environment with the system. The template calibration method 

is used to calibrate the binocular camera and the parameters of the camera are accurately obtained. 

In the phase of stereo matching, the BM algorithm is used to quickly and accurately match the 

images of the left and right cameras to get the parallax of the measured gesture. Combined with 

triangulation principle, resulting in a more dense depth map. Finally, the depth information is 

remapped to the original color image to realize three-dimensional reconstruction and 

three-dimensional cloud image generation. According to the cloud image information, it can be 

judged that the binocular vision system can effectively segment the gesture from the complex 

background. 

Keywords: Binocular vision; Gesture recognition; Gesture segmentation; Template calibration 

method 

 

1. Introduction 

With the change of lifestyles and the increasing popularization of intelligent devices, the 

demand for enhancing the existing human-computer interaction experience is particularly urgent. 

Among them, gesture information can provide users with more realistic and natural interactive 

experiences. Currently used in gesture recognition devices are data gloves, somatosensory motion 

sensor, EMG signal acquisition device, monocular camera, binocular camera. 

The study of gestures or gesture recognition requires system construction [1].Due to the 

immaturity of early hardware and algorithms, the recognition of gestures began with data gloves. 

In 1989, Surman identified gestures and used them to manipulate virtual objects with data gloves 

[2]. In 2001. In.cheol and Sung.il enabled glove-based gesture recognition with an accuracy rate of 

96.88% [3]. Noor Tubaiz et al used data gloves to achieve a continuous recognition of Arabic sign 

language, with an accuracy rate of 98.9% [4]. The 16-channel sEMG acquisition system developed 

by Yinfeng Fang et al can accurately recognize the gesture and the system can be well integrated 

with the prosthetic device [5]. In practical applications, although the wearable device can accurately 

recognize gestures, there is a great limitation. Data gloves and EMG collectors are composed of a 

large number of sensors which are too expensive to be accepted by the average user. At the same 

time, because the data gloves are in direct contact with the hand and personal differences, each 

experiment needs to be calibrated so that experiment process is complicated. Last but not least, 

Data-based gesture recognition leads to a poor human-computer interaction experience, which are 

factors that limit its use [6]. Because of the development of computer performance and the 

improvement of the hardware level, vision-based gesture recognition has drawn the attention of 

researchers. Relative to the data glove, vision-based gesture recognition device is simple, easy 

maintenance. Hand gesture recognition based on monocular vision has become a common gesture 



recognition method. In 2000, Tare et al proposed a random organization mapping algorithm to 

track and identify the gesture, which effectively reduced the computation time and improved the 

recognition accuracy [7]. By recognizing the texture features of the key parts of the human hand, 

Bhuyan et al can recognize the bending motion of the finger by using a monocular camera [8-12]. In 

the process of using the monocular camera for gesture recognition, the method relies more on 

image processing algorithms and priori Knowledge. The accuracy of gesture recognition and 

recognition speed was further improved with ameliorating the sparse algorithm [13-14]. Relative to 

the data glove, monocular vision-based gesture recognition hardware device is cheap, easy to use 

and more user-accepted. However, monocular vision is not stable due to hardware limitations and 

is not suitable for use in complex environments. 

The new stereo vision algorithms continue to emerge. Based on binocular vision, the image 

information obtained by the binocular vision is finer and the viewing angle is wider. Compared 

with the monocular vision application scene, the images are more flexible and the gestures 

recognized are more diverse. To realize the vision-based hand recognition naturally, segmentation 

of gestures in complex environment is a big challenge. Dishi Chen et al proposed an interactive 

gesture segmentation method that can gesture segmentation in a more complex environment [15]. 

At the same time, the combination of specific sensors and cameras can further improve the effect of 

gesture segmentation [16-18]. The use of binocular vision not only capture the image information of 

the gesture, but also obtain the depth of the target object to help identify information, thus 

separating the gesture from the complex background. The construction of binocular vision platform 

can also help effectively plan gesture in virtual space [19]. The wide application of support vector 

machines and neural networks has also made a great improvement in the accuracy of gesture 

recognition based on binocular vision [20]. Using depth information, the dynamic transformation 

process of human hands in three-dimensional space can be accurately located, which greatly 

enriches the content of gesture operation [21]. 

At this stage, the application of stereoscopic vision is also multifaceted. The technology is used 

to measure and locate the three-dimensional dimensions of tiny objects [22-23], face recognition 

[24-26], object recognition [27-29] and so on. In specific applications, some sensors are combined to 

improve the accuracy of recognition [30-31]. The use of structured light can make the details of the 

identified object clearer and reduce the interference of the outside world [32-33]. 

At present, the gesture recognition based on binocular vision is often realized with 

professional industrial cameras, sophisticated depth cameras and infrared cameras, which further 

improves the application cost of the method. Therefore, the use of ordinary cameras to build a 

binocular vision system to achieve gesture recognition in complex environments is particularly 

important. 

2. Binocular vision system 

Binocular vision system compared to monocular or multi-purpose vision system in principle, 

in line with the principle of bionics, more scientific, flexible and easy to implement. At the same 

time, passive compared to the initiative does not require additional auxiliary equipment, wider 

range of applications, lower equipment costs. In this paper, passive binocular vision ranging 

principle to build a binocular vision system. 
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Figure 1. Binocular stereo imaging principle 

Figure 1 is an imaging principle of two cameras placed in parallel. The distance between the 

optical axes of two cameras is also an important parameter in binocular vision, the baseline 

distance. The two cameras simultaneously observe the spatial coordinates of the same feature 

points  at different positions respectively to obtain the image coordinates of the points , that 

is,  and . The image coordinates of the two images are and . Assuming 

that the images of the two cameras are on the same plane, so . The expression 

can be obtained from the geometric relationship. 

 

 (1) 

In that way,  . The coordinates of the feature point  under the camera 

coordinates: 

 (2) 

Therefore, it is possible to precisely match the coordinates of two points in the image to 

determine the 3D coordinates of the points in which  is the camera from the measured object 

distance. It can be seen from the principle diagram that it is necessary to know the focal length  

of the camera and the baseline distance  for obtaining the three-dimensional information. In the 

process of actual image acquisition, since the imaging principle of the camera is not a real pinhole 

imaging model, the captured images are not suitable for subsequent stereo matching. Therefore, an 

external influence factor is needed to adjust the image to meet the requirements [34-36]. This 

influence factor is also called the distortion coefficient. 

 
Figure 2. Radial distortion and tangential distortion 
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Fig.2 reflects the center of the lens distortion is almost zero, the more obvious radial distortion 

of the edge, the mathematical expression is: 

 (3) 

 is the initial position before correction,  is the corrected point. 

Tangential distortion: 

 (4) 

From (3) and (4), we can get the main distortion parameters of the camera as . 

Tab.1 shows the relevant parameters in the camera model. 

Table.1 Camera model parameters. 

Parameters Expression Degree of freedom 

Perspective 

transformation 
 5 

Main distortion 

parameters  
4 

External 

parameters 

       

6 

3. Camera calibration 

Fig.3 shows a binocular vision system built with two normal web cameras. According to Table 

1, to use the binocular vision system for accurate extraction of three-dimensional information of the 

measuring hand, the camera needs to be calibrated. The model of these cameras are Logitech c270. 

 

Figure 3. Binocular camera 
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During the camera calibration process, the camera's internal parameters and external 

parameters are acquired. The camera parameters are important links in establishing the relationship 

between the image coordinate system and the world coordinate. Currently used calibration 

methods are both traditional and self-calibration. In the traditional method, the direct linear 

transformation (DLT) method is the first time that Abdel-Aziz and Karara directly use the camera 

model to list a series of linear equations [37-38]. Then get the camera parameters by solving the 

equation. The method assumes that the camera is in an ideal condition and needs some nonlinear 

optimization algorithms to make the result more accurate. The perspective transformation matrix 

method means that the parameters of the camera can be represented by a perspective 

transformation matrix without considering the influence of distortion parameters. Then, Directly 

solve the matrix to get the desired result; Tsai's proposed calibration-Tsai two-step method based 

on Radial Alignment Constraint (RAC) [39], the core of which is to solve the linear Equation to 

solve the camera's external parameters, and then get the camera's internal parameters, the 

calibration accuracy of the method is more suitable for accurate measurement, but the experimental 

conditions are not suitable for a simple visual calibration. 

Due to its inherent limitations of traditional calibration methods, Faugeras wanted to calibrate 

the camera through the surrounding environment combined with prior knowledge in the 1990s 

[40], which is also called self-calibration. At present, the commonly used camera self-calibration 

method has basic matrix and intrinsic matrix, based on Kruppa equation, gradual and step-by-step 

calibration method, and camera calibration method based on active vision. The basic matrix method 

is to calculate the basic matrix according to the one-to-one correspondence between the object 

points in the left and right camera images and then to solve the camera's related parameters. Based 

on the Kruppa equation method [41], the core is that every two images have two Constraints on 

nonlinear Kruppa equations, Kruppa equations on the polar transformation and image link to get 

all the images on the image to the corresponding pole distance and LM algorithm for the minimum, 

you can calculate the camera-related parameters. Compared with the gradual classification, it has 

more advantages, but its stability is not good. Template- calibration method based checkerboard is 

simple and high precision, it is often used to calibrate the stereo camera [42-44]. In the template 

calibration method, some points that can be evenly distributed across the whole image are generally 

selected. In general, the calibration accuracy of the camera will be higher if the points is more 

[45-47]. However, as the number of points increases, the amount of operation will increase or even 

lead to the reduction of calibration accuracy. In the process of camera calibration, we select the 

feature points of 8*6, which can ensure the accuracy. In the template calibration method, the 

template has great influence on the calibration accuracy of the camera. Many researchers will 

choose the industrial high-precision calibration template or dot template, but the price of these 

templates is very expensive. What we use is a common checkerboard template that uses a square 

cell of 25*25mm. 

Template calibration method is between the two categories which is easier and meets 

requirement. In this paper, the cameras' internal parameters and external parameters were 

accurately captured with the template calibration method. 

 

Figure 4. Initially determine the corner extraction area 



 

Figure 5. Accurately extract corner points 

Camera calibration results: 

1) Main calibration result of left camera: 

focal length:         fc = [ 817.85837   818.74862 ] ± [ 3.75478   3.71953 ] 

The main point:      cc = [320.26368   246.68164] ± [3.38336   3.26967] 

Distortion parameters: kc = [0.03470   0.28927   0.00188   0.00548  0.00000] 

                   ± [0.01806  0.09767   0.00170   0.00200  0.00000] 

Pixel error:          err = [ 0.6652   0.6511] 

2) The main camera calibration results: 

focal length:         fc = [ 816.58746   815.40532 ] ± [ 3.42024   3.44325 ] 

The main point:      cc = [ 313.65229   235.41916 ] ± [ 3.10666   3.41942 ] 

Distortion parameters: kc = [ 0.03265  0.31320  0.00330  0.00259  0.00000 ] 

                   ±[ 0.01774  0.16803  0.00171  0.00159  0.00000 ] 

Pixel error:          err = [0.6816  0.6817] 

3) Camera external reference calibration result 

Rotation vector:      om = [ -0.07673   -0.04819  1.47491 ] 

Translation vector:      T = [ 20.31733   -53.32342  31.54584 ] 

In the calibration result of the camera, the focal distance is fc and the main point coordinates is 

cc. The array kc is the internal parameter of the camera, and the 5 parameters in the array 

correspond to the internal parameters listed in Table 1. The vector om and T are the external 

parameters of the camera, which are the relative rotation and translation of the camera. Relevant 

parameters of the camera are obtained through calibration more accurately, and the error is within 

an acceptable range. 

 
Figure 6. Camera error analysis histogram 



 
Figure 7. The relationship between the calibration plate and the camera 

As can be seen from the histogram of Fig.6, the overall average error is 0.67 pixels and most of 

the sample errors are below the overall average error line. Figure 7 can be determined by the 

calibration plate calculated position and the actual position, the calculation result is more accurate. 

4. Gesture three-dimensional information extraction 

The key technology to realize the gesture three-dimensional information extraction is stereo 

matching technology, which is also the most challenging part [48]. The stereo matching technology 

divides the left and right images into small units with characteristic attributes, and then compares 

the key information of the two images one by one through the characteristic attributes of the small 

units. Selecting the appropriate matching features and matching criteria is an important guarantee 

for the accuracy of measurement results. Common matching features include point features, line 

features, and area features [49-50]. 

There are many matching algorithms, but none of them can be adapted to all environments. 

The current common matching algorithms include dynamic programming, image segmentation, 

regional matching and so on. The matching algorithm is divided into two main categories based on 

local constraint algorithm and global constraint algorithm. The accuracy of the global constraint 

algorithm is higher, but the complexity of the algorithm is high and the computational complexity 

is large, and it does not meet the needs of building this double vision platform. The local constraint 

algorithm is also divided into the region matching algorithm, the feature matching algorithm and 

the phase matching algorithm. The feature matching algorithm is preprocessed by the image, and 

the feature classification is realized, and then the left and right images are matched. Although the 

matching precision is increased, it needs more complex preprocessing, and the real time is poor. 

The precision of the phase matching algorithm is the highest, but the problem of phase singularity 

may occur. The method to solve the phase singularity is more complicated and difficult to realize. 

Therefore, in order to make the set of binocular vision platform easier to implement and have high 

real time, we choose the region matching algorithm. The area matching algorithm (BM) is used for 

stereo matching which has the advantages of high precision, fast speed and easy implementation 

[51-52]. Using the constructed binocular vision platform, three-dimensional information is extracted 

from the gesture shown in Fig.8. In view of the building of the binocular vision platform, the main 

use scene is indoor, so the illumination conditions of the experiment used ordinary fluorescent 

lamp. And the distance between the hand and the platform is 1m-2m. The scene of gesture 

collection is a general indoor scene. It doesn't need special treatment to be a solid background. So 

indoor use of the platform can be more free and flexible without background interference. 



 

Figure 8. Hand three-dimensional   

 

Figure 9. Gesture depth map information extraction 

 

  

Figure 10. Gesture 3D cloud illustration 



 

Figure 11. Gestures three-dimensional cloud map part 

In extracting the three-dimensional information of the gesture, it can be seen from Fig.9 that 

the binocular vision system can generate a more dense depth map, but it is difficult to clearly 

distinguish the depth map from the depth map due to the closer manpower to the body. With 3D 

reconstruction, the depth map can be transformed into a three-dimensional cloud (Fig.10) where it 

is easier to see that the gesture information is well extracted (Fig.11). In order to further validate 

that the proposed binocular vision system can effectively extract the gesture from a complex 

background, replaced with a pinch gesture (Fig.12) to re-experiment, from the generated 

three-dimensional cloud map (Fig.13) can verify The built-in binocular vision system makes good 

use of depth information to distinguish the gesture from the background, and can accurately obtain 

the hand information (Fig.14). 

 

Figure 12. Two finger pinch gesture 

 

Figure 13. Two finger pinch gesture 



 

Figure 14. Pinch gestures three-dimensional cloud part 

5. Conclusion 

Accurately extracting the human hand's depth information is the premise of realizing the 

visual gesture recognition. In this paper, we use the binocular vision test technology to extract the 

image depth information and verify the accuracy of the extracted depth information by 

reconstructing the gesture image. In this paper, two ordinary network cameras to build a binocular 

camera, and camera calibration. Then, a fast and effective BM stereo matching algorithm is used to 

accurately extract the three-dimensional hand information and effectively separate the target object 

from the complex background. We implemented the binocular vision platform with simple and 

effective way, and applied it to gesture recognition, which further improved the efficiency of 

gesture recognition in complex environment. However, in order to further improve the accuracy 

and adaptability of 3D information, it is necessary to further optimize the related matching 

algorithm. 
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