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Abstract: Aiming at the disadvantages of greedy algorithms in sparse solution, a modified adaptive orthogonal 

matching pursuit algorithm (MAOMP) is proposed in this paper. It is obviously improved to introduce sparsity and 

variable step size for the MAOMP. The algorithm estimates the initial value of sparsity by matching test, and will 

decrease the number of subsequent iterations. Finally, the step size is adjusted to select atoms and approximate the 

true sparsity at different stages. The simulation results show that the algorithm which has proposed improves the 

recognition accuracy and efficiency comparing with other greedy algorithms. 
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1. Introduction 

Gesture recognition is widely used in the field of artificial intelligence and pattern recognition as a 

natural way of interaction, for example, dynamic gesture recognition and pattern recognition of robot 

multi fingered grasping [1]. Data glove sensors and EMG signal acquisition devices, and cameras are 

most widely used. Gesture recognition based on data glove has high recognition rate and fast speed. 

But this method requires users to wear complex data gloves and position tracker, which does not meet 

the requirements of natural human-computer interaction. The price of data gloves is expensive, and it is 

not suitable for extensive promotion. Gesture recognition based on EMG signals is mainly to collect 

multi-channel sEMG signals by sensors, then extract the characteristic parameters of each gesture, and 

finally realize gesture recognition [2]. The advantage of this method is that EMG signals are not 

affected by the external environment, so they have better real-time performance. But because of the 

individual difference, the difficulty of classification is increased, and it needs to be equipped with EMG 

acquisition device, which brings inconvenience to the application in reality. The gesture recognition 

based on vision mainly uses camera to capture gesture images and identifies gestures by image 

processing and related algorithms [3, 4]. The advantage of this method is that the input device is cheap, 

and the camera is becoming more and more popular in all kinds of consumer electronic products, and it 

does not add any additional requirements to the manpower, so that the interaction between the 

computer and the human is more natural. Therefore, more and more researches have been done on 

vision based hand gesture recognition, and the recognition rate and real-time performance have been 

greatly improved. It relates to the techniques include gesture detection, gesture segmentation, feature 

extraction and classification recognition [5] etc. Although these technologies have developed greatly in 

recent years, the complicated background environment and low performance of classification 

algorithms are often encountered in acquisition gesture by visual sensors. Therefore, there are still 

some challenges for accurate gesture recognition [6, 7]. In recent years, the proposition and 

development of sparse representation theory provide a new approach for the pattern recognition [8, 9]. 

It shows great development potential and broad application prospect. John, Wright et al [10] first 

proposed the sparse representation-based classification (SRC) framework. Redundant dictionary is 
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constructed by training samples for this method [11, 12, 13]. The test sample is expressed as a sparse 

linear combination of training samples by the sparse solution algorithm [14, 15, 16]. Finally, the 

minimum residual error is classified, and the results show that the method proposed has a good 

performance. 

After the SRC method has been proposed, sparse representation theory is gradually gained the 

researchers' attention [17, 18, 19]. Various approaches are proposed for sparse solution algorithms. The 

most commonly used sparse solution algorithms are greedy algorithms, which are used to solve 

approximately the minimization of the norm. The greedy algorithm is easy to implement by selecting 

the appropriate atoms iteratively, and it is often called orthogonal matching pursuit (OMP) algorithm 

[20, 21]. Only one atom is selected in iteration, and the times of iterations are too much, the efficiency 

is lower. What’s more the sparsity needs to be set. Many improved algorithms have appeared to aim at 
the problem of OMP algorithm. For example, a regularized ROMP (Regularized Orthogonal Matching 

Pursuit) algorithm [22, 23, 24] is proposed to select multiple atoms for iteration. Stagewise weak 

orthogonal matching pursuit (SWOMP) algorithm based on atom selection threshold [25, 26] and 

subspace pursuit (SP) algorithm based on retrospective thinking [27, 28] are proposed to have reduced 

the computational complexity, but most of algorithms rely on sparsity. The sparsity adaptive matching 

pursuit (SAMP) algorithm can approach the sparsity by step size gradually. The method of step size 

approximation is divided into many stages in iteration. Each stage increases the fixed step size to meet 

the requirement. Because the step size is fixed, the choice of step size will also affect the performance 

of the algorithm [29, 30, 31]. 

Beginning from sparse representation classification algorithm, this paper introduces sparse 

estimation and variable step size to aim at the disadvantages of existing greedy algorithms. A modified 

adaptive orthogonal matching pursuit (MAOMP) algorithm is proposed, and it is validated on the 

gesture samples. The results show that the performance is better than other algorithms, and the 

accuracy and efficiency of the algorithm are improved. 

2. Sparse Representation Classification Algorithms 

The basic idea of sparse representation is that the training samples are constructed as redundant 

dictionaries, and the test samples can be represented by sparse linear combination of the dictionary 

elements, then sparse reconstruction algorithm is used to solve the sparse coefficients [32]. Sparse 

representation classification algorithms are mainly concerned on two aspects: the construction of 

redundant dictionaries and the solution of sparse coefficients. The framework model of sparse 

representation classification algorithm is introduced. 

2.1. Test samples as linear representations of training samples 

Given a sample set containing C  class gestures, and the total sample number is n. Suppose that 

the ],,1[ Cj  class contains the jn  gesture samples, and the sample is enough. The i  gesture of 

this class can be represented by column vectors 1
,

m
ija . The gesture samples are used to form a 

column vector matrix j

j

nm
njjjj aaaA ],,[ ,2,1, . In the column vector matrix, m represents the 

dimension of the matrix. In the theory, a test sample
m

y  belonging to class j  is distributed in a 

linear subspace formed of this class of sample sets. That is that y  can be represented linearly by jA : 

jj njnjjjjjjj vavavavAy ,,2,2,1,1,  (1) 

In the formula (1), 
1

,2,1, ],,[ j

j

n
njjjj vvvv  is coefficient of linear expression. The 

categories of the test samples have not been determined. So the whole class C  of gesture sample is 
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formed into a redundant dictionary matrix nm
nCnjCj aaaAAAA

j
],,,,[],,,,[ ,,1,11 . That is 

that y  can be represented by A : 

Axy  (2) 

In the formula (2), ]0,,0,,,,,0,0[ ,2,1, jnjjj vvvx  is a sparse coefficient of test samples, 

nonzero elements correspond to the class j . If 
0

xS  and nS , x  is sparse and S  is sparsity. 

2.2. Sparse computation method for minimizing norm 

Because the dimension of the dictionary A  is less than the number of samples, that is nm , the 

formula (2) belongs to underdetermined equation, and the solution is not unique. But x  is a sparse 

matrix, and A  satisfies the 2S order restricted isometry property (RIP). In the dictionary A , any S2  

column sample data is linearly independent. For any sample y  and constant )1,0(S , the dictionary 

A satisfies formula (3), and then the unique solution can be guaranteed [33, 34]. 

2

2

2

2

2

2
)1()1( yAyy SS  (3) 

Formula (2) can be solved by minimizing the 0l norm: 

Axytsxx
x

..minargˆ 0

 
(4) 

The solution of the minimization of the 0l  norm is a NP-hard problem. The greedy algorithm 

can only approximately solve the minimization of the 0l  norm problem. Among them, OMP 

algorithm is widely adopted, and the greedy algorithm is analyzed and solved in this paper. According 

to the theory of compressed sensing, when x is enough sparse, the formula (4) can be equivalent to 

solving the minimization of the 1l  norm problem [35]. 

Axytsxx
x

..minargˆ 1

 
(5) 

Because of the environmental factors, the actual sample collection will be affected by noise, light 

etc. The test samples cannot be better represented by linear combination of training samples, and the 

recognition rate will be affected easily. In order to improve robustness, a noise constraint can be added: 

2

..minargˆ 0 Axytsxx
x  

(6) 

2

..minargˆ 1 Axytsxx
x  

(7) 

2.3. Classification according to the minimum residual error 

The sparse coefficient of linear combination has been obtained, and it can use the sparse coefficient 

and redundant dictionary to reconstruct the test sample. Then compare the reconstructed samples and test 

samples of each class. Finally, judge the categories of the test samples according to the minimum residual 

error. 

CjxAyy jj ,,2,1)ˆ()(
2
，  (8) 

)(minarg)( yryI jj  (9) 

In the formula (9), )(yj is corresponding to the residual error of the class j  sample. In the 

formula (8), )ˆ(xj  is corresponding to coefficient value of the class j  sample. Other location is 0 and 

)( yI  is the categories of testing samples. 

The steps of sparse representation classification algorithms are summarized below: 
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1 Input: training sample nm
A , test sample 1m

y , and error threshold 0 . 

2 Each column of the A  and y  are normalized by the 2l  norm 

3 Solve the 0l  norm of the minimization: 

20
..minargˆ Axytsxx

x

 

Or translate to solve the 1l  norm of the minimization: 

2

..minargˆ 1 Axytsxx
x

 

4 Compute the residuals for the each class ],1[ Cj : 

2
)ˆ()( xAyy jj  

5 Outputs: )(minarg)( yryI jj  
3. Modified Adaptive Orthogonal Matching Pursuit Algorithm 

It is very important to solve sparse coefficients for sparse representation theory. That is how to use a 

small number of atoms in a redundant dictionary to represent the original signal. Aiming at the 

disadvantages of greedy algorithms, a modified adaptive orthogonal matching pursuit (MAOMP) 

algorithm is proposed in this paper to improve the accuracy and efficiency of the greedy algorithm. The 

MAOMP algorithm does not need to input the true sparsity, the initial value of the sparsity is estimated 

by matching test, and the estimated value to meet condition is taken as the length of the support set. Then, 

the atom is selected from the projection set, and the index set and the support set are updated. The 

original signal is estimated by retrospective thinking and least square method, and update residuals. 

Finally, the number of filtered atoms is adjusted by stages and variable step size. Approach to true 

sparsity and lead to better sparse representation. 

3.1. Sparsity estimation 

In this paper, atomic matching test is used to estimate the initial sparsity. The sparsity 0S is less 

than the true sparsity S . The set 0  consist of the index before the 0S  in the lAu ,0 , corresponding 

to the A. The reference [35] presents a true proposition that A satisfies the RIP property in terms of 

parameters )1,0(),,( SSS .That is if SS0 , the formulation 
22

0
1

1
yyA

S

ST  is right. Then the 

converse negative proposition of the original proposition should also be right. That is when

22
0

1

1
yyA

S

ST , SS0 is right. Therefore, the converse negative proposition can be used to 

estimate the initial sparsity. First, given a smaller value 0S , when
22

0
1

1
yyA

S

ST , 0S is constantly 

increased until the condition is not satisfied. 0S  is the estimated sparsity at this moment.  

3.2. Variable step size 
Since sparsity is generally unknown, and SAMP algorithm uses smaller step size approximation 

and step size is fixed, this method decreased the efficiency of the algorithm. Because each iteration error 

is declining constantly, and just starting to decline rapidly, then the range slows down gradually and 

tends to be stable finally. Therefore, when set the step size, it should be gradually reduced. The larger 

step size is adopted to reduce the times of iterations at the beginning, and then gradually reduce the step 

size and improve the accuracy. In this paper, the method to achieve the variable step size is that the step 

size coefficient )1,0(  is multiplied by the step under the condition to satisfy the variable step size. 

With the increase of stage, the step is decreased gradually.  

)1,0(,stepstep  (10) 

The steps of the whole MAOMP algorithm are: 

1 Input: training sample nm
A , test sample 1m

y , constant S  and step coefficient . 

2 Initialization: sparsity 10S , step size nmstep 2log/ , residual error y0 , index set 

0  and the support set 0A . 

3 Compute the projective set nlAuuu ljj ,,2,1,,| 0 , and select the 0S  larger value in u. 

The index value and the support set are stored 0 and 0A  separately. 
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4 If 
22

0
1

1
yyA

S

ST , the 100 SS  is confirmed. And then turn on step 3. Or compute the 

residual error yAAy 000 , and set 0SL , 1stage  and the times of iteration 1t . Turn on step 5. 

5 Compute the projective set nlAuuu ltjj ,,2,1,,| 1 , and select the L  larger value in u. 

The corresponding index values form a set 0J . 

6 Update index sets and support sets:  

)(, 0101 JlAAAJ ltttt  

7 The equation tt xAy  is computed and least square solution is given:  

2
minargˆ tt

x
t xAyx

t

 

8 Select the largest L  of the absolute value marked as tLx̂ , and then the L column in corresponding 

to tA  is marked as tLA and the A column ordinal is marked as tL . 

9 Update the residual error tLtLt xAy ˆ  

10 If residual error
2t , turn on the step 11. If

212 tnew , 1stagestage , stepstep

stepLL  and 1tt , turn on the step 5. If the two conditions is not satisfied, 1, tttLt , turn 

on the step 5. 

11 Output: sparse coefficient x̂ , and the nonzero items in corresponding to the index set t  are 

the final iteration tx̂ . 

The MAOMP algorithm is similar to the SAMP algorithm, and the parameter input does not need to 

set sparsity. Sparsity is estimated on Step 2 to step 4. The length of the initialization support set is the 

estimated sparsity 0S . The algorithm efficiency is improved. In addition, the initial step size is different 

for different situations, and set nmstep 2log/  here. A staged approximation process based on the 

SAMP algorithm is on step 5 to step 10. The true sparsity can be better approximated by changing the 

step size gradually. The step 10 shows that the residuals after iteration are constantly decreasing, so the 

algorithm can converge. In MAOMP algorithm, sparsity estimation and variable step size are adopted to 

reduce the times of iterations to some extent and improve the accuracy. 

4. Experimental simulation 

4.1. Establishment of gesture sample 

In order to verify the effect of gesture recognition in this method, hand gesture images are collected. 

Gesture sample library is built to analyze the influence situation of various factors on hand gesture 

recognition. In the experiment, the appointed gesture samples are selected. In YCbCr color space, the Y 

component is independent of the Cb and Cr components, so that the skin segmentation is less affected by 

illumination. It is a linear transformation from YCbCr color space to RGB color space and is easy to 

segment. Therefore, YCbCr color space is selected to segment the gesture image. The ellipse model is 

set up in YCbCr color space to segment the gestures, and the Hu invariant moments and HOG features 

are extracted. 

4.1.1. Grab gesture sample library 

In this paper, 5 typical grab gesture samples are collected from 5 people by camera. The gestures 

include five fingers grasp, three fingers grasp, two fingers pinch, one finger hook and five fingers open. 

As is shown in Figure 1, 5 kinds of gestures are collected, and collect 20 pictures for each person. That is 

that each type of gesture collect 100 pictures, a total of 500 images can be used in the experiment. The 

collection of gestures also takes into account the changes in gesture rotation, scale, illumination and 

background to make the effect of identification more obvious. 
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A               B                C                  D                 E 

Figure 1 The five kinds of grab gesture samples. A: Five fingers grasp B: Three finger grasp C: 

Two finger pinch D: Single finger hook E: Five fingers open. 

4.1.2. ASL sample library 

The ASL sample library contains 26 letters of gesture (letters j and z gestures are dynamic, so this 

article will not be considered). The gesture pictures are collected separately for five people by Kinect in 

the same light and scene. Each operator and each letter has a color image and a depth image, the color 

images of 24 letters are collected, and collects 20 pictures for each person. A total of 2400 color images 

can be used in the experiment, and Figure 2 is a partial color image. 

 
Figure 2 the partial ASL gesture samples 

 

4.2. The influence of parameter selection on performance of MAOMP algorithm 

In order to verify the estimation effect of sparsity, the estimated value of sparsity S are compared 

when the parameter S  are taken different values. 50 training samples and 10 test samples were 

randomly selected from each gesture in grab gesture library, and reduce the dimension to 100. 50 training 

samples and 2 test samples were randomly selected from each gesture in ASL sample library. The 

experimental results are shown in figures 3 and 4. 

As is shown in figures 3 and 4, the sparsity estimates 0S  corresponded to S  can fluctuate near a 

certain value. For example, when 2.0S , the average value of the estimation 0S  is 27 in grab gesture 

sample library and is 24 in ASL sample library. Because 50 training samples are taken in two gesture 

libraries, the theoretical sparsity S is 50, which serves as a reference for sparsity estimation. In addition, 

S  is smaller, the estimation of the sparsity and the fluctuation are larger. It is closer to the theoretical 

sparsity, but the estimated value may be greater than the theoretical sparsity. To the contrary, S  is the 

larger, the estimation of the sparsity is smaller, and the estimation is more stable. But, when it decreases 

to a certain extent such as 0.9, the sparsity estimation value is maintained at 1. Because 
S

S

1

1
 is a 

decreasing function, the range of iterative termination conditions is enlarged with the S  decreasing. The 

times of iterative estimation are increased, and the estimation of the sparsity is greater. So
 S  have an 

obvious influence on the times of iterative estimation and the estimation of sparsity, and 2.0S is 

selected to reduce the times of subsequent iterations and avoid over estimation. 
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Figure 3 the sparsity estimation in grab gesture sample library 

 
Figure 4 the sparsity estimation in ASL sample library 

The algorithm of this paper also adopts the idea of variable step size, and the effect of different 

values  on the algorithm is verified by experiments. 50 training samples are selected for each class, 

and the remaining samples are taken as test samples in grab gesture sample library, then the dimension of 

feature is reduced to 100. 50 training samples are selected for each class, and the remaining samples are 

taken as test samples in ASL sample library, then the dimension of feature is reduced to 100 and takes 

S  as 0.2. 

Figure 5 shows the influence of different step size coefficients on the recognition rate. It can be seen 

that the recognition rate of the two sample library is decreasing gradually with the step size coefficients 

 increasing. The recognition rate decreased from 93.2% to 79.5% in grab gesture sample library with 

 increasing. The recognition rate decreased from 94.9% to 80.2% in ASL sample library with  

increasing. Moreover, the maximum drop amplitude between 4.0 and 5.0 is about 4%, and other 

intervals drop by about 2%. 
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Figure 5 the influence of different step size coefficient on recognition rate 

The decreasing in recognition rate between 4.0  and 5.0 is greatest. In order to explain the 

situation better, 100 and 150 iterations are made in the two sample library respectively. The variation 

curve of the residuals with the times of iterations is plotted, as shown in figures 6 and 7. 

When the times of iterations increases to a certain value, the residuals converges to a smaller value. 

When the residuals remain same, the times of iterations are stages. The stages and iterations will decrease 

with the increasing of step coefficient. The times of iterations are the highest as 88 and the lowest as 9 in 

grab gesture sample library. The times of iterations are the highest as 103 and the lowest as 14 in ASL 

sample library. The falling amplitude of the times in iterative convergence between 4.0 and 5.0  

is larger than others. Decreasing amplitude is 18 in grab gesture sample library and is 22 in ASL sample 

library, others is about 10. Because the step size is larger, the selected elements are more. The length of 

the support set is large and the convergence is fast. But the sparsity is easily overestimated, which 

reduces the recognition rate. When 5.0 , over-estimation has been made. The atom of linear 

representation in test sample contains too many other atoms, which will reduce the recognition rate. 

Considering the recognition rate and the times of iterations, 4.0  is more appropriate.  

 
Figure 6 the variation of residual error with iterations in grab gesture sample library 
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Figure 7 the variation of residual error with the iterations in ASL sample library 

4.3. Performance comparison of the algorithms 

In the two gesture libraries, the MAOMP algorithm is compared with OMP, ROMP, SWOMP, SP 

and SAMP algorithms from the two aspects of recognition rate and average running time. In the 

experiment, 50 samples are selected as training set at random, 50 samples are taken as test set. After the 

features are extracted, PCA is used to reduce the dimension. In addition, the parameters of each 

algorithm need to be set. In MAOMP algorithm, 2.0S  and 4.0  are taken. The sparsity of the 

SWOMP and SP algorithms is set to 40. The threshold parameter of the SWOMP algorithm is set to 0.5. 

The step size of the SAMP algorithm is set to 5. The recognition rate and average running time of 

different matching pursuit algorithms in grab gesture sample library are shown in Figure 8 and Figure 9 

respectively. It can be seen from figure 8 that the recognition rate of each algorithm increases with the 

increase of dimension. In low dimensionality, the recognition rate of MAOMP algorithm can still be 

more than 85%, and the recognition rate of SAMP, SP and SWOMP is maintained at 80%-85%, while 

the ROMP and OMP algorithms are less than 80%. In high dimensionality, the recognition rate of 

MAOMP, SAMP, SP and SWOMP is higher than 90%, and the ROMP and OMP algorithms are around 

85%. For the whole, the recognition rate of MAOMP algorithm is the highest under the same dimension, 

the SAMP algorithm is second, and the OMP algorithm is the smallest. As can be seen from Figure 9, the 

average running time of each algorithm increases gradually with the increase of dimensionality. In low 

dimensionality, the average running time of each algorithm is smaller, about 0.001s, and the difference is 

small. In high dimensionality, the running time of each algorithm is different greatly. When the 

dimension is 200, the average running time of OMP algorithm is 0.028s, the SAMP algorithm is 0.019s, 

the MAOMP algorithm is 0.012s, and the other algorithms are almost below 0.010s. For the whole, the 

average running time of OMP algorithm is the longest under the same dimension, the SAMP algorithm is 

second, and the SWOMP algorithm is the shortest.  
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Figure 8 The variation of recognition rate on each algorithm with the dimensionality in grab gesture sample 

library 

 
Figure 9 The variation of average running time on each algorithm with the dimensionality in grab gesture 

sample library 

The recognition rate and average running time of different matching pursuit algorithms in ASL 

sample library are shown in figures 10 and 11 respectively. As can be seen from Figure 10 and Figure 11, 

both the recognition rate and the average run time increase with the increase of dimensionality. n the 

ASL sample library, more samples are selected, so the recognition rate and average computing time are 

relatively high compared with grab gesture library. In Figure 10, the recognition rate of the MAOMP, 

SAMP and SP algorithms is above 85% at low dimensionality, and the recognition rate of SWOMP, 

ROMP and OMP algorithms is maintained at 80%-85%. In high dimensionality, the recognition rates of 

MAOMP, SAMP, SP and SWOMP are close to 95%, and the ROMP and OMP algorithms are close to 

90%. MAOMP algorithm has the highest recognition rate, followed by the SAMP algorithm, and the 

OMP algorithm is the smallest under the same dimension. In Figure 11, the average running time of 

different algorithm is shorter about 0.002s at low dimensionality. The running time of each algorithm 

varies greatly at high dimensionality. When the dimension is 200, the average running time of the OMP 

algorithm is 0.054s, the SAMP algorithm is 0.034s, the MAOMP algorithm is 0.025s, and the other 

algorithms are below 0.020s. Under the same dimension, the average running time of OMP algorithm is 

the longest, then the SAMP algorithm is second, and the ROMP algorithm is the lowest. 
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Figure 10 The variation of recognition rate on each algorithm with the dimensionality in ASL sample 

library 

 

Figure 11 The variation of average running time on each algorithm with the dimensionality in ASL 

sample library 

To sum up, OMP algorithm selects only one atom at iteration, resulting in lower accuracy and 

efficiency. SP, SWOMP and ROMP algorithm select more than one atom each time by improve the 

atomic selection strategy, which simplifies the OMP algorithm and improves the efficiency of OMP 

algorithm, but the recognition accuracy is easily affected by sparsity or threshold parameters. The SAMP 

algorithm improves the accuracy and efficiency of OMP algorithm by step size approximation, and the 

efficiency is higher than that of OMP algorithm. But it depends on the initial step size, and the step size is 

fixed. The sparsity estimation is not accurate enough, and the recognition rate is lower than the MAOMP 

algorithm. MAOMP algorithm introduces rough estimation of sparsity in solution, and the subsequent 

each stage step decreases gradually makes the approximation of sparsity is more accurate, which is 

higher than other improved OMP algorithms, and the average running time is significantly less than the 

OMP algorithm and SAMP algorithm. Especially in more samples, when dimension is higher, it has 

more obvious advantages. 
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5. Conclusion 

Based on sparse representation classification algorithm, an improved adaptive orthogonal matching 

pursuit algorithm (MAOMP) is proposed to solve the problem of low precision and uncertain parameters 

of greedy algorithms in sparse solution. MAOMP algorithm introduces the sparsity estimation step. The 

sparsity initial value is estimated by matching test. The variable step size is added to adjust the filtered 

atom number by stages, and approaches the true sparsity. Experimental results show that the performance 

of MAOMP algorithm is better than that of other improved OMP algorithms, especially when there are 

more samples and higher dimensions. The next step is to add some occluded images to identify the 

robustness of the algorithm. 

Acknowledgments 

This work was supported by grants of National Natural Science Foundation of China (Grant No. 

51575407, 51575338, 61273106, 51575412). 

References 

[1] Miao W., Li G.F., Jiang G.Z., et al. Optimal grasp planning of multi-fingered robotic hands: a review [J]. 

Applied and Computational Mathematics, 2015, 14(3): 238-247.  

[2] Fang Y.F., Liu H.G., Li GF., et al. A multichannel surface emg system for hand motion recognition[J]. 

International Journal of Humanoid Robotics, 2015, 12(2):1550011. 

[3] Chen D.S., Li G.F., Sun Y., et al. An Interactive Image Segmentation Method in Hand Gesture Recognition. 

Sensors, 2017, 17(2): 253-269. 

[4] Chen D.S., Li G.F., Sun Y., et al. Fusion hand gesture segmentation and extraction based on CMOS sensor 

and 3D sensor [J]. International Journal of Wireless and Mobile Computing, 2017, 12(3):305-312. 

[5] Liao Y.J., Li G.F., Sun Y., et al. Simultaneous Calibration: A Joint Optimization Approach for Multiple 

Kinect and External Cameras[J]. Sensors 2017, 17(7), 1491-1506. 

[6] Guan R., Xu X.M., Luo Y.Y., et al. A computer vision-based gesture detection and recognition technique[J]. 

Computer Applications and Software, 2013, 30(1):155-159. 

[7] Yi J.G., Chneg J.H., Ku X.H. Review of gestures recognition based on vision[J]. Computer Science, 2016, 

43(z1): 103-108. 

[8] Li X.Z., Wu J., Cui Z.M., et al. Sparse representation method of vehicle recognition in complex traffic 

scenes[J]. Journal of Image and Graphics, 2012, 17(3): 90-95. 

[9] Cui M. and Prasad S. Class-dependent sparse representation classifier for robust hyperspectral image 

classification[J]. IEEE Transactions on Geoscience & Remote Sensing, 2015, 53(5): 2683-2695. 

[10] Wright J., Yang A.Y., Ganesh A., et al. Robust face recognition via sparse representation[J]. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227. 

[11] Meng F.R., Tang Z.Y. and Wang Z.X. An improved redundant dictionary based on sparse representation for 

face recognition[J]. Multimedia Tools and Applications, 2017, 76(1): 895-912. 

[12] Li G.F., Gu Y.S., Kong J.Y., et al. Intelligent control of air compressor production process [J]. Applied 

Mathematics & Information Sciences, 2013, 7(3): 1051-1058. 

[13] Mohammadreza B., Sridhar K. Advanced K-means clustering algorithm for large ECG data sets based on a 

collaboration of compressed sensing theory and K-SVD approach[J]. Signal, Image and Video Processing, 

2016, 10(1):113–120.  

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



[14] Ning Y.N., Li D.Z., Han X., et al. Gesture recognition method based on sparse representation[J]. Computer 

Engineering and Design, 2016, 37(9): 2548-2552. 

[15] Li G.F., Qu P.X., Kong J.Y., et al. Coke oven intelligent integrated control system [J]. Applied Mathematics 

& Information Sciences, 2013, 7(3): 1043-1050  

[16] Guo Y.M., Zhao G.Y., Pietikainen M. Dynamic facial expression recognition with atlas construction and 

sparse representation [J]. IEEE Transactions on Image Processing, 2016, 25(5): 1977-1992. 

[17] Yang W.J., Kong L.F., Wang M.Y. Hand gesture recognition using saliency and histogram intersection kernel 

based sparse representation [J]. Multimedia Tools and Applications, 2016, 75(10): 6021-6034. 

[18] Tropp J.A., Gilbert A.C. Signal recovery from random measurements via orthogonal matching pursuit [J]. 

IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. 

[19] Cao H., Chan Y.T., So H.C. Maximum likelihood tdoa estimation from compressed sensing samples without 

reconstruction[J]. IEEE Signal Processing Letters, 2017, 24(5):564-568.  

[20] M.J. Bostock, D.J. Holland, D. Nietlispach, Improving resolution in multidimensional NMR using random 

quadrature detection with compressed sensing reconstruction[J]. Journal of Biomolecular NMR, 2017, 

68(2):67–77.  

[21] Liu X.J. An improved clustering-based collaborative filtering recommendation algorithm[J]. Cluster 

Computing, 2017, 20(2):1281-1288. 

[22] Needell D., Vershynin R. Signal recovery from incomplete and inaccurate measurements via regularized 

orthogonal matching pursuit [J]. IEEE Journal on Selected Topics in Signal Processing, 2010, 4(2): 310-316. 

[23] Li G.F., Miao W., Jiang G.Z., et al. Intelligent control model and its simulation of flue temperature in coke 

oven [J]. Discrete and Continuous Dynamical Systems - Series S (DCDS-S), 2015, 8(6): 1223-1237. 

[24] Li G.F., Kong J.Y., Jiang G.Z., et al. Air-fuel ratio intelligent control in coke oven combustion process [J]. 

Information-An International Interdisciplinary Journal, 2012, 15(11): 4487-4494. 

[25] Donoho D.L., Tsaig Y., Drori I., et al. Sparsesolution of underdetermined linear equations by stagewise 

orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2012, 58(2): 1094-1121. 

[26] Li Y., Wang Y.L. Backtracking regularized stage-wised orthogonal matching pursuit algorithm[J]. Journal of 

Computer Applications, 2016, 36( 12):3398-3401. 

[27] Blumensath T., Davies M.E. Stagewise weak gradient pursuits [J]. IEEE Transactions on Signal Processing, 

2009, 57(11): 4333-4346. 

[28] Zhuo T. Face recognition from a single image per person using deep architecture neural networks[J]. Cluster 

Computing, 2016, 19(1): 73-77. 

[29] Yang ZZ., Yang Z., Sun L.H. A survey on orthogonal matching pursuit type algorithms for signal 

compression and reconstruction[J]. Signal Processing, 2013, 29(4): 486-496. 

[30] Yu B., Qin Y.M. Generating test case for algebraic specification based on Tabu search and genetic 

algorithm[J]. Cluster Computing, 2017, 20(1): 277-289. 

[31] Ju Z.J., Liu H.H. A unified fuzzy framework for human-hand motion recognition[J]. IEEE Transactions on 

Fuzzy Systems, 2011, 19(5): 901-913. 

[32] Miao W., Li G.F., Sun Y. Gesture recognition based on sparse representation [J]. International Journal of 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



Wireless and Mobile Computing, 2016,11(4):348-356. 

[33] Donoho D. For most large underdetermined systems of linear equations the minimal l1-norm solution is also 

the sparsest solution [J]. Communications on Pure and Applied Mathematics, 2006, 59(6): 797-829. 

[34] Candès E.J., Romberg J.K., Tao T. Stable signal recovery from incomplete and inaccurate 

measurements [J]. Communications on Pure and Applied Mathematics, 2006, 59(8): 1207-1223.  

[35] Cheng Y., Feng W., Feng H., et al. A sparsity adaptive subspace pursuit algorithm for compressive 

sampling[J]. Acta Electronica Sinica, 2010, 38(8): 1914-1917. 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 


