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Gesture recognition by instantaneous 
surface EMG images
Weidong Geng, Yu Du, Wenguang Jin, Wentao Wei, Yu Hu & Jiajun Li

Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed 

descriptive and discriminatory surface electromyography (sEMG) features because the recorded 

amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. 
Here, we present that the patterns inside the instantaneous values of high-density sEMG enables 

gesture recognition to be performed merely with sEMG signals at a specific instant. We introduce the 
concept of an sEMG image spatially composed from high-density sEMG and verify our findings from 
a computational perspective with experiments on gesture recognition based on sEMG images with a 

classification scheme of a deep convolutional network. Without any windowed features, the resultant 
recognition accuracy of an 8-gesture within-subject test reached 89.3% on a single frame of sEMG 
image and reached 99.0% using simple majority voting over 40 frames with a 1,000 Hz sampling rate. 
Experiments on the recognition of 52 gestures of NinaPro database and 27 gestures of CSL-HDEMG 
database also validated that our approach outperforms state-of-the-arts methods. Our findings are 
a starting point for the development of more fluid and natural muscle-computer interfaces with very 
little observational latency. For example, active prostheses and exoskeletons based on high-density 
electrodes could be controlled with instantaneous responses.

A muscle-computer interface (MCI) is a communication system that transforms myoelectrical signals from mere 
re�ections of muscle activities into interaction commands that convey the intent of the user s movement. A 
muscle is composed of many motor units (MU), and the “discharge” or “�ring” of each MU activation generates 
a “motor unit action potential” (MUAP), which is the sum of the contributions from the individual �bres that 
compose the MU. Surface electromyography (sEMG) records a muscle’s electrical activity from the surface of the 
skin and thus re�ects the generation and propagation of MUAPs. sEMG-based gesture recognition is the techni-
cal core of non-intrusive muscle-computer interfaces, which are o�en directed at controlling active prostheses1, 
wheelchairs2, exoskeletons3 or providing an alternative interaction method for video games4.

Gesture recognition based on sEMG can be naturally framed as a pattern classi�cation problem in which a 
classi�er is usually trained through supervised learning. It has generally been accepted that feeding the instanta-
neous value of myoelectric signals directly to a classi�er is impractical and useless for pattern recognition tech-
niques5,6. �is belief is based on an empirical assumption that the instantaneous values of myoelectric signals are 
useless for gesture recognition because the raw myoelectric signal in each channel is non-stationary, non-linear, 
stochastic and unpredictable7–9. �ese features of the myoelectric signal re�ect the constant variation of the actual 
set of recruited motor units within the range of available motor units and the arbitrary manner in which these 
motor unit action potentials superpose10. �e amplitude of the myoelectric signal at any instant may rapidly �uc-
tuate between voltages above and below zero8,9 and thus resembles a zero-mean random process whose standard 
deviation is proportional to the number of active motor units and the rate at which motor units are activated11. 
�erefore, existing gesture recognition methods using sEMG are largely based on a conventional pattern rec-
ognition algorithms (such as support vector machine12, hidden Markov model13, etc. ) on sEMG feature space, 
i.e., the sequence of myoelectric signals of each channel o�en need to be transformed into a set of descriptive 
and discriminatory features extracted using a window of EMG data (or segment)5,6,14. Figure 1 shows a classical 
framework of gesture recognition using windowed sEMG. �e optimal window length represents a compromise 
between classi�cation error and controller delay in the �eld of assistive technology, physical rehabilitation and 
human computer interactions.

Existing gesture recognition approaches can be broadly divided into two categories: (1) methods based on 
sparse multi-channel sEMG15–19, and (2) methods based on high-density sEMG (HD-sEMG)20–22. Gesture rec-
ognition based on sparse multi-channel sEMG usually require precise positioning of the electrodes over the 
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muscle23, thus limiting its use in MCI. HD-sEMG( i.e., sEMG recorded using two-dimensional electrode arrays) 
has enabled both temporal and spatial changes of the electrical potential to be recorded by multiple, closely 
spaced electrodes on the skin overlaying a muscle area24. Recently, more MCIs have been developed based on 
HD-sEMG23,25.

�e collected HD-sEMG data are composed of myoelectric signals that characterize the spatiotemporal dis-
tribution of myoelectric activity over the muscles that reside within the electrode pick-up area. �e collected 
HD-sEMG data also provide a global view of the varying states of electric �elds on the surface of the involved 
muscles sampled via arrayed electrodes within the covered region, i.e., the instantaneous values of HD-sEMG 
present a relative global measure of the physiological processes underlying muscle activities at a speci�c time. 
However, whether the instantaneous HD-sEMG exhibits spatial patterns or is random like individual sEMG 
channels remains unclear.

We have determined that there are patterns inside the instantaneous HD-sEMG that are reproducible across 
trials of the same gesture and discriminative among di�erent gestures. To verify this hypothesis computationally, 
we introduced the concept of an sEMG image and designed a series of experiments using three public databases 
employing an image-classi�cation framework to recognize gestures from HD-sEMG.

An acquired HD-sEMG describes a potential distribution in space (as shown in Fig. 2), which yields the 
surface EMG image. �e number of pixels (resolution) in sEMG images is de�ned by the array of electrodes, i.e., 
the number of electrodes and their inter-electrode distance (e.g., an electrode grid with 16 rows and 8 columns 
forms an sEMG image with 8 ×  16 pixels). An instantaneous sEMG image is a single sample of a motor unit action 
potential distribution under an electrode grid at a speci�c time. �e number of instantaneous sEMG images cap-
tured per second is the sampling frequency in time.

In general, the recognition of hand gestures by instantaneous sEMG images can be naturally framed as a prob-
lem of image classi�cation, which can be solved by standard supervised learning: given a training set of captured 

Figure 1. Schematic illustration of gesture recognition by windowing sEMG signals. MAV: mean absolute 
value. AR: auto-regressive coe�cients. MNF: mean frequency44.

Figure 2. Schematic illustration of gesture recognition by instantaneous sEMG images. 
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instantaneous sEMG images labelled with performed hand gestures, we teach a classi�er to predict the desired 
hand gesture for each incoming sEMG image. We adopted a deep-learning26–29 approach to solve the sEMG 
image-classi�cation problem because its computational model based on deep convolutional neural networks 
(ConvNet) is trained end to end, from raw pixels to ultimate categories, without any additional information or 
manual design of feature extractors30. �is approach thus ful�ls our requirements for experimental veri�cation.

We employed the deep-learning framework to recognize hand gestures from sEMG images and computation-
ally elucidate the patterns in the instantaneous sEMG images (shown in Fig. 2). �is process has two phases: an 
o�ine training phase and an online recognition phase. In the training phase, given the sEMG images and their 
gesture labels, an image classi�er is trained to predict to which hand gesture an sEMG image belongs. In the rec-
ognition phase, the trained image classi�er is utilized to recognize hand gestures from sEMG images.

A similar concept called sEMG topography31,32 or sEMG map33 was proposed for medical applications. 
Recently, sEMG map has also been utilized to recognize hand gestures20,21. Rojas et al.20 de�ned an sEMG map as 
a time-averaged 2D intensity map of sEMG signals, in which each pixel is the root mean square (RMS) value of a 
certain channel in a time window ( e.g., 3000 ms). �e major di�erence between our instantaneous sEMG image 
and the sEMG map proposed by Rojas et al.20 is that our concept of instantaneous sEMG image is proposed to 
address per-frame gesture recognition. Only in the extreme case, when the window length of the sEMG map is 
reduced to one frame, the sEMG map is similar to our instantaneous sEMG image, except that our instantaneous 
sEMG image is directly formed from the raw sEMG signals while the sEMG map is the recti�ed sEMG signals 
( i.e., the absolute values of the sEMG signals10). Experiment 3 indicated that our instantaneous sEMG image is 
superior to the sEMG map in terms of the gesture recognition accuracy.

Experiments
Experiment 1: Testing on an sEMG image and its sEMG difference image. To test this hypotheses, 
we newly proposed an experimental test-bed based on the framework of recognizing hand gestures by instan-
taneous sEMG image (shown in Fig. 2). �e deep-learning framework is based on MxNet, a multi-language 
machine learning (ML) library to ease the development of ML algorithms, especially for deep-learning34. We also 
developed a non-invasive wearable device to collect HD-sEMG data for our veri�cation experiments. �is device 
consisted of 8 acquisition modules. Each acquisition module contained a matrix-type (2 ×  8) electrode array with 
an inter-electrode horizontal distance of 7.5 mm and a vertical distance of 10.05 mm. �e 128 sEMG signals were 
band-pass �ltered at 20–380 Hz and sampled at 1,000 Hz with a 16-bit A/C conversion. �e instantaneous values 
of sEMG signals at each sampling instant were arranged in a two-dimensional grid (in accordance with the elec-
trode positioning). �is grid was further converted to a grayscale image in which the units of the sEMG signal 
were converted from mV to colour intensity. �e details of data preprocessing could be found in the methods 
section.

In experiment 1, we recruited 18 healthy able-bodied subjects ranging in age from 23 to 26 years. Each subject 
was paid to perform 8 isometric and isotonic hand gestures identical to those in the NinaPro database35; each ges-
ture was also recorded 10 times. We denote this dataset as DB-a in the following sections, which is a sub-database 
of our CapgMyo database. ConvNet was trained with the odd-numbered trials of each subject and tested with 
the remaining half. �e results of this experiment, presented in Fig. 3, demonstrated that hand gestures can be 
recognized with an accuracy of 89.3% on a single instantaneous sEMG image. Higher recognition accuracies of 
99.0% and 99.5% can be obtained by simple majority voting over the recognition results of 40 and 150 frames, 
respectively (Fig. 4(a)). At our sampling rate, 150 frames is equivalent to 150 ms, which is the window size sug-
gested by several studies of pattern recognition based on prosthetic control1,6,36. �e recognition accuracy was 
very high for instantaneous sEMG images, thus demonstrating that the patterns possibly exist in the HD-sEMG 
signals for discriminating hand gestures.

We also performed the test using the di�erence sEMG image ( i.e., changes between two consecutive sEMG 
images in the temporal sEMG sequence). �e resulting recognition accuracy was 84.6% on a single di�erence 
image, and 99.4% using simple majority voting over 149 di�erence images. By simple majority voting over 150 
instantaneous sEMG images together with their 149 di�erence images, we obtained a recognition accuracy of 

Figure 3. Recognition accuracy of 8 hand gestures with instantaneous values of sEMG signals for di�erent 
datasets and recognition approaches. Each group of columns represents a speci�c experiment. Di�erent 
colours represent di�erent recognition approaches: ConvNet (deep convolutional neural network) with 
instantaneous sEMG images, MLP (multilayer perceptron), KNN (K-Nearest Neighbours), SVM (Support 
Vector Machine) Random Forests and LDA (Linear Discriminant Analysis). Error bars denote standard 
deviations.
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99.6%. Such a high recognition accuracy on the di�erence sEMG images further verify that there are patterns in 
the instantaneous HD-sEMG signals from a temporal perspective.

Finally, we developed a prototype MCI based on real-time gesture recognition (shown in supplementary 
Figure S1), which recognizes 8 isometric and isotonic �nger gestures (equivalent to Nos 13–20 in NinaPro18) 
using the 128 channels HD-sEMG signals recorded by our non-invasive wearable device. �e HD-sEMG data 
from the 8 electrode arrays were packed in an ARM controller and transferred to a workstation via WIFI. Our 
MCI system displays the recognized hand gesture and the recorded HD-sEMG image in real-time. �e deep 
learning classi�er is running on a workstation with one NVidia Titan X GPU.

Experiment 2: Testing with classical recognizers. Motivated by the very high accuracy of the 
HD-sEMG-based gesture recognition via deep learning, in the second experiment, we replaced ConvNet with 
conventional classi�ers. �e dataset was identical to that in experiment 1, DB-a, where instantaneous values of 
sEMG signals were directly formed as a feature vector (denoted as sEMG vector). �is procedure ensured that 
the conventional classi�er did not utilize any additional information or manually speci�ed features of myoelec-
tric activity residing within the electrode pick-up area. We evaluated �ve classical classi�ers: MLP (multilayer 
perceptron), KNN (K-Nearest Neighbours), SVM (Support Vector Machine), Random Forests and LDA (Linear 
Discriminant Analysis). �e resulting evaluation of the DB-a dataset demonstrated that patterns can be observed 
from gesture recognition with MLP and Random Forests. �us, patterns can be captured by certain classical rec-
ognizers and not merely by the deep-learning framework.

Experiment 3: Testing on the CSL-HDEMG dataset. We evaluated our ConvNet-based gesture rec-
ognition on the CSL-HDEMG database23, which contains HD-sEMG signals of 5 subjects performing 27 �nger 
gestures, in which each subject recorded 5 sessions and performed 10 trials for each gesture in every session. 
�e sEMG signals were bipolar recorded at a sampling rate of 2,048 Hz, by using an electrode array with 192 
electrodes, covering the upper forearm muscles, forming a grid of 7 ×  24 channels. We used the same evaluation 
procedure, i.e., the �ltering and segmentation of the signals as well as the cross-validation scheme, as that in the 
experiments of Amma et al.23. For each recording session, we performed a leave-one-out cross-validation in 
which each of the 10 trials was used in turn as the test set and a classi�er was trained by using the remaining 9 
trials. Our method achieved an accuracy of 96.8% using simple majority voting over the entire segment of each 
trial, an 6.4% improvement over the latest work of gesture recognition base on HD-sEMG23. �e recognition 
accuracies with di�erent voting windows are presented in Fig. 4(b). �e recognition accuracy reached 55.8% on a 
single frame of HD-sEMG signals, and it reached 89.3%, 90.4% and 95.0% using simple majority voting over 307, 
350 and 758 frames, respectively, with a 2,048 Hz sampling rate.

We also evaluated the sEMG map proposed by Rojas et al.20, which is a time-averaged 2D intensity map of 
HD-sEMG signals. Using our ConvNet-based classi�er and sEMG map with an averaging window of one frame, 
the recognition accuracy was 52.1%, which was 3.7% lower than using our instantaneous sEMG image. �is 
indicates that our instantaneous sEMG image is superior to the sEMG map in terms of the gesture recognition 
accuracy.

Experiment 4: Testing on the NinaPro dataset with sparse channels. In experiment 4, we per-
formed the tests of 8 �gure gestures on the NinaPro database35, a benchmark scienti�c database with ten elec-
trodes on the forearm for hand prostheses. We performed this experiment because the patterns in the HD-sEMG 
data should also be embodied to a certain extent in the sEMG data. In the NinaPro dataset, 52 gestures were 
recorded 10 times by 27 subjects in sub-database 1 (DB1) and 50 gestures were recorded 6 times by 40 subjects in 
sub-database 2 (DB2). We transformed the instantaneous values of the sEMG signals at each instant into an image 
with 1 ×  10 pixels, where the �rst eight components corresponded to the equally spaced electrodes around the 

Figure 4. Recognition accuracies of hand gestures with di�erent voting windows for three public 
databases. (a) Recognition accuracies of 8 �nger gestures of CapgMyo DB-a. (b) Recognition accuracies of 
27 �nger gestures of CSL-HDEMG. (c) Recognition accuracies of 8 �nger gestures and 52 hand gestures of 
NinaPro DB1.
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forearm at the height of the radio-humeral joint and each of the last two components corresponded to electrodes 
placed on the main activity spots of the �exor digitorum super�cialis and the extensor digitorum super�cialis. 
Following the classi�cation procedure of NinaPro35, for each sub-database of the NinaPro dataset, a ConvNet was 
trained with approximately two thirds of the trials of each subject and tested with the remaining one third. �e 
accuracy was calculated as the proportion of correctly recognized images and averaged over all the subjects. For 
both NinaPro sub-databases, the recognition accuracy with instantaneous sEMG images was 78.9% for DB1 and 
76.1% for DB2 (Fig. 3).

Moreover, we evaluated the ConvNet-based recognition of all 52 hand gestures of NinaPro DB1 using the 
aforementioned classi�cation procedure. As shown in Fig. 4(c), the resulting recognition accuracy reached 65.1% 
on a single frame of sEMG signals, reached 75.3% using simple majority voting over 28 frames with a 100 Hz sam-
pling rate and reached 96.7% using simple majority voting over the entire segment of each trial. With a preproc-
essing low-pass Butterworth �lter (1st order, 1 Hz), Atzori et al.\cite{Atzori_SData_2014} achieved a recognition 
accuracy of 75.3% using a 200 ms window (20 frames), while our recognition accuracy reached 76.1% on single 
frame of sEMG signals and reached 77.8% using simple majority voting over a 200 ms window (20 frames). �ese 
results suggest that our approach based on sEMG image outperforms state-of-the-art methods for gesture recog-
nition, even with the sEMG signals from sparse multiple channels. �ese results further con�rmed our hypothesis 
that there are patterns inside the instantaneous sEMG data, even with the sEMG from sparse channels.

Discussion
In this study, we performed a series of experiments to verify our assumptions on the patterns inside instanta-
neous sEMG images and demonstrate that the hand gestures of a speci�c subject will be e�ectively recognized 
directly on the instantaneous sEMG images with an image classi�er trained on the samples of hand gestures 
from the same subject. We achieved state-of-the-art performance for sEMG-based gesture recognition on three 
public databases (NinaPro35, CSL-HDEMG23 and our CapgMyo). For 27 �nger gestures from CSL-HDEMG, the 
recognition accuracy reached 55.8% on a single frame of HD-sEMG signals with a 2,048 Hz sampling rate, and it 
reached 96.8% using simple majority voting over the entire segment of each trial–an 6.3% improvement over the 
latest work23. For 52 hand gestures from NinaPro DB1, the recognition accuracy reached 65.1% on a single frame 
of sEMG signals with a 100 Hz sampling rate, and it reached 96.7% using simple majority voting over the entire 
segment of each trial. Using the same con�guration35, we improved the resulting recognition accuracy with lower 
observational latency.

�e HD-sEMG-based hand gesture recognition experiments revealed that electromyography data do contain 
patterns that are reproducible across trials of the same gesture and discriminative among di�erent gestures for a 
group of individuals. Indeed, the question of “what are the essential components of the patterns”? remains open 
and must be answered by biologists and physiologists in the future. Furthermore, the instantaneous sEMG images 
also present a relative global measure of the underlying physiological processes of muscle activities at a speci�c 
time. �is research will open new avenues for studying muscle characteristics and interpreting the physiological 
mechanisms of patterns in dynamic transitional motions via sEMG, in addition to static gestures.

From the perspective of interactions between humans and machines, our �ndings provide a starting point for 
developing more �uid and natural muscle-computer interfaces with very little observational latency, particularly 
for applications in neuromuscular diagnosis, assistive technology, physical rehabilitation and human-computer 
interactions.

Currently, our classi�cation method is based on ConvNet, which is computational expensive. In the future 
work, we plan to investigate more sophisticated classi�cation algorithms for sEMG-based gesture recognition.

Methods
Data and code availability. Our CapgMyo database and the codes are available at http://zju-capg.org/myo.

Acquisition protocol. CapgMyo DB-a consisted of recordings of 8 �nger gestures, and each gesture was 
held for 3 to 10 seconds, followed by 7 seconds of rest. �e set of gestures was recorded 10 times by each subject. 
�e 8 acquisition modules were wrapped around the right forearm and formed an 8 ×  16 electrode array. Subjects 
sat comfortably in an o�ce chair and rested their arms on a desktop. Before donning the devices, the skin of the 
forearms was cleaned with alcohol. �e imitation stimulus was visual. �e subjects were asked to mimic a video 
of hand gestures shown on the screen with their right hand. �e video was then used to generate a label for each 
sample.

The study was conducted in accordance with the Declaration of Helsinki and approved by the Ethics 
Committee of Zhejiang University, China. Written informed consent was obtained from all subjects.

Data preprocessing. For CapgMyo, power-line interference was removed. For CSL-HDEMG23, the data 
were band-pass �ltered and segmented as that in the experiments of Amma et al.23. In our evaluation, the sEMG 
signals of CSL-HDEMG at each sampling instant were preprocessed by a 3 ×  3 spatial median �lter. Recti�cation 
is to estimate the amplitude of the sEMG signals by computing the absolute values of the sEMG signals10. �e 
sEMG signals of CapgMyo and CSL-HDEMG were not recti�ed. �e sEMG signals of NinaPro DB135 have been 
recti�ed and smoothed by the acquisition device. For NinaPro DB2, the sEMG signals were downsampled to 100 
frames per second, which was the sampling rate of DB1, and preprocessed similar to that used for DB1.

Instantaneous sEMG image. �e instantaneous values of HD-sEMG signals at each sampling instant were 
arranged in a two-dimensional grid in accordance with the electrode positioning. �is grid was further converted 
to a grayscale image with a linear transform in which the units of the sEMG signal were converted from mV to 
colour intensity. For our CapgMyo database, an instantaneous sEMG image was formed as an 8 ×  16 grayscale 
image by linearly transforming the values of sEMG signals from [− 2.5 mV, 2.5 mV] to [0, 1].

http://zju-capg.org/myo
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ConvNet architecture. Our ConvNet had eight layers. �e input to the ConvNet consisted of a 8 ×  16 image 
for CapgMyo, a 7 ×  24 image for CSL-HDEMG23 and a 1 ×  10 image for NinaPro35. �e �rst two hidden layers 
were convolutional layers, each of which consisted of 64 �lters of 3 ×  3 with stride 1. �e next two hidden layers 
were locally connected37, each of which consisted of 64 non-overlapping �lters of 1 ×  1. �e next three hidden 
layers were fully connected and consisted of 512, 512 and 128 units, respectively. �e network ended with an 
G-way fully connected layer and a so�max function, where G is the number of gestures to be classi�ed. We 
adopted (1) ReLU non-linearity28 a�er each hidden layer, (2) batch normalization38 a�er the input and before 
each non-linearity, and (3) dropout39 with a probability of 0.5 on the fourth, ��h and sixth layers.

ConvNet training. We used stochastic gradient descent (SGD)40 with a data batch size of 1,000, an epoch num-
ber of 28, and a weight decay of 0.0001 in all experiments. �e learning rate started from 0.1 and was divided by 10 
a�er the 16th and the 24th epochs, �e weights of the ConvNet were initialized as described in a previous study41. 
In order to prevent an over�tting of the small training set in experiments 1, 3 and 4, the ConvNet was initialized by 
pre-training on the union of the training sets of all subjects in each round. In experiment 3, the statistics of the batch 
normalization layers, i.e., mean and variance of each input channel, were re-calculated with the test data.

Conventional classifiers. For MLP, we used a single hidden layer of 1,024 units with ReLU non-linearity 
and applied the same training scheme as that of the ConvNet case. For KNN, SVM, Random Forests and LDA, we 
used the implementation and default hyper-parameters of Scikit-learn 0.17.042. �e training set was downsam-
pled by a factor of 9 in experiment 2 for computational ease.

Hyper-parameter tuning. �e hyper-parameters of the entire recognition model included 1) a method for 
detecting malfunctioning channels; 2) a method for the removal of power-line interference; 3) a method for rec-
ti�cation; 4) a method for low-pass �ltering; 5) a method for amplitude normalization; 6) a method for cross-talk 
removal; 7) a colour scheme for instantaneous sEMG images; and 8) a method for training data augmentation.

The hyper-parameters were selected by comparing the recognition accuracy of a specific configuration 
with that of a baseline model on DB-a (as shown in Table 1). We used the data of �rst 9 subjects of DB-a for 
hyper-parameter tuning. �e model was trained with the odd numbered trials and tested with the even numbered 
trials. �e hyper-parameter con�gurations are provided in Table 1.

�e result, as presented in Table 1, demonstrated that only the removal of power-line interference increased 
the recognition accuracy. Although low-pass �ltering at 75 Hz improved the recognition accuracy, it introduced 
a latency of 3 ms43, equivalent to the average latency introduced by an analysis window of 6 ms6. With majority 
voting on the recognition result in 6 ms, the recognition accuracy of the baseline con�guration was 92.5%, which 
are signi�cantly higher than the accuracy obtained by low-pass �ltering. �is suggests that the “noise” removed 
by low-pass �ltering contained useful patterns.
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