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Abstract: We propose a method for gesture recognition that utilizes active acoustic sensing, which transmits acoustic

signals to a target, and recognizes the target’s state by analyzing the response. In this study, the user wore a contact

speaker that transmitted ultrasonic sweep signals to the user’s body and a contact microphone that detected the ultra-

sound propagated through the body. The propagation characteristics of the ultrasound changed depending on the user’s

movements. We utilized these changes to recognize the user’s gestures. One of the important novelty features of our

method is that the user’s gestures can be acquired not only from the physical movement but also from the user’s internal

state, such as muscle activity, since ultrasound is transmitted via both the user’s internal body and body surface. More-

over, our method is not adversely affected by audible-range sounds generated by the environment and body movements

because we utilize ultrasound. We implemented a device that uses active acoustic sensing to effectively transmit/detect

the ultrasound to/from the body and investigated the performance of the proposed method in 21 contexts with 10 sub-

jects. The evaluation results confirmed that the precision and recall are 93.1% and 91.6%, respectively when we set

10% of the data as training data and the rest as testing data in the same data set. When we used the data set for training

and the other data set for testing in the same day, the precision and recall are 51.6% and 51.3%, respectively.
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1. Introduction

A gesture recognition method is an important technique these

days for various purposes including developing intuitive inter-

faces. Commercial devices, such as Kinect [4] and Leap Mo-

tion [5], are already available. In the wearable computing en-

vironment, they are utilized for the life log and hands-free in-

terface by using wearable sensors. A lot of gesture recognition

methods have already been studied, and typical sensors for rec-

ognizing user gestures are accelerometers [18] and cameras [22].

However, when using the former, it is difficult to acquire the inter-

nal/surface state of a body. Use of the latter is effective only in the

range where the camera can get an image. Thus, it is not suitable

for the wearable computing environment. Recognizing aspects

of the user’s internal state, such as muscle activity, is expected

to enrich the user’s experience in wearable computing. Although

electromyography (EMG) sensors [8] are typically used to recog-

nize the aspects of the internal state of the body, the changes in

the EMG sensor values are small, and EMG sensors are adversely

affected by electrical noise. Thus, we consider that it is difficult

to utilize EMG sensors in daily life.

In this study, we focused on the active acoustic sensing method,
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which transmits acoustic signals to a target and recognizes the

target state by the response. We applied this technique to a hu-

man body. The user wore a contact speaker that transmitted ul-

trasound to his/her body and a contact microphone that detected

the ultrasound that propagates through his/her body. The prop-

agation characteristics of the ultrasound changed depending on

the aspects of the user’s state, such as gestures and muscle ac-

tivities. We utilized these properties to recognize the user’s ges-

tures. One of the important novelty features of our method is

that the user’s gestures can be acquired not only from the appar-

ent movement, such as limb movement (physical movement) but

also from the user’s internal state, such as muscle activity, since

ultrasound is transmitted via both the user’s internal body and

body surface. In the conventional method, the combination use

of multiple sensors, such as accelerometers and EMG sensors,

is required to acquire these contexts. Our method can acquire

these contexts by using only a contact microphone and a contact

speaker, which are simple and cheap. Moreover, since we uti-

lized ultrasonic-range sound, our method is not adversely affected

by audible-range sounds generated by the environment and body

movements. We implemented a prototype device and investigated

the performance of the proposed method in 21 contexts with 10

subjects. The evaluation results confirmed that the precision and

recall are 93.1% and 91.6%, respectively when we set 10% of the

data as training data and the rest as testing data in the same data
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set. When we used the data set for training and the other data set

for testing in the same day, the precision and recall are 51.6% and

51.3%, respectively.

The contributions of this paper are as follows:

1) We proposed a gesture recognition method utilizing the

propagation characteristics of the ultrasonic sweep signals

that are transmitted to the internal body and the surface of

the body.

2) We designed and implemented the microphone and the

speaker to effectively transmit/detect sound to/from the

body. Our device reduces the deviation in the device wearing

position by utilizing suspension and adhesive force.

3) We investigated the performance of the proposed method as-

suming daily life use considering re-attaching the device for

another day.

This paper is organized as follows. In Section 2, we describe

related work. In Section 3, the proposed method is presented.

The implementation is described in Section 4. The recognition

rate of our method is discussed in Section 5. Finally, Section 6

concludes our research.

2. Related Work

2.1 Gesture Recognition Method

There are a lot of gesture recognition methods, and accelerom-

eters are generally utilized. Murao et al. [18] investigated the ef-

fects on recognition accuracy of changing the number and posi-

tions of sensors and the number and kinds of gestures by using a

test mobile device with nine accelerometers and nine gyroscopes.

Watanabe et al. [26] developed an activity and context recognition

method where the user carries a neck-worn receiver comprising

a microphone and small speakers on his/her wrists that generate

ultrasounds. Stiefmeier et al. [24] presented a method for contin-

uous activity recognition based on ultrasonic hand tracking and

motion sensors attached to the user’s arms. Gupta et al. [13] pre-

sented SoundWave, a technique that leverages the speaker and

microphone already embedded in most commodity devices to

sense in-air gestures around the device. Kinect [4] can recognize

the user’s gestures by utilizing an RGB camera and depth sen-

sor. Pirkl et al. [20] described the design and implementation of a

cheap, low power, and easily wearable system for tracking the rel-

ative position and orientation of body parts by utilizing magnetic

field technology. Fukui et al. [12] proposed an approach to hand

shape recognition based on wrist contour measurement. Sato et

al. [23] proposed Swept Frequency Capacitive Sensing technique

that can not only detect a touch event but also recognize complex

configurations of the human hands and body.

In these studies, although physical movements that are visually

recognized from the outside are recognized precisely, it is difficult

to recognize aspects of the internal state of the body such as mus-

cle activity. Moreover, some methods are adversely affected by

environment, for example, it is difficult to use infrared sensors at

the outdoors because sunlight includes infrared and causes mis-

recognition.

Mokaya et al. [16] developed a wearable system for determin-

ing muscle activation in high motion exercise scenarios. How-

ever, this study is different from our method in terms of using

accelerometers. EMG sensors can recognize muscle activities.

Amma et al. [8] presented their results on using EMG sensor ar-

rays for finger gesture recognition. However, changes in the EMG

sensor values are small, and EMG sensors are adversely affected

by electrical noise. Thus, we consider that it is difficult to utilize

EMG sensors in daily life.

2.2 Active Acoustic Sensing for Objects

Active acoustic sensing is a method for estimating the state

of objects by transmitting acoustic signals and analyzing the re-

sponse. In the industrial field, this technique is known as a non-

destructive testing technique [6]. Surface acoustic wave touch

screens also utilize acoustic signals to detect the user’s touch po-

sition [9].

In research, Ono et al. [19] presented an acoustic touch sensing

technique called Touch & Activate. It recognizes a rich context of

touches including grasping existing objects by attaching only a

vibration speaker and a piezoelectric microphone paired as a sen-

sor. Laput et al. [14] developed Acoustruments, which are low-

cost, passive, and power-less mechanisms made from plastic, that

can bring rich, tangible functionality to handheld devices. They

attach structural elements to a handheld device along the speaker-

microphone pathway to characteristically alter the acoustic out-

put. SoQr [11] is a sensor that can be attached to an external sur-

face of a household item to estimate the amount of content inside

it. The sensor consists of a speaker and a microphone.

In these studies, they apply active acoustic sensing to objects.

We apply this technique to the human body and recognize the

user’s gestures.

2.3 Active Acoustic Sensing for Human Body

Active acoustic sensing is also applied to the human body.

In the medical field, active acoustic sensing is widely used to

see internal body structures such as tendons, muscles, and inter-

nal organs [10]. In research, Mujibiya et al. proposed a sensing

technique based on transdermal low-frequency ultrasound prop-

agation [17]. This technique enables pressure-aware continuous

touch sensing as well as arm-grasping hand gestures. Takemura

et al. proposed a wearable sensor system that measures the an-

gle of an elbow and the position of a tapping finger using bone-

conducted sound [25]. It consists of two microphones and a

speaker, and they are attached to the forearm. In these studies,

they utilized certain fixed frequencies. Moreover, they do not de-

tect daily gestures with large limb movements, such as those of

walking and jogging.

In this study, we utilized a sweep signal, which is a signal

where the frequency increases/decreases with time. Moreover,

we transmitted ultrasound to the human body and utilized the re-

flected ultrasonic wave from the internal body and the surface

wave on the body whereas previous methods [17] utilized only

the surface wave on the body. Additionally, we considered daily

gestures including walking and jogging.

3. Proposed Method

In our proposed method, the user carried wearable speaker and

microphone on his/her body, as shown in Fig. 1. The contact
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Fig. 1 System configuration.

Fig. 2 Changes in frequency spectrum.

Fig. 3 Propagation of ultrasound.

speaker repeatedly transmitted ultrasonic sweep signals to the hu-

man body, and the contact microphone detected the ultrasound

that propagates through the body. We performed fast Fourier

transform (FFT) on the input from the contact microphone. In

this study, the sampling rate was 96 kHz, and the number of FFT

samples was 8,192. As shown in Fig. 2, the frequency spectrum

was changed by the user’s state, for example, during postures and

muscle activities. We utilized these features to recognize user

gestures. Since the sound from the contact speaker was ultra-

sound, humans could not hear the sound propagated in the air.

3.1 Ultrasound Propagation in Human Body

Figure 3 shows the propagation of ultrasound. The signal from

the sound source vibrates the contact speaker, and the contact

speaker vibrates the skin. A portion of the sound wave is re-

flected on the surface (surface wave), and the other portion prop-

agates through the body (transmitted wave) [15]. When the sound

wave crosses a boundary between two media, a portion of the

energy is reflected (reflected wave) and a portion continues in a

relatively straight line. This reflectance is caused by a difference

in the acoustic impedance between the two media. The larger

the difference, the more sound waves are reflected. The human

body consists of skin, fat, blood, bone, and so on. These compo-

Fig. 4 Microphone/speaker configuration.

nents have their own acoustic impedance. Sound waves transmit

and reflect on these tissue boundaries and have unique propaga-

tion characteristics. The body movements affect the positional

relationship of these components and change their shape. These

changes of components affect the ultrasound propagation in the

human body and dynamically change the ultrasound propagation

characteristics. We utilized these changes in frequency to rec-

ognize user gestures. In previous study [17], they utilized com-

modity ultrasonic transducer and receiver. In this study, we de-

signed the contact speaker/microphone considering the acoustic

impedance between device and skin to effectively transmit/detect

ultrasound to/from the human body, and we utilized the reflected

wave from the internal parts of the body and the surface wave on

the body.

Transmitting ultrasound to the human body is widely used in

the medical field. It is basically harmless to the human body as

long as the ultrasound intensity is below a certain threshold. We

follow the guideline that Canada, Japan, Russia, and the Inter-

national Radiation Protection Agency recommends a maximum

level of 110 dB for safe operation for frequencies from 25 to

50 kHz [2].

3.2 Microphone/Speaker Design

To effectively transmit/detect ultrasound to/from the human

body, we have to consider the difference in acoustic impedances

between the contact microphone/speaker (piezoelectric sensor)

and the skin. The acoustic impedance of typical ceramic piezo-

electric sensors and the human body are 30–35 × 106 kg/m2s and

approximately 1.5 × 106 kg/m2s, respectively. Therefore, a major

portion of the ultrasound is reflected on the skin by just wear-

ing the contact microphone/speaker. BodyBeat [21] solved the

problem of acoustic impedance difference by detecting the sound

from the body via a silicon diaphragm. Based on this idea, we

designed the microphone/speaker for active acoustic sensing of

the body, as shown in Fig. 4. The 3D printed capsule was filled

with Hitohada gel (hardness: 15) [3]. A piezoelectric sensor was

embedded in the hardened gel. Hitohada gel is a super soft resin

for modeling, which has an acoustic impedance of approximately

1.7 × 106 kg/m2s. The difference in acoustic impedance between

the body and the gel is much less than that between the body

and the ceramic piezoelectric sensor. We compared the conven-

tional piezoelectric sensors with the proposed device on the hu-

man body. We attached the device to the wrist, and the speaker

transmitted the ultrasonic sweep signal and the microphone de-
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Fig. 5 Comparison of the conventional device and the proposed device.

tected the ultrasound propagated in the body. Figure 5 shows an

example of comparing the frequency spectrum for both devices.

As shown in this figure, the volume of ultrasound by using the

proposed device was larger at each frequency than that by using

the conventional device because the proposed device can more ef-

fectively transmit/detect ultrasound than the conventional device.

In this study, the detected wave consisted of surface wave and re-

flected wave. A future work will be to separate these two waves

and utilize each characteristic.

We also considered that deviation in the device wearing posi-

tion and friction noise that includes ultrasound caused by user

movement affect the recognition result. Thus, based on the

method in Ref. [21], we designed a microphone/speaker attach-

ment that reduces the deviation in the device position caused

by the user’s movements as shown in Fig. 4. The micro-

phone/speaker is attached to the suspension capsule with four

elastic strings. The suspension allows for approximately four mil-

limeters of all sides and vertical movements. This helps to keep

the microphone/speaker in the same position because the devia-

tion caused by the body movements and external impacts only af-

fect the suspension capsule and the microphone/speaker can keep

a certain position. The deviated suspension capsule returns to the

original position by the tension of the elastic strings so as not to

strike the internal microphone/speaker capsule. Moreover, Hito-

hada gel has an adhesive force. The microphone/speaker sticks

to the skin and keeps its original position. Although the adhesive

force became weaker after we had used it many times, wiping the

gel with water or alcohol revived it. In this study, the designed

suspension capsule is 38 millimeters in diameter. It is relatively

big for daily use. However, we plan to miniaturize the device in

the same configuration in the future.

3.3 Sweep Signal

We adopted the ultrasonic sweep signal as an acoustic sig-

nal from the contact speaker. A sweep signal is a signal whose

frequency increases/decreases with time. Since it includes vari-

ous frequencies, we can acquire more features than a fixed fre-

quency. In this study, we used a sweep signal shifting from 20 to

40 kHz over 20 milliseconds and a contact speaker that transmits

the sweep signal repeatedly. Since the sound transmitted from

the speaker is ultrasonic range sound (the sound of more than

20 kHz), it does not annoy the user and the surrounding people.

Moreover, 40 kHz has enough margins for the Nyquist frequency

of high-end mobile phones and audio players. Additionally, when

we analyze the acquired data, the window for calculating FFT

(approximately 85.3 milliseconds) includes at least four cycles of

the sweep signal. This ensures that we do not have to consider

the timing of the sweep signal when analyzing the acquired data,

and we can acquire a stable frequency response of four cycles of

sweep signals.

3.4 Gesture Recognition Method

We calculated FFT for the input of the contact microphone and

obtained the frequency spectrum. The sampling rate was 96 kHz.

The number of samples for calculating FFT was 8,192 without

any overlaps. We focused on only the 20 to 40 kHz range, which

is the transmitted sweep signal range, and extracted features from

20 to 40 kHz of the frequency spectrum. We extacted 25 features

as follows.

• Mel-Frequency Cepstral Coefficients (MFCCs): MFCCs are

commonly used for audio and speech recognition [27]. Note

that we did not use a mel filter bank when we calculated

MFCCs because we did not have to consider human hear-

ing characteristics and do need equally observe the target

range. Therefore, we utilized 20 triangular overlapping win-

dows that have equal intervals on the hertz scale instead of

the mel filter bank.

• Spectral Centroid: the spectral centroid is the balancing

point of the spectral power distribution. It is calulated by the

following formula. f (k) represents the frequency magnitude

of bin number k in the range of 20 to 40 kHz.

Spectral Centroid =

∑N
k=1 k f (k)
∑N

k=1 f (k)
(1)

• Spectral Flux: the spectral flux is the spectral amplitude dif-

ference of two adjacent frames. ft(k) and ft−1(k) represent

the current frame and the last frame, respectively.

Spectral Flux =

N
∑

k=1

( ft(k) − ft−1(k))2 (2)

• Spectral Skewness: the skewness is a measure of the asym-

metry of the data around the sample mean. µ and σ repre-

sents mean and standard deviation, respectively.

Spectral Skewness =

∑N
k=1( f (k) − µ)3

Nσ3
(3)

• Spectral Kurtosis: the kurtosis is a measure of how outlier-

prone a distribution is.

Spectral Kurtosis =

∑N
k=1( f (k) − µ)4

Nσ4
(4)

• Spectral Rolloff of 93%: it is defined as the frequency bin

below which 93% of the distribution is concentrated.

Spectral Rolloff = max
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(5)

Moreover, we calculated the mean and variance of 25 fea-

tures for detecting the changes in the time series. Thus, we ac-

quired 50 features in total. The window size for calculating the

mean and variance was 30 (approximately three seconds) because
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some contexts used in evaluation were approximately three sec-

onds per action. We utilized these features to recognize gestures.

We utilized WEKA [7] for classification and selected IB1 for the

classifier, which is the nearest neighbor method implemented on

WEKA. Although other classifiers, such as support vector ma-

chine and decision tree, can be considered, we selected IB1 be-

cause the recognition result was the best.

4. Implementation

We implemented a prototype device. Figure 6 shows the im-

plemented microphone and speaker. The contact microphone

was a Murata 7BB-20-6L0, and the contact speaker was a Thrive

OMR20F10-BP310. These piezoelectric sensors were embedded

into a 3D printed ABS capsule that was filled with Hitohada gel

(hardness: 15). The microphone/speaker was attached to the sus-

pension capsule with four elastic strings and was attached to the

supporter by a snap button. Thus, these devices could easily be

attached/detached from the supporter. These devices were fixed

by the supporter, as shown in the bottom right of Fig. 6.

Figure 7 shows the whole prototype device. The ultra-

sound transmitting device consists of an ARM mbed NXP

LPC1768, lithium-ion battery (850 mAh, 3.7 V), boosting mod-

ule (LMR62421), and power cell LiPo charger/booster. This de-

vice can be attached to the outside of the supporter by velcro tape.

A sweep signal sound file (which shifts from 20 to 40 kHz over

20 milliseconds) is located in mbed local storage. It reads the

sound file and outputs from AnalogOut. The sweep signal was

made by the chirp (sweep) signal function of Audacity, which is

a free software for recording and editing sounds [1]. To smoothly

repeat the sound, we processed the one millisecond fade in and

Fig. 6 Implemented microphone and speaker.

Fig. 7 Prototype device.

fade out for the beginning and end of the sound file, respectively.

The output signal from mbed is boosted to 12 V by the boosting

module to sufficiently vibrate the contact speaker. Since the out-

put volume of the ultrasound was at most 60 dB, our signal was

below the safety threshold of 110 dB [2].

We utilized a voice recorder TASCAM DR-05 to record the

data. The recording sampling rate was 96 kHz, and the quanti-

zation bit was 16 bit. The voice recorder records the signal from

the microphone via shield cable. The signal from the microphone

was so small that we used shield cable to reduce the noise, and

the signal was amplified in the voice recorder.

We used an Apple MacBook Pro (CPU: Intel Core i7 3.1 GHz,

RAM: 16 GB) to analyze the data. We implemented software for

data analysis by using C++.

5. Evaluation

5.1 Wearing Position

We evaluated the system to determine the appropriate wearing

position of the device. Although our purpose is recognizing ges-

tures, we investigated how we can classify the state of the body

depending on the wearing position. The subject wore the device

in 12 positions, as shown in Fig. 8. We assumed four statuses at

each position: the angle of the upper arm and the forearm was

180 degrees, the angle of the upper arm and the forearm was 180

degrees with tightening muscles, the angle of the upper arm and

the forearm was 90 degrees, and the angle of the upper arm and

the forearm was 90 degrees with tightening muscles. The same

was applied to the leg between the thigh and calf. We recorded

the data for 30 seconds at each status and extracted the features

described above. We set 10% of the features as training data, and

the rest was testing data. The three subjects were 22 to 26-year-

old males.

Table 1 shows the average results of the evaluation. The recog-

nition rate was relatively high in all positions except position 7

and 10. In these two positions, the distance between the micro-

phone and the speaker was the longest in all wearing positions.

Therefore, the ultrasound attenuated during propagation, and it

was difficult to recognize precisely.

Therefore, from the point of view of wearability and recog-

Fig. 8 Wearing position of device.
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Table 1 Recognition result at each wearing position [%].

Position Precision Recall

1 95.2 95.1

2 99.8 99.8

Arm
3 99.3 99.3

4 98.2 98.2

5 100.0 100.0

6 97.9 97.7

7 71.5 71.5

8 99.9 99.9

Leg
9 99.7 99.7

10 78.4 78.2

11 96.2 96.0

12 99.2 99.2

Table 2 Data acquired order of evaluation.

Order Context Situation

1 Sitting Posture

2 Sitting Tightening Muscles Posture

3 Typing Behavior

4 Writing Behavior

5 Scrolling Mobile

6 Tapping Mobile

7 Strong Tapping Mobile

8 Wristwatch Mobile

9 Wristwatch Tightening Muscles Mobile

10 Drawer Environment

11 Standing Posture

12 Standing Tightening Muscles Posture

13 Door Environment

14 Twisting Tap Environment

15 Refrigerator Environment

16 Switch Environment

17 Window Environment

18 Going Up/Down Stairs Behavior

19 Walking Behavior

20 Jogging Behavior

21 Bicycling Behavior

nition rate, we concluded that the contact microphone and the

contact speaker should be worn close to each other.

5.2 Gesture Recognition

5.2.1 Procedure

We evaluated the proposed method. We assumed that our

method would be integrated into an existing wearable device such

as a smartwatch, and would be used in daily life for interface

and life log. We assumed four situations in daily life: interac-

tion with mobile device, interaction to environment, posture, and

behavior. From these situations, we pick up contexts to be recog-

nized in daily-life, as shown in Table 2. We add some contexts

with tightening muscles since one of our targets is to detect tight-

ening muscles to enhance the application of user interfaces and

life-logging. For example, wristwatch tightening muscles is used

to confirm the content of a notification on a smartwatch when

both hands are busy and sitting/standing with tightening muscles

is used as confidential communication and life log of stress. We

used an iPhone 6s to acquire interaction with mobile device con-

texts. The door was a hinged door. The switch was a typical one

to turn on/off the light. The window was a sliding window. The

10 subjects were 22 to 27-year-old males and females. They con-

ducted 21 contexts for approximately one minute each. Table 2

shows the data acquired order of the contexts. We defined these

21 contexts as one set. The subjects did two sets in one day with-

out detaching and re-attaching the device. Moreover, the subjects

Fig. 9 Wearing position of devices.

Table 3 Result of training/testing from the same data set [%].

Day 1 Day 2

Subject 1st 2nd 1st 2nd

P1 R2 P R P R P R

A 94.0 91.7 91.4 89.2 94.6 93.7 87.5 85.5

B 95.6 94.8 98.2 98.1 98.2 98.0 96.9 96.6

C 96.4 96.2 89.9 85.2 92.6 91.7 95.8 94.5

D 95.9 95.4 98.0 97.5 86.9 85.9 94.5 93.3

E 92.3 90.7 93.5 91.9 90.3 86.5 90.3 87.0

F 93.7 93.3 94.4 92.7 93.0 89.6 95.8 94.8

G 89.9 88.2 85.9 82.4 92.9 91.6 88.1 86.0

H 92.9 91.9 98.6 98.5 90.4 87.3 92.9 91.9

I 92.9 91.9 97.4 96.0 87.5 84.1 85.8 81.6

J 94.6 94.3 93.0 93.0 97.3 97.1 95.2 94.5

Average 93.8 92.8 94.0 92.5 92.4 90.6 92.3 90.6

1Precision 2Recall

did two sets in another day. Although the wearing position of

the device in the second day was approximately the same as that

of the first day, we did not precisely specify the wearing posi-

tion because we could confirm how the frequency spectrum was

changed by the difference in the wearing position. We acquired

40 data sets in total (2 sets × 2 days × 10 subjects).

Figure 9 shows the wearing position of the devices. Based

on the previous section result and wearability, we set the poste-

rior wrist (position 5) and the posterior ankle (position 12) as the

wearing position of the device. From the preliminary experiment,

we confirmed that the signal from position 5 cannot be detected

by the position 12 microphone, and the signal from position 12

cannot be detected by the position 5 microphone. Therefore, the

subjects wore the device on the arm and leg at the same time. The

voice recorder recorded in stereo. The left channel recorded the

input from the leg microphone, and the right channel recorded

the input from the arm microphone. We calculated features for

the inputs from two microphones and combined the features for

recognition.

From the preliminary experiment, we confirmed that the fre-

quency characteristics slightly changed with time in the first few

minutes after putting on the device. Thus, we did the experiments

after the subjects had been wearing the device for 10 minutes.

The recording sampling rate was 96 kHz, and the number of sam-

ples for FFT was 8,192 without any overlaps. Thus, the sampling

rate for acquiring features was 11 Hz (96,000/8,192).
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Fig. 10 Confusion matrix of training/test from the same data set.

Table 4 Recognition result of training/testing from other data set [%].

Day 1 Day 2 Train Day 1 Train Day 2

Subject Train 1st Test 2nd Train 2nd Test 1st Train 1st Test 2nd Train 2nd Test 1st Test Day 2 Test Day 1

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

A 63.4 65.0 58.6 56.3 85.0 82.3 72.0 70.8 32.4 34.4 23.6 21.8

B 29.2 37.5 63.1 65.5 68.3 70.2 71.7 69.6 32.5 35.7 34.7 32.8

C 27.8 29.1 29.1 28.2 60.3 59.7 76.8 71.8 15.0 15.3 9.2 12.4

D 51.5 54.6 55.6 58.4 50.8 39.5 50.7 53.2 7.3 14.3 10.4 14.7

E 42.8 41.1 35.2 41.4 25.4 24.4 22.0 20.7 23.3 16.0 15.5 13.2

F 43.9 46.8 72.6 69.2 58.5 63.6 65.9 63.7 12.3 11.9 15.2 16.7

G 48.2 47.1 60.8 59.6 39.7 34.7 35.0 36.9 13.0 14.1 4.4 5.4

H 66.0 51.6 68.0 48.7 37.9 49.0 71.6 63.2 24.0 22.0 16.4 14.4

I 15.7 25.9 22.3 24.8 31.6 33.7 33.7 40.1 10.0 15.9 16.8 10.6

J 74.0 69.8 48.6 57.6 64.8 62.5 66.0 62.2 18.0 23.0 25.3 19.6

Average 46.3 46.9 51.4 51.0 52.2 52.0 56.5 55.2 18.8 20.3 17.2 16.2

5.2.2 Result

We set 10% of the acquired data as training data and the rest as

testing data. The average recognition rate is shown in Table 3. As

shown in this table, the recognition rate was approximately 90%

in all data sets. Figure 10 shows the confusion matrix of all sub-

jects and all data sets. The label numbers in Fig. 10 correspond

to the numbers in Table 2. When the user keeps a static condi-

tion with/without tightening muscles (label 1, 2, 11, and 12), the

precision and recall are 96.5% and 96.8%, respectively. When the

user makes a gesture with/without tightening muscles (label 6–9),

although the recognition rate is lower than the static condition,

the precision and recall are 81.0% and 82.0%, respectively. With

regard to the rest of the contexts, although there are some varia-

tions in the classification in interaction to environment contexts

(label 13–17), the precision and recall are 93.5% and 92.6%, re-

spectively. From the result, we consider that the proposed method

can recognize not only the user’s physical movements but also the

user’s internal states.

We also considered completely separating the training data set

and testing data set. Table 4 shows the result of training/testing

by using another data set. As shown in this table, when we

trained/tested by using the other data set in the same day, the

recognition rate dropped to approximately 50% because the basic

frequency spectrum was changed by the deviation in the position

of the device caused by activities with large movements, such as

jogging and bicycling. Figure 11 shows frequency spectrums of

sitting for all data sets of subject E, as an example. To grasp the

approximate shape of the spectrum, we divided it into 20 blocks

and calculated the mean at each block. This graph shows the

means at 20 blocks. As shown in this figure, the basic frequency

spectrum differed depending on the data set.

Figure 12 shows the confusion matrix of training/testing from

the other data set in the same day. The recognition result is scat-

tered in general. However, going up/down stairs, walking, jog-

ging, and bicycling (label 18–21) were relatively accurately rec-

ognized because these contexts involved large movements, and

the frequency change was large and characteristic compared to

the other contexts.

When we trained and tested by using the other day’s data set,

the recognition rate was approximately 20%. The basic frequency

spectrum differed from that of the other day because of the de-

viation in the wearing position and the pressure of wearing the

device.

5.2.3 Revised Method

We considered a revised method to improve the recognition

rate when we used the other data set for training and testing. We

consider that the problem is that the basic frequency spectrum

differs depending on the data set. Therefore, we set the first con-

text (sitting) of each data set as the reference and focused on the

change from the reference. Moreover, to detect minor changes

in the spectrum, we divided each frequency spectrum bin by the

corresponding reference bin. Then, we changed the magnifica-
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Fig. 11 Frequency spectrums of sitting for each data set (20–40 kHz).

Fig. 12 Confusion matrix of training/testing from other data set.

Table 5 Recognition result by using revised method [%].

Day 1 Day 2 Train Day 1 Train Day 2

Subject Train 1st Test 2nd Train 2nd Test 1st Train 1st Test 2nd Train 2nd Test 1st Test Day 2 Test Day 1

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

A 72.7 69.1 59.1 51.1 79.0 75.0 70.5 65.8 28.7 17.6 36.0 37.2

B 39.3 43.8 66.2 63.2 66.3 68.6 68.7 59.4 25.1 27.8 38.1 28.3

C 39.9 43.6 29.8 33.2 80.2 73.5 63.3 64.5 22.5 17.5 17.4 15.0

D 56.9 58.4 64.5 66.9 54.7 46.4 33.0 31.6 10.7 14.3 9.4 16.6

E 39.0 40.7 36.7 42.5 23.8 27.4 22.9 21.6 13.5 12.1 15.1 16.0

F 80.2 81.4 69.9 68.3 63.6 68.2 61.2 59.5 10.4 10.8 13.0 19.0

G 58.2 45.5 57.1 52.6 29.3 28.7 30.3 31.0 13.9 7.5 15.8 11.9

H 70.6 74.7 58.1 54.4 45.5 52.1 39.8 44.7 12.0 11.3 34.2 21.7

I 12.8 15.7 15.1 19.4 31.4 26.3 30.2 32.0 13.4 15.5 14.3 17.8

J 73.2 67.6 45.9 46.4 69.7 67.6 65.9 63.0 16.3 14.7 23.6 23.8

Average 54.3 54.1 50.2 49.8 54.4 53.4 48.6 47.3 16.7 14.9 21.7 20.7

tion, and the minor change became major. Table 5 shows the

recognition results of the revised method.

Comparing Table 4 and 5, although there are improvements in

some data sets and with some subjects, significant improvement

is not observed by this method.

5.3 Discussion

When we used the other data set in the same day or the data

set in the other day for training/testing, the recognition rate dras-

tically decreased because the acquired frequency characteristic

was different even when the posture was the same. We consider

that there were three reasons for the change of the frequency char-

acteristic: the deviation of device position, the change of device

wearing strength, and the change of human-body characteristic.

We plan to quantitatively clarify the influence for each factor and

to develop a recognition algorithm to adopt these factors.

As practical ideas for tackling these problems, we fix the wear-

ing position and the wearing strength of the device as far as pos-

sible whenever the user wears the device. Concretely, we plan to

develop a smaller device for our method and integrate it into exist-

ing smartwatches. The wearing position of the device is fixed be-

cause he/she wears the device in almost the same position when-
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ever the user wears the smartwatch. The wearing strength of the

device is also fixed because the wearing strength is determined

by selecting one of the holes at intervals placed on the watch-

band. The user selects the same hole and it means that the wear-

ing strength and the position of device also become the same. If

we can confirm the day-to-day change of the body characteristic

in a future investigation, we resolve this problem by calibration

when the user wears the device for the first time in the day. The

system acquires his/her body characteristic of the day and utilizes

the training data considering the body characteristic of the day.

Usually, the sensor sampling rates in conventional methods us-

ing accelerometers and EMG sensors are 20–100 Hz and 2 kHz,

respectively. On the other hand, the sampling rate of our method

is 96 kHz, whose calculation cost is more than that of the conven-

tional method. Therefore, to solve this problem, we plan to mount

a digital signal processor for data processing on the device.

Although our proposed method requires to adhere the device to

the user’s skin, we reduce the burden on the user by integrating

the proposed device into the existing wearable device, such as a

smartwatch. EMG sensors also need to be attached to the user’s

skin. However, it is difficult to recognize the physical movements

by using them. Our proposed method is superior in terms of de-

tecting not only physical movement but also the internal state at

the same time by the sensor adhering to the skin.

We plan to develop the smaller device for out method and in-

tegrate it into the existing wearable device, such as a smartwatch.

We also investigate the possibility of the implementation of the

proposed method by using the built-in speaker and microphone

of existing smartwatches.

Although we only focused on the ultrasonic range sound in

this study, an audible-range sound, such as muscle activity sound,

possibly is effective in some situations. We plan to combine the

audible-range sound and ultrasound considering the situations.

The detected wave by the microphone consisted of the surface

wave and the reflected wave. Separating these waves is useful for

more precise recognition. We will develop our method and utilize

the characteristics of these waves.

In this study, we used a limb for the wearing position of the

device, because it is the most moving part in the human body. We

plan to adapt the proposed method to other parts of the body, such

as the face and abdominal part.

6. Conclusion

In this study, we proposed a gesture recognition method us-

ing active acoustic sensing. Our method transmits ultrasound to

a user’s body and recognizes his/her gestures by utilizing the de-

tected ultrasound that propagates through the body. The proposed

method can recognize the user’s gestures by utilizing not only the

physical movement but also the user’s internal state, such as mus-

cle activity. We evaluated 21 contexts for 10 subjects, and the

evaluation results confirmed that when we set 10% of the data as

training data and the rest as testing data, the precision and recall

are 93.1% and 91.6%, respectively. When we used the other data

set in the same day for training/testing, the precision and recall

are 51.6% and 51.3%, respectively.
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Editor’s Recommendation

The authors propose a gesture recognition method using active

acoustic sensing that transmits acoustic signals for recognizing

the user’s state by analyzing the response. Novelty and original-

ity of the proposed method are sufficiently high. We expect that

the result of this paper inspires further researches in not only ges-

ture recognition but also activity recognition, and recommend this

paper to the Journal of Information Processing (JIP).

(Chairman of SIGUBI Kazushige Ouchi)
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