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Abstract. This paper addresses gesture recognition under small sample
size, where direct use of traditional classifiers is difficult due to high dimen-
sionality of input space. We propose a pairwise feature extraction method
of video volumes for classification. The method of Canonical Correlation
Analysis is combined with the discriminant functions and Scale-Invariant-
Feature-Transform (SIFT) for the discriminative spatiotemporal features
for robust gesture recognition. The proposed method is practically favor-
able as it works well with a small amount of training samples, involves
few parameters, and is computationally efficient. In the experiments using
900 videos of 9 hand gesture classes, the proposed method notably outper-
formed the classifiers such as Support Vector Machine/Relevance Vector
Machine, achieving 85% accuracy.

1 Introduction

Gesture Recognition Review

Gesture recognition is an important topic in computer vision because of its wide
ranges of applications such as human-computer interfaces, sign language inter-
pretation and visual surveillance. Not only spatial variation but also temporal
variation among gesture samples make this recognition problem difficult. For in-
stance, different subjects have different hand appearance and may sign gesture
in different pace.

Recent work in this area tends to handle the above variations separately and
therefore leads to two smaller areas, namely posture recognition (static) and
hand motion or action recognition (dynamic). In posture recognition, the pose
or the configuration of hands is recognised using silhouette [5] and texture [6].
By contrast, hand motion or action recognition interprets the meaning of the
movement using full trajectory [9], optical flow [4] and motion gradient [11].

Compared with hand motion recognition, posture recognition is easier in the
sense that state-of-the-art classifiers, e.g. Support Vector Machine, Relevance
Vector Machine [11] or Adaboot [6] can be directly applied to it. Gesture recog-
nition, on the other hand, has adopted rather different approaches, e.g. Hidden
Markov Model [9]) or Dynamic Time Warping [3]), to discriminate dynamic/or
temporal information which is typically highly non-linear in a data space. These
methods, especially the Hidden Markov Models, have many parameters to set, a
large amount of training examples, and difficulty for extension to large vocabu-
lary [2]. Besides, these traditional methods have not integrated the posture and
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temporal information and thus are difficult to differentiate gestures of similar
movements signed by different hand shapes.

Some recent works [8] directly operate with full spatiotemporal volume con-
sidering both posture and temporal information of gestures to a certain degree,
but are still unreliable in cases of motion discontinuities and motion aliasing.
Also, the method [8] requires the manual setting of the important parameters
such as positions and scales of local space-time patches. Another important line
of methods exploits visual code words (for representation) with either a Support
Vector Machine (SVM) or a probabilistic generative model [12,13]. Again, for
their good performance, it is critical to properly set the parameters associated
with the representation, for e.g. space-time interest points and code book size.

Motivation and Summary of This Study

To avoid empirical setting of the parameters in the existing methods, it seems
obvious to seek a more generic and simpler learnable approach for gesture recog-
nition. Note that many of critical parameters in the previous methods are in-
curred in the step of representing gesture videos prior to using classifiers. In
that case, it could be better to apply learnable classifiers directly to the videos
which can be simply converted into column vectors. Unfortunately, this is not
a good way either. Vectorization of a video by concatenating all pixels in the
three-dimensional video volume causes a high dimension of N3, which is much
larger than N2 of an image. Also, it may be more difficult to collect sufficient
number of video samples for classifiers than images (see that a single video con-
sists of multiple images). So called small sample size problem is more serious in
learning classifiers with videos than images.

Getting back to the representation issue, this work focuses on how to learn
useful features from videos for classification, discussing its benefits over direct
using classifiers. With the given discriminative features, even a simple Near-
est Neighbor classifier (NN) achieved a very good accuracy. An extension of
Canonical Correlation Analysis (CCA) [1,15]-a standard tool of inspecting lin-
ear relationships of two sets of vectors- is proposed to yield robust pairwise
features of any two gesture videos. The proposed method is closely related to
our previous framework of Tensor Canonical Correlation Analysis [14], which
extends the classical CCA into multidimensional data arrays by sharing either
a single axis or two axes. The method of sharing two axes, i.e. planes between
two video data, is updated and combined with the discriminative functions and
the Scale-Invariant-Feature-Transform for further improvements. The proposed
method does not require any significant meta-parameters to be adjusted and can
learn both posture and temporal information for gesture classification.

The rest of the paper is organized as follows: Next section explains the pro-
posed method with the discriminant functions, discussing the benefit of the
method over traditional classifiers. The SIFT representation for video data is
combined to the method for improvements in Section 3. Section 4 shows the
experimental results and Section 5 draws conclusion.
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2 Discriminative Spatiotemporal Canonical Correlations

Canonical Correlation Analysis (CCA) has been a standard tool of inspecting
linear relationships of two random variables, or two sets of vectors. This was
recently extended to two multidimensional data arrays in [14]. The method of
spatiotemporal canonical correlations (which is related to the previous work in
exploiting planes rather than scan vectors of two videos) is explained as follows: A
gesture video is represented by firstly decomposing an input video clip (i.e. a spa-
tiotemporal volume) into three sets of orthogonal planes, namely XY-, YT- and
XT-planes as shown in Figure 1. This allows posture information in XY-planes
and joint posture/dynamic information in YT and XT-planes. Three kinds of
subspaces are learnt from the three sets of planes (which are converted into vec-
tors by raster-scanning). Then, gesture recognition is done by comparing these
subspaces with the corresponding subspaces from the models by classical canon-
ical correlation analysis, which measures principal angles between subspaces1.
By comparing subspaces of an input and a model, robust gesture recognition
can be achieved up to pattern variations on the subspaces. The similarity of any
model Dm and query spatiotemporal data Dq is defined as the weighted sum of
the normalized canonical correlations of the three subspaces by

F(Dm, Dq) = Σ
3
k=1w

kN k(Pk
m,Pk

q ) (2)

where,

N k(Pk
m,Pk

q ) = (G(Pk
m,Pk

q ) − mk)/σ
k, (3)

P1,P2,P3 denotes a matrix containing the first few eigenvectors in its columns
of XY-planes, XT-planes, YT-planes respectively and G(Pm,Pq) sum of the
canonical correlations computed from Pm,Pq. The normalization parameters
with index k are mean and standard deviation of matching scores, i.e. G of all
pairwise videos in a validation set for the corresponding planes.

The discriminative spatiotemporal canonical correlation is defined by applying
the discriminative transformation [10] learnt from each of the three data domains
as

H(Dm, Dq) = Σ
3
k=1w

kN k(h(QkT Pk
m), h(QkT Pk

q )), (4)

1 Canonical correlations between two d-dimensional linear subspaces L1 and L2 are
uniquely defined as the maximal correlations between any two vectors of the sub-
spaces [1]:

ρi = cos θi = max
ui∈L1

max
vi∈L2

u
T
i vi (1)

subject to: uT
i ui = vT

i vi = 1, uT
i uj = vT

i vj = 0, j = 1, ..., i − 1. We will refer to
ui and vi as the i-th pair of canonical vectors. Multiple canonical correlations are
defined by having next pairs of canonical vectors orthogonal to previous ones. The
solution is given by SVD of PT

1 P2 as

P
T
1 P2 = LΛR

T where Λ = diag{ρ1, ..., ρd}.,

where P1,P2 are the eigen-basis matrix, L, Λ, R are the outputs of SVD.
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where h is a vector orthonormalization function and Qk are the discriminative
transformation matrix learnt over the corresponding sets of planes. The discrim-
inative matrix is found to maximize the canonical correlations of within-class
sets and minimizes the canonical correlations of between-class sets by analogy
to the optimization concept of Linear Discriminant Analysis (LDA) (See [10] for
details). On the transformed space, gesture video classes are more discriminative
in terms of canonical correlations. In this paper, this concept has been validated
not only for the spatial domain (XY-subspaces) but also for the spatiotemporal
domains (XT-, YT-subspaces).

Discussions

The proposed method is a namely divide-and-conquer approach by partitioning
original input space into the three different data domains, learning the canonical
correlations on each domain, and then aggregating them with proper weights.
By this way, the original data dimension N3, where N is the size of each axis,
is reduced into 3 × N2 so that the data is conveniently modelled. As shown in
Figure 2a-c, each data domain is well-characterized by the corresponding low-
dimensional subspace (e.g. hand shapes in XY-planes, joint spatial and temporal
information in YT-, and XT- planes).

X

Y

T

Spatiotemporal Volume
XY-planes XT-planes YT-planes

Fig. 1. Spatiotemporal Data Representation

(a) (b) (c)

(d) (e) (f)

Fig. 2. Principal Components and Canonical Vectors: The first few principal
components of the (a) XY (b) XT (c) YT subspaces of the two different illumination
sequences of the same gesture class (See Figure 5) are shown at the top and bottom
row respectively. The corresponding pairwise canonical vectors are visualized in (d) -
(f). Despite the different lighting conditions of the two input sequences, the canonical
vectors in the pair (top and bottom) are very much alike, capturing common modes.
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Moreover, the method is robust using mutual (or canonically correlated)
components of the pairwise subspaces. By finding the mutual components of
maximum correlations, which are canonical correlations, some undesirable infor-
mation for classification can be filtered out. See Figure 2 for the principal com-
ponents and canonical vectors for the given two sequences of the same gesture
class which were captured under the different lighting conditions. Whereas the
first few principal components mainly corresponded to the different lighting con-
ditions (in Figure 2a-c), the canonical vectors (in Figure 2d-f) well captured the
common modes of the two sequences, being visually same in each pair. In other
words, the lighting variations across the two sets were removed in the process
of CCA, as it is invariant to any variations on the subspaces. Many previous
studies have told that lighting variations are often confined to a low-dimensional
subspace.

In summary, the proposed method has a benefit

Fig. 3. Canonical Correla-
tion Based Classification

over direct learning classifiers under small sample
size as drawn in Figure 3. High dimensional input
space and a small training set often cause over-
fitting of classifiers to the training data and poor
generalization to new test data. Distribution of the
test samples taken under different conditions can be
largely deviated from that of the training set, re-
sulting in the majority of the test samples of class
1 misclassified in Figure 3. Nevertheless, the two
intersection sets of the train and test sets are still
placed in the correct decision regions learnt over
the training sets. As discussed above, canonical correlation analysis can be con-
ceptually seen as a process to find mutual information (or an intersection set)
of any two sets.

3 SIFT Descriptor for Spatiotemporal Volume Data

Edge-based description of each plane of videos can help the method achieve more
robust gesture recognition. In this section we propose a simple and effective SIFT
(Scale-Invariant Feature Transform) [7] representation for a spatiotemporal data
by a fixed grid. As explained, the spatiotemporal volume is broken down into
three sets of orthogonal planes (XY-, YT- and XT-planes) in the method. Along
each data domain, there is a finite number of planes which can be regarded as
images. Each of these images is further partitioned into M × N patches in a
predefined fixed grid and the SIFT descriptor is obtained from each patch (see
Figure 4a). For each image, the feature descriptor is obtained by concatenating
the SIFT descriptors of several patches in a predefined order. The SIFT rep-
resentation of the three sets of planes is directly integrated into the proposed
method in Section 2 by replacing the sets of image vectors with the sets of the
SIFT descriptors prior to canonical correlation analysis. The experimental results
tell that the edge-based representation generally improves the intensity-based
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representation in both of the joint space-time domain (YT-, XT-planes) and the
spatial domain (XY-planes).

SIFT obtained from 3D blocks. This section presents a general 3D exten-
sion of SIFT features. Traditional classifiers such as Support Vector Machine
(SVM)/ Relevance Vector Machine (RVM) are applied to the video data repre-
sented by the 3D SIFT so that they can be compared with the proposed method
(with SIFT) in the same data domain. Given a spatiotemporal volume repre-
senting a gesture sequence, the volume is firstly partitioned into M × N × T
tiny blocks. Within each tiny block, further analysis is done along XY-planes
and YT-planes (see Figure 4b). For analysis on a certain plane, say XY-planes,
derivatives along X- and Y- dimensions are obtained and accumulated to form
several regional orientation histograms (under a 3D Gaussian weighting scheme).
For each tiny block, the resultant orientation histograms of both planes are then
concatenated to form the final SIFT descriptor of dimension 256. The descriptor
for the whole spatiotemporal volume can then be formed by concatenating the
SIFT descriptors of all tiny blocks in a predefined order. The spatiotemporal
volume is eventually represented as a single long concatenated vector.
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Fig. 4. SIFT Representation: (a) SIFT used in [7]. (b) SIFT from 3D blocks (refer
to text).

4 Empirical Evaluation

4.1 Cambridge Hand Gesture Data Set and Experimental Protocol

We have acquired the hand-gesture data base 2 consisting of 900 image sequences
of 9 gesture classes. Each class has 100 image sequences (5 different illuminations
× 10 arbitrary motions of 2 subjects). Each sequence was recorded in a frame
rate of 30fps and a resolution of 320×240. The 9 classes are defined by the 3
primitive hand shapes and 3 primitive motions (See Figure 5). See Figure 5c
for the example images captured under the 5 different illumination settings. The

2 The database is available upon request. Contact e-mail: tkk22@cam.ac.uk
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class1

class2

class3

class4

class5

class6

class7

class8

class9

Flat/Leftward

Flat/Rightward

Flat/Contract

Spread/Leftward

Spread/Rightward

Spread/Contract

V-shape/Leftward

V-shape/Rightward

V-shape/Contract

(a) 9 gesture classes formed by 3 shapes and 3 motions.

(b) 5 illumination settings.

Fig. 5. Hand-Gesture Database

data set has temporally isolated gesture sequences which exhibit variations in ini-
tial positions, postures of hands and speed of movements in different sequences.
All training was performed on the data acquired in a single illumination setting
while testing was done on the data acquired in the remaining settings. The 20
sequences in the training set were randomly partitioned into the 10 sequences
for training and the other 10 for the validation.

4.2 Results and Discussions

We compared the accuracy of 9 different methods:

– Applying Support Vector Machine (SVM) or Relevance Vector Machine
(RVM) on Motion Gradient Orientation Images [11] (MGO SVM or MGO
RVM),

– Applying RVM on the 3D SIFT vectors described in Section 3 (3DSIFT
RVM),

– Using the canonical correlations (CC) (i.e. the method using G(P1
m,P1

q) in
(2), spatiotemporal canonical correlations (ST-CC), discriminative ST-CC
(ST-DCC),

– Using the canonical correlations of the SIFT descriptors (SIFT CC), spa-
tiotemporal canonical correlations of the SIFT vectors (SIFT ST-CC), and
SIFT ST-CC with the discriminative transformations (SIFT ST-DCC).
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Fig. 6. Recognition Accuracy: The identification rates (in percent) of all compara-
tive methods are shown for the plain lighting set used for training and all the others
for testing

In the proposed method, the weights wk were set up proportionally to the
accuracy of the three subspaces for the validation set and Nearest Neighbor
classification (NN) was done with the defined similarity functions.

Figure 6 shows the recognition rates of the 9 methods, when the plain lighting
set (the leftmost in Figure 5c) was exploited for training and all the others for
testing. The approaches of using SVM/RVM on the motion gradient orientation
images are the worst. As observed in [11], using RVM improved the accuracy of
SVM by about 10% for MGO images. However, we got much poorer accuracy
than those in the previous study [11] mainly due to the following reasons: The
gesture classes in this study were defined by hand shapes as well as motions.
Both methods often failed to discriminate the gestures which exhibit the same
motion of the different shapes, as the methods are mainly based on motion in-
formation of gestures. A much smaller number of sequences (of a single lighting
condition) used in training is another reason to get the performance degrada-
tion. The accuracy of the RVM on the 3D-SIFT vectors was also poor. The
high dimension of the 3D-SIFT vectors and small sample size might prevent
the classifier from learning properly, as discussed. We measured the accuracy
of the RVM classifier for the different numbers of the blocks in the 3D-SIFT
representations (2-2-1,3-3-1,4-4-1,4-4-2 for X-Y-T) and obtained the best accu-
racy for the 2-2-1 case, which yields the lowest dimension of the 3D-SIFT vectors.
Canonical correlation-based methods significantly outperformed the previous ap-
proaches. The proposed spatiotemporal canonical correlation method (ST-CC)
improved the simple canonical correlation method by about 15%. The proposed
discriminative method (ST-DCC) unexpectedly decreased the accuracy of ST-
CC, possibly due to overfitting of discriminative methods. The train set did
not reflect the lighting conditions in the test set. However, note that the dis-
criminative method improved the accuracy when it was applied to the SIFT
representations rather than using intensity images (See SIFT ST-CC and SIFT
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Table 1. Evaluation of the individual subspace

CC SIFT CC
(%) XY XT YT ST XY XT YT ST

mean 64.5 40.2 56.2 78.9 70.3 61.8 58.3 80.4
std 1.3 5.9 5.3 2.4 2.1 3.3 4.0 3.2

Table 2. Evaluation for different numbers of blocks in the SIFT representa-

tion: E.g. 2-2-1 indicates the SIFT representation where X,Y,and T axes are divided
into 2,2,1 segments respectively

2-2-1 3-3-1 4-4-1 4-4-2
(%) ST-CC ST-DCC ST-CC ST-DCC ST-CC ST-DCC ST-CC ST-DCC

mean 80.3 80.0 78.9 83.8 80.4 85.1 75.9 83.4
std 1.9 2.5 3.6 2.7 3.2 2.8 2.4 0.7

ST-DCC in Figure 6). The proposed three methods using the SIFT representa-
tions are better than the respective three methods of the intensity images. The
best accuracy was achieved by the SIFT ST-DCC at 85%.

Table 1 and Table 2 show more results about the proposed method, where
all 5 experimental results (corresponding to each illumination set used for train-
ing) are averaged. As shown in Table 1 canonical correlations of the XY sub-
space obtained better accuracy with smaller standard deviations than the other
two subspaces, but all three are relatively good compared with the traditional
methods, MGO SVM/RVM and 3DSIFT RVM. Using the SIFT representation
considerably improved the accuracy of the intensity images for each subspace,
whereas the improvement for the joint representation was relatively small. Ta-
ble 2 shows the accuracy of ST-CC and ST-DCC for the different numbers of
the blocks of the SIFT representation. The best accuracy was obtained for the
case of 4-4-1 for XYT (each number indicates the number of divisions along one
axis). Generally, using the discriminative transformation improved the accuracy
of ST-CC for the SIFT representation. Note that accuracy of the method is not
sensitive about settings in number of the blocks, which is practically important.

Also, the proposed approach based on canonical correlations is computation-
ally cheap taking computations O(3 × d3), where d is the dimension of each
subspace (which was 10), and thus facilitates efficient gesture recognition in a
large data set.

5 Conclusion

A new method based on subspace has been proposed for gesture recognition un-
der small sample size. Unlike typical classification approaches directly operating
with input space, the proposed method reduces input dimension using the three
sets of orthogonal planes. The method provides robust spatiotemporal volume
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matching by analyzing mutual information (or canonical correlations) between
any two gesture sequences. Experiments for the 900 gesture sequences showed
that the proposed method significantly outperformed the traditional classifiers
and yielded the best classification result using the discriminative transformations
and SIFT descriptors jointly. The method is also practically attractive as it does
not involve significant tuning parameters and is computationally efficient.
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