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Gesture recognition using machine learning methods is valuable in the 

development of advanced cybernetics, robotics, and healthcare systems, and 

typically relies on images or videos. To improve recognition accuracy, such visual 

data can be fused with data from other sensors, but this approach is limited by 

the quality of the sensor data and the incompatibility of the datasets. Here, we 

report a bioinspired data fusion architecture that can perform human gesture 

recognition by integrating visual data with somatosensory data from skin-like 

stretchable strain sensors. The learning architecture uses a convolutional neural 

network for visual processing, and then implements a sparse neural network for 

sensor data fusion and recognition. Our approach can achieve a recognition 

accuracy of 100%, and maintain recognition accuracy with noisy, under- or 

over-exposed images. We also show that our architecture can be implemented for 

robot navigation using hand gestures with a small error, even in the dark. 

(150 words) 

 

Human gesture recognition (HGR), which uses mathematical algorithms to 

interpret human motion, is of value in healthcare1, 2, human-machine interactions3-5, 

and the study of cognitive neuroscience6. Sensing and recognition methods often use 

algorithms that depend on visual images and/or videos. However, the efficiency of 

these methods is limited by the quality of the images, which are affected by 

environmental interference such as blocked objects (known as occlusions) and 

varying light conditions7, 8. 
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One approach to overcome these issues is multimodal fusion, which combines 

visual data with additional sensor information (for example, instantaneous orientation, 

spatial positions or velocity of human gestures) obtained from wearable inertial9-12, 

force8, and optical oscillator13 sensors. Multimodal fusion has been shown to improve 

the recognition accuracy and precision of HGR, but the approach is limited by 

poor-quality sensor data. Wearable sensors, in particular, are typically bulky, rigid and 

do not form an intimate contact with the user for high-quality data acquisition14, 15. 

Moreover, integrating visual datasets containing images or videos with wearable 

sensor datasets (usually recorded as one-dimensional time-series or discrete data) is 

challenging due to the mismatch in data dimensionality and data density (known as 

sparseness). 

Different machine learning methods have been used to fuse visual and sensor 

data, including the hidden Markov model9, support vector machine16 and K-nearest 

neighbor12, 16
 classifiers, as well as deep convolutional neural networks (CNNs)11, 17, 18. 

A CNN is a powerful machine learning method because it can automatically learn 

hierarchical deep spatial features and extract shift-invariant features from original 

images19-21. As a result, CNNs have been applied successfully in visual recognition 

tasks such as image classification22, 23 and playing strategic board games such as Go24, 

25. However, current application of CNN in multimodal (visual-wearable sensor) 

fusion has been limited to decision-level fusion – that is, the visual and sensor data are 

first classified independently, and the classification results are merged later – because 

mismatched dimensionality and sparseness of the datasets remain an issue. 



4 
 

Recent physiological and neuroimaging results based on audiovisual–vocal 

detection26, 27 and enhanced interactions with objects28, 29 show that early interactions 

of different modalities (visual and somatosensory) in the multisensory neurons area in 

the brain (Fig. 1a), including the association area (AA), are beneficial for perceptual 

decision-making. While the fusion process of these early interactions is unclear30, 31, 

the results suggest that converging visual and wearable data early in perceptual 

decision making could potentially improve the accuracy of the recognition tasks. 

Moreover, biological neural systems have demonstrated that the sparse connectivity 

between neurons leads to complex sensory data processing with global efficiency and 

little power32. 

In this Article, we report a bioinspired learning architecture that fuses visual 

images and somatosensory data from skin-like electronic devices early in the process 

for human gesture recognition tasks. Our bioinspired somatosensory–visual (BSV) 

associated architecture consists of three neural networks resembling the 

somatosensory–visual (SV) fusion hierarchy in the brain (Fig. 1b): a sectional CNN 

for early visual processing, a multilayer neural network for early somatosensory 

information processing, and a sparse neural network that fuses early visual and 

somatosensory information at a high level. The sectional CNN performs convolution 

operations that resemble the function of the local receptive field in biological nervous 

systems33, 34, and thus mimics the initial processing of visual information in the visual 

primary areas (PA) (Fig. 1a). The sparse neural network represents the early and 

energy-efficient interactions of visual and somatosensory information in the 
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multisensory neurons area of the brain. Motivated by the stability theory of linear 

systems, we developed a pruning strategy based on a Frobenius condition number to 

obtain the sparse neural network. To capture somatosensory information, we built a 

stretchable sensor that is transparent, conformable, and adhesive using single-walled 

carbon nanotubes (SWCNTs). 

Our BSV architecture can classify hand gestures against complex backgrounds 

with an accuracy of 100% using a custom SV dataset. Compared to two unisensory 

(visual- and somatosensory-based recognition) and three common SV fusion 

approaches (weighted-average, weighted-attention and weighted-multiplication 

fusion), our BSV architecture offers superior tolerance to noise, and over- and 

under-exposures. We also use the BSV architecture to control a quadruped robot with 

hand gestures, achieving an error of 1.7% under a normal illuminance of 431 lux and 

3.3% under a dark illuminance of 10 lux. 

Conformable, transparent and adhesive stretchable sensors 

We fabricated a transparent, adhesive and stretchable strain sensor that can 

conformably attach on human skin to accurately capture somatosensory signals from 

human gestures. The sensor was made transparent to ensure it is inconspicuous in the 

visual information, and made stretchable up to 75% strain to meet the deformation 

limit of human parts in most activities35.  The stretchable sensor is a three-layer 

stacked structure consisting of SWCNTs as the sensing component, a stretchable 

polydimethylsiloxane (PDMS) layer and an adhesive poly (acrylic acid) (PAA) 

hydrogel layer (Fig. 2a, see Methods and Supplementary Fig. 1 for details on 
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fabrication).  Before thermal polymerization of PAA precursors, PDMS was treated 

with a mixture of argon and acrylic gas36.  This plasma treatment chemically 

modifies the PDMS surface with an acrylic acid layer (Fig. 2b, and see 

Supplementary Fig. 2)37, allowing PAA hydrogels to bond strongly with PDMS. 

To minimize visual interference of the SWCNT layer, we tested different amounts 

of SWCNT and found that 40 µL of a 0.1 mg/mL solution in a pattern area of 2 × 0.4 

cm2 had the best combination of high transparency and reliable strain sensing 

performance (Supplementary Fig. 3).  Vacuum filtration produced SWCNT films 

with optical transmittances of 89% at wavelength of 550 nm (cyan curve in Fig. 2c). 

After transferring the SWCNT film onto the PDMS substrate, transmittance remained 

high at 83% at 550 nm (orange curve in Fig. 2c).  Upon PAA polymerization, the 

resultant conformable and adhesive stretchable strain sensor had an optical 

transmittance above 74% at wavelengths between 400 nm and 900 nm (red curve in 

Fig. 2c), allowing it to remain inconspicuous in the photographs (Fig. 2d, and inset of 

Fig. 2f).  Furthermore, the polymerized PAA hydrogel layer, which is highly 

adhesive on human skin (1.27 N/cm2 versus 0.07 N/cm2 for PDMS), allowed the 

strain sensor to conformably attach on the finger (Fig. 2e, and see Supplementary 

Video 1). 

The sensors showed stretchability up to 100% (Fig. 2f), which is enough for 

monitoring somatosensory signals from a human hand (inset in Fig. 2f). 

Time-dependent relative change (ΔR/R0) responses of five successive loading and 

unloading cycles at peak strains of 5%, 25%, 50%, and 75% show the sensors are 
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stable and can undergo various dynamic loading tests (Fig. 2g).  To further verify the 

durability and reproducibility, we measured the ΔR/R0 responses of the strain sensor 

at a peak strain of 50% over 1000 cycles (Fig. 2h).  The resistance response of the 

strain sensor was stable and regular with an almost constant base resistance.  These 

results show that stretchable strain sensors can reliably collect somatosensory signals 

without affecting the visual images, making them suitable as somatosensory receptors 

for the BSV fusion architecture. 

 

Data collection and classification performance 

To implement a recognition task based on BSV associated learning, we built a 

custom SV dataset containing 3000 SV samples distributed into 10 categories of hand 

gestures (Fig. 3a,b).  Each SV sample consists of one image of a hand gesture taken 

against a complex background, and one group of strain data captured from 5 strain 

sensors patched over the knuckle of each finger on one hand (Fig. 3a).  The sensors 

extracted curvature information from the fingers, which were relevant to defining 

hand motions.  Fig. 3c shows the flow diagram for preparing the SV dataset 

(Methods).  Due to device variation and hysteresis, the raw strain data were first 

normalized before being used as the nominal somatosensory information for the hand 

gesture (Supplementary Note 1 and Supplementary Fig. 4).  A commercial 

off-the-shelf camera sensor was used to capture the hand gesture image as the nominal 

visual information. 

We used t-distributed stochastic neighbor embedding (t-SNE) – a dimensionality 
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reduction technique – to visualize the group of 3000 strain data (Fig. 3d)38.  Each 

point on the plot represents the somatosensory information of one hand gesture 

projected from the 5-dimensional strain data into two dimensions.  The points of the 

same gesture category (i.e., the same color) clustered together, forming roughly 10 

categories of hand gestures (I to X).  The slight overlap seen in some categories is 

due to the similarity in bending states of the fingers in those gestures, which the strain 

sensors cannot easily distinguish.  These results nonetheless show that 

somatosensory information from a human hand can provide valuable clues for hand 

gesture recognition. 

We used the SV dataset and BSV associated learning architecture for hand 

gesture recognition.  Figure 4a shows the detailed framework of the BSV associated 

learning architecture, including an AlexNet CNN39 that was pretrained using the 

ImageNet dataset (Supplementary Note 2), and a 5-layer sparse neural network 

(sc8-sc12).  Briefly, the pretrained AlexNet is used to learn a visual representation of 

a given hand gesture in a cost-effective and energy-efficient way.  This learned 

visual output of AlexNet, which can be reviewed as transferable semantic features, is 

then concatenated with the learned somatosensory representation – a 5-dimensional 

vector of the collected strain data from one hand gesture – to form a new 

53-dimensional vector that serves as an input to the 5-layer sparse neural network for 

final learning.  The sparse connectivity of neural network is to enhance the 

energy-efficiency and generalization ability of the BSV architecture for scalable 

sensory data fusion, which has been demonstrated by both biological and computer 
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fields32, 40.  Motivated by the stability theory of linear systems41, we develop a 

pruning strategy that depends on the Frobenius condition number of global weighting 

matrix to achieve the sparse neural network (Fig. 4b, and see Supplementary Note 3).  

Briefly, these connections in a dense neural network are pruned if their removal does 

not lead to significant numerical increase of the Frobenius condition number of the 

weighting matrix.  In the fusion procedure, the BSV associated learning is firstly 

trained on a 5-layer dense neural network using backpropagation algorithm and then 

is pruned via our sparse strategy based on the neural network toolbox of MATLAB.  

The training, validating, and testing samples were randomly selected with a ratio of 

66:14:20 from the 3000 samples within the SV dataset.  The final classification 

performance of the BSV associated learning strategy can reach up to 100% for hand 

gesture recognition.  This classification results can compete with that (99.7%) using 

a dense neural network, and is superior to that (97.8%) based on other pruning 

strategy under the same BSV architecture (Supplementary Table 1), which indicates 

our pruning strategy can learn more general weights for making decision. 

As a further comparison, we implemented two unisensory recognition approaches 

for hand gesture recognition, including visual-based recognition using only visual 

images based on a CNN, and somatosensory-based recognition using only strain 

sensor data based on a feedforward neural network (Supplementary Fig. 5).  The 

receiver operating characteristic (ROC) curves were used to illustrate the recognition 

ability of these approaches as their discrimination threshold was varied.  For each 

threshold, we calculated the sensitivity and specificity, which are defined as,  
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sensitivity =
true positive

positive
 

specificity =
true negative

negative
 

where ‘true positive’ is the number of correctly predicted hand gestures for a given 

class, ‘positive’ is the number of hand gestures of the given class, ‘true negative’ is 

the number of correctly predicted hand gestures except the given class, and ‘negative’ 

is the number of hand gestures except for the given class.  The BSV associated 

learning exhibited the best classification sensitivity and specificity in all 10 categories 

of hand gestures (Fig. 4c); compared with visual- and somatosensory-based 

recognition, the area under the ROC curve for BSV associated learning showed 

maximum value (Fig. 4d,e).  Furthermore, the confusion matrix maps for these 

approaches showed that in a testing dataset containing 600 samples, minimum testing 

samples were misrecognized in the BSV associated learning (Supplementary Fig. 

7a-c).  The BSV associated learning achieved the best recognition accuracy (100%) 

compared with visual-based recognition (89.3%) and somatosensory-based 

recognition (84.5%) (Fig. 4f).  These results demonstrate that pattern recognition in 

computer vision can be improved when coupled with somatosensory information 

obtained from skin-like electronic devices. 

We further compared BSV associated learning with three other known SV fusion 

architectures – weighted-average fusion (SV-V), weighted-attention fusion (SV-T) 

and weighted-multiplication fusion (SV-M) – for hand gesture recognition using the 

same SV dataset, and the same training and testing dataset (Supplementary Fig. 6).  

In SV-V, the average of two probabilities (𝑝𝑝(𝑥𝑥visu) and p(𝑥𝑥soma)) was taken as the 
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final output: 𝑝𝑝(𝑥𝑥V) = 0.5 × 𝑝𝑝(𝑥𝑥visu) + 0.5 × 𝑝𝑝(𝑥𝑥soma) 

where 𝑝𝑝(𝑥𝑥visu) is the output probability of the last layer of CNN in the visual-based 

recognition strategy, and p(𝑥𝑥soma) is the output probability of the last layer of 

feedforward neural network in the somatosensory-based recognition strategy.  In 

SV-T, a weighted integration of these probabilities was used as the final output: 𝑝𝑝(𝑥𝑥T) = 𝑚𝑚 × 𝑝𝑝(𝑥𝑥visu) + 𝑛𝑛 × 𝑝𝑝(𝑥𝑥soma) 

where m and n are obtained from an addition least-square training process.  In SV-M, 

the multiplication of 𝑝𝑝(𝑥𝑥visu) and p(𝑥𝑥soma) was used as the final output: 𝑝𝑝(𝑥𝑥M) = 𝑝𝑝(𝑥𝑥visu) × 𝑝𝑝(𝑥𝑥soma) 

The error rates in the three common SV fusion recognition strategies (6.3% for 

SV-V, 4.2% for SV-T, and 3% for SV-M) were significantly higher than BSV 

associated learning (Fig. 4f, and see Supplementary Fig. 7c-f).  Moreover, we 

compared the BSV associated learning with the state-of-art recognition approaches for 

hand gesture application (Supplementary Table 2) and also evaluated it on a public 

hand gesture dataset (Supplementary Table 3).  The comparison results demonstrate 

that the BSV associated learning always maintains the best classification performance 

(> 99%), indicating the BSV can make best use of the complementary visual and 

somatosensory information due to its early interactions and rational visual 

preprocessing. 

We also assessed the effect of visual noise on the recognition accuracies of these 

trained models (visual, SV-V, SV-T, SV-M, and BSV based recognition strategies) by 
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adding Gaussian white noise into the images in the testing dataset (Supplementary Fig. 

8).  Increased noise level significantly deteriorated the recognition accuracies of the 

visual, SV-V, SV-T, SV-M based strategies, while BSV continued to maintain high 

recognition accuracies (Fig. 4g).  These results show our BSV associated learning 

architecture is tolerant of defects in the visual information, such as noise and motion 

blur, and is clearly superior to current multimodal recognition approaches due to the 

biological visual-somatosensory interaction. 

 

Precise HGR for human-machine interactions 

As proof-of-concept application for human-machine interactions, we built an 

auto-recognition and feedback system that allows humans to interact with a robot 

through hand gestures using our BSV associated learning architecture.  This system 

consists of a data acquisition unit (DAQ) for capturing the somatosensory information 

of a hand, a built-in camera for capturing the images of hand gestures, a computer for 

implementing the BSV associated learning, a wireless data transmission module, and 

a quadruped robot (Fig. 5a, photograph of the system is shown in Supplementary Fig. 

9).  Each of the 10 categories of hand gestures was assigned a specific motor 

command that relates to directional movements (Fig. 5b).  The different hand 

gestures were then used to guide the quadruped robot through a labyrinth.  Hand 

gesture recognition powered by our BSV associated learning architecture was able to 

guide the robot through the labyrinth with zero error, compared to 6 errors in 

visual-based recognition (Fig. 5c and d, Supplementary Video 2). 
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Importantly, the robotic system based on our BSV fusion also worked effectively in 

the dark (Supplementary Video 3).  We tested the recognition results of the ten 

categories of hand gestures in environments with varying illuminances (431, 222, and 

10 lux) by adjusting the light condition in a room.  The lowest illuminance of ~10 

lux resembles an open parking lot at night.  For each light condition, 60 trials (6 

trials per category of hand gesture) were carried out to control the motion of the robot.  

Recognition accuracies for all four approaches (visual, SV-V, SV-T, SV-M, and BSV 

recognition) under illuminance of 431, 222, and 10 lux are shown in Fig. 5f.  When 

the room lights faded, the accuracy of visual, SV-V, SV-T and SV-M approaches 

decreased dramatically while BSV associated learning maintained high accuracy (> 

96.7%).  This trend was consistent when testing was done using the same dataset but 

with the images mathematically processed to have varying brightness (Fig. 5e and 

Supplementary Fig. 10).  Similar to the tolerance of noise defects, the BSV 

associated learning system is highly accurate and can withstand the harsh 

environments that cause under- or over-exposure in the images with the brightness 

times ranging from 0.4 to 2.5 (More scenarios with the brightness times below 0.4 are 

shown in Supplementary Fig. 11a).  A part of the explanation is the complementary 

effect of somatosensory information that is invariant to the light factors.  However, 

the more important part is the early visual-somatosensory interaction in the BSV 

associated learning which improves the precision significantly even in the harsh 

environments (Supplementary Fig. 11), due to the collection of coherent information 

to reduce the perceptual ambiguity28.  Such a tolerant learning system with improved 
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precision in sensing, perception and feedback are critical for various human-machine 

applications, particularly in healthcare and augmented reality. 

 

Conclusions 

We have reported a learning architecture that integrates visual and somatosensory 

information to achieve high-precision hand gesture recognition. We fabricated an 

adhesive stretchable strain sensor that can be conformably attached to human skin in 

order to acquire reliable somatosensory information of hand gestures, and used a 

commercial camera sensor to obtain images. The transparent (89%) strain sensor was 

inconspicuous in the images. Compared to unisensory and common SV fusion 

architectures, our BSV learning that employs a pruning strategy based on a Frobenius 

condition number, achieved a superior accuracy (100% using a custom dataset) for 

hand gesture recognition against complex backgrounds. The BSV fusion process can 

tolerate undesirable features in the visual information, such as noise and 

underexposure or overexposure. As a result, the approach can achieve a high 

recognition accuracy (over 96.7%) even in the dark. The learning architecture was 

also implemented for the control and navigation of a quadruped robot using hand 

gestures. Our work illustrates that the integration of skin-like electronics with 

computer vision can significantly improve the precision of HGR, even under harsh 

environmental scenarios, and is promising for recognition tasks in human–machine 

interaction applications. 
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Methods 

Fabrication of stretchable strain sensor device.  Single-walled carbon nanotubes 

(SWCNTs) and polydimethylsiloxane (PDMS) were purchased from Carbon Solution 

and Sigma-Aldrich, respectively.  Acrylic acid, N,N’-methylenebisacrylamide (BIS, 

crosslinker), potassium persulfate (KPS, thermal initiator) and 

N,N,N’,N’-tetramethylethylenediamine (TEMED, co-initiator) were purchased from 

Sigma-Aldrich.  (1) Fabricated the stretchable strain sensor without the PAA 

hydrogel layer.  SWCNTs were firstly dispersed in deionized water by sonicating for 

2 h, resulting in the SWCNT solution of 0.1 mg/ml.  120 µL of SWCNT solution 

(total usage amount of 3 strain sensors) was further diluted into a 40 ml deionized 

water to form the resultant solution for vacuum filtration.  The filter membrane was 

patterned to three rectangle patterns (each pattern is 2 × 0.4 cm2).  After filtering, the 

SWCNT layer was transferred to a half-cured PDMS film (first curing) that was used 

to enhance the bonding strength between the SWCNT and PDMS.  This half-cured 

PDMS was obtained by the PDMS precursors (mixed in a weight ratio of 10:1, and 

spin-coated onto a hydrophobization-treated Si wafer at 800 rpm for 60 s) being cured 

in an oven at 60 °C for 40 min.  After transferring, the wafer was placed in the oven 

at 60 °C for 8 h to further cure the PDMS (second curing).  Then, we achieved the 

high transparent stretchable strain sensor with a patterned and uniform SWCNT 

sensing layer. (2) PAA polymerization on the PDMS substrate.  Before the PAA 

polymerization, a plasma polymerization procedure was carried out to chemically 

modify the PDMS surface (opposite side of SWCNT) by using the treatment with the 
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argon gas (3 mbar, 1 min), and followed a mixture of argon and acrylic acid gas (4 

mbar, 4 min).  Then, acrylic acid (1 ml), BIS (2.5 mg), TEMED (35 µL), KPS (175 

mg) were subsequently added to 5 mL deionized water.  The resultant solution was 

dropped onto the modification PMDS surface to implement the thermal 

polymerization onto a hotplate at 70 ˚C for 20 min.  After thermal polymerization, a 

stretchable strain sensor with PAA hydrogel adhesion layer was completed for 

capturing the somatosensory signals. 

Characteristics of stretchable strain sensor.  The strain sensing characteristics of 

stretchable strain sensor devices were performed using an electrical measurement 

equipment (Keithley 4200 semiconductor device parameter analyzer) and a 

mechanical measurement equipment (MTS Criterion Model 42).  The measurement 

of optical transmittance is carried out by an UV-2550. 

Dataset preparation. Our SV dataset totally contains 3000 SV samples.  Each SV 

sample consists of one hand gesture image with a complex background 

(corresponding to visual information), and five strain sensor data (corresponding to 

somatosensory information).  The hand gesture images were captured by the 

commercial-off-the-shelf camera sensors.  The corresponding five strain sensor data 

were simultaneously obtained by our fabricated stretchable strain sensors that were 

patched on the five fingers of a human hand.  In order to guarantee the generalization 

ability of the dataset, there are totally 10 volunteers and 80 strain sensors employed to 

collect the somatosensory and visual information in consideration of the individual 

differences and the device variation of strain sensors.  The raw images captured by 



17 
 

cameras were resized to 160 × 120 pixels.  The resistance change (ΔR/R0) of 

strain sensors was further processed by a normalization step, regarding as the 

somatosensory information. 

Data availability. The data that support the plots within this paper and other findings 

of this study are available from the corresponding author upon reasonable request. 

The SV datasets that are used in this study are available at  

https://github.com/mirwang666-ime/Somato-visual-SV-dataset. 

Code availability. The code that supports the plots within this paper and other finding 

of this study is available at 

https://github.com/mirwang666-ime/Somato-visual-SV-dataset. The code that 

supports the human-machine interaction experiment is available from the 

corresponding author upon reasonable request. 
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Fig. 1 | BSV associated learning framework.  a, Schematic showing the processing 

hierarchy of visual and somatosensory information in the human brain.  Red, blue 

and green areas represent the processing region (PA: primary area; AA: association 

area) for somatosensory, visual and multimodal information, respectively.  Red and 

blue arrows respectively represent the direction of somatosensory and visual 

information flow; purple arrows show the feedback information flow after multimodal 

fusion.  Visual and somatosensory information interact early in the multisensory 

neurons area.  Skin-like electronic devices act as somatosensory receptors.  b, BSV 

associated learning framework consists of three neural networks that mimic the SV 

fusion process hierarchy in a.  Top left: a sectional CNN representing early visual 

processing; bottom left: a multilayer neural network mimicking the early 

somatosensory processing; right: a sparse neural network resembling the high level 

fusion of early interactions in the whole BSV architecture. 
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Fig. 2 | Characterization of stretchable strain sensor.  a, Schematic showing the 

multilayer stacked structure of the conformable, transparent, and adhesive stretchable 

strain sensor.  SWCNTs, PDMS, PAA hydrogels function as the sensing layer, the 

stretchable substrate, and the adhesive layer, respectively.  b, Plasma treatment with 

argon and acrylic gas chemically modifies the PDMS surface with acrylic acid, 

allowing PAA hydrogels to bond strongly with PDMS.  c, Transmittance spectra of 

the pure SWCNT film, the SWCNT/PDMS device, and the SWCNT/PDMS/PAA 

device in the visible wavelength range from 350 to 850 nm.  d, Photograph showing 

the stretchable strain sensor is transparent.  e, Adhesion strength of PAA hydrogels 

(magenta) on human skin was much higher than PDMS (blue).  Inset shows the 

measurement setup.  The error bars represent the standard deviation (SD) of 
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adhesion strength among ten measurements.  f, Strain-resistance response curves of 

the stretchable strain sensor under loading.  Inset shows a strain sensor patched over 

the knuckle of an index finger.  g, Strain-resistance response curves under a 

triangular strain profile show the sensor is stable and can undergo various dynamic 

loads.  Magnitudes of the respective peak strains are 5%, 25%, 50%, and 75%.  h, 

Durability test of 1000 cycles at 50% strain shows the strain sensor response is stable 

and regular with a nearly constant base resistance. 
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Fig. 3 | Dataset preparation for BSV associated learning.  a, Illustration of the SV 

dataset containing 3000 SV samples.  Each SV sample consists of one image of a 

hand gesture and the corresponding somatosensory information represented by strain 

data captured from 5 strain sensors patched over the knuckle of the thumb, index, 

middle, ring and little finger.  b, Photographs showing the 10 categories (I to X) of 

hand gestures in the SV dataset.  c, Flow diagram for the SV data collection.  

Normalization of strain data and resizing the images are required to structure the 

somatosensory and visual signals.  d, Visualizing the somatosensory information 
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within the 3000 samples in the SV dataset using t-SNE dimensionality reduction.  

Each point represents somatosensory information of one hand gesture projected from 

the 5-dimensional strain data into two dimensions.  Similar gestures clustered 

together, forming 10 categories of hand gestures in the entire SV dataset. 
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Fig. 4 | BSV associated learning for classification.  a, Schematic showing how 

visual and somatosensory information is processed and fused in the BSV associated 

learning architecture.  conv.: convolutional layer; fc: fully connected neural network; 

sc: sparsely connected neural network; 48D: 48-dimensional visual vector; 5D: 

5-dimensional somatosensory vector.  Blue boxes represent the AlexNet CNN, which 

was pretrained using the ImageNet dataset.  The 5-layer sparse neural network (sc8 

to sc12) was used to fuse the SV information.  b, Schematic of Frobenius condition 

number-dependent pruning strategy.  𝑊𝑊: Weighting matrix;  𝑊𝑊� : 𝑊𝑊 after pruning; 

 𝜎𝜎𝐹𝐹(𝑊𝑊): Frobenius condition number of 𝑊𝑊.  Color lightness represents the value of 

weights.  Dense 𝑊𝑊  (Left) and sparse 𝑊𝑊  (Right) between two adjacent neuron 
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layers.  c-e, ROC curves of the BSV, visual-, and somatosensory-based recognition 

for 10 categories of hand gestures (I to X).  f, BSV associated learning showed the 

best accuracy among the unimodal (visual- and somatosensory-) and multimodal 

fusion strategies (SV-V, SV-T, SV-M, BSV).  Unimodal strategies: visual-based 

recognition using only visual images and somatosensory-based recognition using only 

strain sensor data.  Multimodal fusion strategies using both visual images and strain 

sensor data: weighted-average fusion (SV-V), weighted-attention fusion (SV-T), 

weighted-multiplication fusion (SV-M), and BSV associated learning fusion.  The 

final recognition accuracies are 89.3%, 84.5%, 93.7%, 95.8%, 97% and 100% for 

visual, somato, SV-V, SV-T, SV-M, and BSV based strategies, respectively.  g, 

Testing results of visual, SV-V, SV-T, SV-M, and BSV based strategies under 

defective visual information with various Gaussian noises (0.001, 0.005, 0.01, 0.02) 

show only BSV can maintain its high recognition accuracy with increased noise level. 
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Fig. 5 | Precise HGR based on BSV for human-machine interaction.  a, 

Schematic shows the system consists of a somatosensory-data acquisition unit (DAQ), 

a camera for capturing visual image, a computer, a wireless data transmission module, 

and a quadruped robot.  b, Each of the 10 categories (I to X) of hand gestures was 

assigned a specific motor command to guide the movement of the quadruped robot.  

Forward move: FM; Back move: BM.  c,d, Scenarios of the robot walking through 

the labyrinth based on visual-based recognition (c) and BSV associated learning 

recognition (d).  Red sectors represent errors in the recognition while Roman 
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numerals show the predicted hand gesture categories.  Visual-based recognition 

made more errors than BSV recognition.  e, Testing results using the previous testing 

dataset, now with images mathematically processed to adjust the brightness.  Visual 

images were processed for underexposure (brightness < 1) or overexposure 

(brightness > 1).  No treatment (brightness = 1).  f, Performance accuracy of the 

robot using different recognition architectures under different illuminances (431, 222, 

and 10 lux).  Below each image of the three light conditions are subplots showing 

the statistics for 60 testing trials for the five approaches (Visual, SV-V, SV-T, SV-M, 

and BSV).  Robots using BSV architecture maintained high accuracy even in the 

dark. 


