
0018-9162/02/$17.00 © 2002 IEEE2 Computer

Get Ready for
Agile Methods,
with Care

F
aced with the conflicting pressures of accel-

erated product development and users who

demand that increasingly vital systems be

made ever more dependable, software

development has been thrown into turmoil.

Traditionalists advocate using extensive planning,

codified processes, and rigorous reuse to make

development an efficient and predictable activity

that gradually matures toward perfection. Mean-

while, a new generation of developers cites the

crushing weight of corporate bureaucracy, the rapid

pace of information technology change, and the

dehumanizing effects of detailed plan-driven devel-

opment as cause for revolution. In their rallying cry,

the Manifesto for Agile Software Development

(http://www.agileAlliance.org), and in columns1,2

such as those the “Ongoing Debate” sidebar

describes, these developers call for a revitalized

approach to development that dispenses with all

but the essentials. Unsurprisingly, many developers

who favor plan-driven methods have reacted to the

manifesto with scathing criticism.

Real-world examples argue for and against agile

methods. Responding to change has been cited as

the critical technical success factor in the Internet

browser battle between Microsoft and Netscape.

But overresponding to change has been cited as the

source of many software disasters, such as the $3

billion overrun of the US Federal Aviation

Administration’s Advanced Automation System for

national air traffic control.

I believe that both agile and plan-driven

approaches have a responsible center and overin-

terpreting radical fringes. Although each approach

has a home ground of project characteristics within

which it performs very well, and much better than

the other, outside each approach’s home ground, a

combined approach is feasible and preferable.

THE PLANNING SPECTRUM
We can place various agile and plan-driven devel-

opment approaches along a spectrum of increasing

emphasis on plans, as Figure 1 shows. In this con-

text, the term “plan” includes documented process

procedures that involve tasks and milestone plans,
and product development strategies that involve

requirements, designs, and architectural plans.
Compared to unplanned and undisciplined hack-

ing, agile methods emphasize a fair amount of plan-

ning. Their general view, though, places more value

on the planning process than the resulting docu-

mentation,1 so these methods often appear less

plan-oriented than they really are. Although hard-

core hackers can use agile principles to claim that

the work they do is agile, in general these methods

have criteria, such as Extreme Programming’s 12

practices, that help determine whether an organi-

zation is using an agile method or not.

Another encouraging trend is that the buzz of

agile methods such as XP is drawing many young

programmers away from the cowboy role model

and toward the more responsible agile methods.

Although many of their advocates consider the agile and plan-driven
software development methods polar opposites, synthesizing the two can
provide developers with a comprehensive spectrum of tools and options.

Barry Boehm
University of

Southern California

C O V E R F E A T U R E

The price that XP pays for this benefit, however, is

a reluctance by more conservative managers to

sanction a method called “extreme.”3

Plan-driven methods also have a responsible cen-

ter focused on major milestones and their overall

content, rather than on micromilestones locked into

an ironbound contract. Excessively prespecified

plans overconstrain the development team even at

minor levels of change in personnel, technology, or

commercial off-the-shelf upgrades. Such plans also

provide a source of major contention, rework, and

delay at high-change levels. On the other hand,

when reviewing projects using the risk-driven spi-

ral model, I find that to keep from losing their way,

such projects, particularly larger ones, need to have

at least three major anchor-point milestones to

serve as project progress indicators and stakeholder

commitment points.4

Figure 1 also shows the location of the current

software Capability Maturity Model and its suc-

cessor, the Capability Maturity Model Integrated

in the planning spectrum. Its proponents often use

the software CMM in an overly restrictive and

bureaucratic way, but it can be interpreted to

include some forms of milestone risk-driven mod-

els. Software CMM leaders are also showing how

liberal versus literal interpretations can include

major portions of XP as being software CMM-

compliant.5 We can also interpret the CMMI,

which adds process areas for risk management,

integrated teaming, and an organizational envi-

ronment for integration, to include agile methods.

COMPARING THE METHODS
The agile and plan-driven approaches each have

strengths and weaknesses, as a direct comparison

of several key areas shows.

Developers
Alistair Cockburn and Jim Highsmith emphasize

several critical people factors for agile methods: ami-

cability, talent, skill, and communication.2 Larry

Constantine’s independent assessment identifies a

potential problem for agile methods: “There are only

so many Kent Becks in the world to lead the team.

All of the agile methods put a premium on having

premium people.…”6

When you work with premium people, High-

smith and Cockburn’s statement that “A few

designers sitting together can produce a better

design than each could produce alone”1 rings true.

Without premium people, however, you’re more

likely to get a design-by-committee mess. A signif-

icant consideration here is the unavoidable statis-

tic that 49.9999 percent of the world’s software

developers are below average.

This is not to say that agile methods require uni-

formly high-capability people. Many agile projects

have succeeded with mixes of experienced and

junior people, as have plan-driven projects. The

January 2002 3

In the Software Management column in Computer’s September and

November 2001 issues, Jim Highsmith and Alistair Cockburn summa-

rized and rationalized the shared value propositions embodied in the

Manifesto for Agile Software Development. The developers of several

emerging software development methods, such as Adaptive Software

Development (ASD), Agile Modeling, Crystal Methods, Dynamic System

Development Methodology (DSDM), Extreme Programming (XP),

Feature Driven Development, Lean Development, and Scrum emphasize

the following values:

• individuals and interactions over processes and tools,

• working software over comprehensive documentation,

• customer collaboration over contract negotiation,

• responding to change over following a plan.

That is, while there is value in the items on the right, agile method pro-

ponents value the items on the left more.

Although their advocates have used each of these agile methods suc-

cessfully in practice, critics who prefer process-based methods remain

skeptical. In a letter1 to Computer, Steven Rakitin indicates that in his

experience, the items on the right are essential, while those on the left

serve only as easy excuses for hackers to keep on irresponsibly throwing

code together with no regard for engineering discipline. He provides

“hacker interpretations” that turn agile value propositions such as

“responding to change over following a plan” into chaos generators. For

example, Rakitin asserts that agile developers consider following a plan

to imply that they must spend time thinking about the problem and how

they might actually solve it, when they would rather just jump in and code

the solution.

References
1. S. Rakitin, “Manifesto Elicits Cynicism,” Computer, Dec. 2001, p. 4.

Ongoing Debate

Figure 1. The planning spectrum. Unplanned and undisciplined hacking occupies
the extreme left, while micromanaged milestone planning, also known as inch-
pebble planning, occupies the extreme right.

Milestone
risk-driven

models

Milestone
plan-driven

models

Inch-
pebble

ironbound
contract

Adaptive
SW

developmentXPHackers

Software CMM

CMM

Agile methods

……

4 Computer

main difference is that agile methods derive

much of their agility by relying on the tacit

knowledge embodied in the team, rather than

writing the knowledge down in plans.7 When

the team’s tacit knowledge is sufficient for the

application’s life-cycle needs, things work

fine. But there is also the risk that the team

will make irrecoverable architectural mis-

takes because of unrecognized shortfalls in

its tacit knowledge. Plan-driven methods

reduce this risk by investing in life-cycle archi-

tectures and plans, and using these to facili-

tate external-expert reviews. In doing so,

however, they accept a risk that rapid change

will make the plans obsolete or very expen-

sive to keep up to date.

Customers
In USC’s rapid-development electronic services

projects, we have found that unless customer par-

ticipants are committed, knowledgeable, collabo-

rative, representative, and empowered, the

developed products generally do not transition into

use successfully, even though they may satisfy the

customer. Participants in the XP 2001 “Customer

Involvement in XP” workshop reached similar con-

clusions.8 Agile methods work best when such cus-

tomers operate in dedicated mode with the

development team, and when their tacit knowledge

is sufficient for the full span of the application.

Again, though, these methods risk tacit knowledge

shortfalls, which the plan-driven methods reduce

via documentation and use of architecture review

boards and independent expert project reviews to

compensate for onsite customer shortfalls.

Requirements
Highsmith and Cockburn emphasize that agile

approaches “are most applicable to turbulent, high-

change environments.” According to their world

view, organizations are complex adaptive systems

in which requirements are emergent rather than

prespecifiable.1 However, while agile manifesto

tenets such as the second principle—welcome

changing requirements, even late in development—

offer great potential for success, developers can mis-

apply them, with disastrous results.

Plan-driven methods work best when developers

can determine the requirements in advance—

including via prototyping—and when the require-

ments remain relatively stable, with change rates

on the order of one percent per month. In the

increasingly frequent situations in which the

requirements change at a much higher rate than

this, the traditional emphasis on having complete,

consistent, precise, testable, and traceable require-

ments will encounter difficult to insurmountable

requirements-update problems. Yet this emphasis

is vital for stable, safety-critical embedded soft-

ware.

Architecture
The agile manifesto values working software

over comprehensive documentation, and empha-

sizes simplicity: maximizing the amount of work

not done. This principle can be interpreted in many

ways. Most are quite good, but some interpreta-

tions can cause problems. For example, based on

the YAGNI precept: “You Aren’t Going to Need

It,” XP advocates doing extra work to get rid of

architectural features that do not support the sys-

tem’s current version. This approach works fine

when future requirements are largely unpredictable.

However, in situations where future requirements

are predictable, this practice not only throws away

valuable architectural support for them, it also cre-

ates problems with customers who want develop-

ers to believe that their priorities and evolution

requirements are worth accommodating. Some

agile methods such as Crystal and DSDM do more

architectural preplanning.

As with requirements, plan-driven methods that

emphasize heavyweight architecture and design

documentation will encounter difficult to insur-

mountable problems in keeping up with rapidly

changing requirements. On the other hand, if the

architecture anticipates and accommodates re-

quirements changes, plan-driven methods can keep

even million-line applications within budget and

schedule. Walker Royce provided a good example

of such an effort in his description of the CCPDS-

R project.9

Refactoring
With great developers and small systems, the

assumption that refactoring is essentially free is

valid. If so, the YAGNI approach is low-risk.

However, empirical evidence indicates that with

less-than-great developers, refactoring effort

increases with the number of requirements or sto-

ries. For very large systems, our Pareto analysis of

rework costs at TRW indicated that the 20 percent

of the problems causing 80 percent of the rework

came largely from “architecture-breakers,” such as

architecture discontinuities to accommodate per-

formance, fault-tolerance, or security problems, in

which no amount of refactoring could put Humpty

Dumpty back together again.

Agile methods derive
much of their agility

by relying on the
tacit knowledge
embodied in the

team, rather than
writing the

knowledge down
in plans.

Size
Cockburn and Highsmith conclude that “Agile

development is more difficult for larger teams,” but

they cite occasional successful larger agile projects

with up to 250 people.2 Larry Constantine finds

agile methods highly attractive for small projects,

but he concludes that “The tightly coordinated

teamwork needed for these methods to succeed

becomes increasingly difficult beyond 15 or 20

developers.”6

Plan-driven methods scale better to large projects

like the million-line CCPDS-R project. But a

bureaucratic, plan-driven organization that requires

an average of a person-month just to get a project

authorized and started won’t be very efficient on

small projects.

Primary objective
The first principle of the agile manifesto states that

“Our highest priority is to satisfy the customer

through early and continuous delivery of valuable

software.” “Early” and “continuous” are reasonably

compatible goals for small systems developed by

great people. But overfocus on early results in large

systems can lead to major rework when the archi-

tecture doesn’t scale up. In such cases, a good deal of

planning will be necessary, in the spirit of the eighth

principle of Lean Programming: “Ban Local

Optimization.”10 Some agile methods are experi-

menting with concepts similar to the “software archi-

tecture skeleton” used in the CCPDS-R project.

Plan-driven methods are most needed in high-

assurance software. Scott Ambler, the originator of

agile modeling, says, “I would be leery of applying

agile modeling to life-critical systems.”11 Another

major set of objectives for the more traditional

plan-driven methods, and for the software CMM,

has been predictability, repeatability, and opti-

mization. But in a world involving frequent, radi-

cal changes, having processes as repeatable and

optimized as a dinosaur’s may not be a good objec-

tive. Fortunately, the CMMI and associated risk-

driven methods provide a way to migrate toward

more adaptability.

BALANCING AGILITY AND DISCIPLINE
Particularly in the e-services sector, companies

with a large customer base don’t need just rapid

value or high assurance—they need both. Pure

agility or pure plan-driven discipline alone can’t

meet these needs. A mix of each is needed.

Martin Fowler’s “Is Design Dead?”12 essay and

Jim Highsmith’s Adaptive Software Development13

book describe ways for combining agile and plan-

driven methods. Risk management offers another

approach that can help balance agility and disci-

pline and answer questions such as “How much is

enough?”4 I apply risk management here to address

the question “How much planning is enough?”

A central concept in risk management involves

determining the risk exposure for a given course of

action. To determine RE, you assess the probabil-

ity of loss, P(L), involved in a course of action, the

corresponding size of loss, S(L), and then compute

the risk exposure as the expected loss: RE = P(L) *

S(L). Loss can include profits, reputation, quality of

life, or other value-related attributes.

Figure 2 shows risk exposure profiles for a sam-

ple e-services company with

• a sizable installed base and thus the desire for

high assurance,

• a rapidly changing marketplace and thus the

desire for agility and rapid value, and

• an internationally distributed development

team with a mix of skill levels and thus the

need for some level of documented plans.

The black curve in Figure 2 shows the variation

in risk exposure from inadequate plans as a func-

tion of the company’s level of investment in its pro-

jects’ process and product plans. At the left, a

minimal investment corresponds to a high P(L) that

the plans will have loss-causing gaps, ambiguities,

and inconsistencies. It also corresponds to a high

S(L) that these deficiencies will cause major project

oversights, delays, and rework costs. At the right,

we see that the more thorough the plans, the less

probability that plan inadequacies will cause prob-

lems, and the smaller the size of the associated

losses.

The red curve in Figure 2 shows the variation in

RE from market share erosion caused by delays in

January 2002 5

Figure 2. Risk exposure (RE) profile. This planning detail for a sample e-services
company shows the probability of loss P(L) and size of loss S(L) for several signifi-
cant factors.

High P(L): inadequate plans
High S(L): major problems
(oversights, delays, rework)

High P(L): plan breakage, delay
High S(L): value capture delays

Sweet spot

Time and effort invested in plans

R
E

=
P(

L)
 *

 S
(L

)

Low P(L): few plan
 delays
Low S(L): early value
 capture

Low P(L): thorough
 plans
Low S(L): minor
 problems

6 Computer

product introduction. Spending minimal time in

planning will get at least a demo product into the

marketplace early, enabling early value capture.

Spending too much time in planning carries a high

loss probability because of the time lost to planning

and because rapid changes will cause delays via plan

breakage. Longer planning times will also cause

higher-sized losses because the delays will let stronger

competitors capture most of the market share.

The blue curve in Figure 2 shows the sum of the

risk exposures from inadequate plans and market

share erosion. The very low and very high invest-

ments in plans have high overall risk exposures,

and the sweet spot when overall risk exposure is

minimized occurs in the middle, indicating “how

much planning is enough” for this company’s oper-

ating profile.

With the sample company situation as a refer-

ence point, we can run comparative risk exposure

profiles for companies occupying the home ground

of either agile methods or plan-driven methods, as

summarized in Table 1.

For example, Figure 3 shows the comparative RE

profile for an e-services company with a small

installed base, a rapidly changing marketplace, a

collocated team of highly capable and collabora-

tive developers and customers, and less need for

high assurance. With this profile, the major change

in risk exposure from Figure 2 involves less rework

loss from minimal plans because the team can

rapidly replan and refactor, thus the company’s

sweet spot moves to the left, toward agile methods.

Figure 4 shows the corresponding RE profile for

a company in the plan-driven home ground, with

a more stable product line of larger, more safety-

critical systems. Here, the major difference from

Figure 2 involves more rework loss from minimal

plans, with a resulting shift of the company’s sweet

spot toward higher investments in plans.

ASSESSING RISK EXPOSURE
In practice, quantifying estimates of P(L) and S(L)

is difficult. But if you’re combining agile and plan-

driven methods, you can use each method’s home-

ground attributes to determine relative risks. So,

for example, if your company or project fits an agile

home-ground profile except for having a mix of

equally important customers with less-than-ideal

development representatives, you can reduce your

risk exposure by conducting stakeholder require-

ments negotiations among the developers and cus-

tomers. Then you can document the results to

minimize the risk of future customer misunder-

standings.

Or, if your project fits a plan-driven home-

ground profile except for highly volatile user inter-

Figure 3. Comparative RE Profile for an agile home-ground company with a small
installed base and less need for high assurance.

Mainstream
sweet spot

Time and effort invested in plans

R
E

=
P(

L)
 *

 S
(L

)

Agile
sweet spot

Low S(L):
easy rework

Table 1. Home ground for agile and plan-driven methods.

Home-ground area Agile methods Plan-driven methods

Developers Agile, knowledgeable, collocated, and collaborative Plan-oriented; adequate skills; access to external knowledge
Customers Dedicated, knowledgeable, collocated, collaborative, Access to knowledgeable, collaborative, representative, and

representative, and empowered empowered customers
Requirements Largely emergent, rapid change Knowable early; largely stable
Architecture Designed for current requirements Designed for current and foreseeable requirements
Refactoring Inexpensive Expensive
Size Smaller teams and products Larger teams and products
Primary objective Rapid value High assurance

Figure 4. Comparative RE profile for a plan-driven home-ground company that
produces large, safety-critical systems.

Higher S(L):
large system rework

Mainstream
sweet
spot

Time and effort invested in plans

R
E

=
P(

L)
 *

 S
(L

)

Plan-driven
sweet spot

face requirements, you can use risk-driven specifi-

cations4 to document those requirements that pose

a high risk if they remain unspecified, such as crit-

ical message formats, but to avoid documenting

volatile user interface requirements whose specifi-

cation would be high risk. Risk-driven spiral meth-

ods and frameworks such as the Rational Unified

Process (RUP),9 Model-Based Architecting and

Software Engineering (MBASE),14 and the CMMI

provide guidelines for finding a good balance of

discipline and flexibility, although the current

CMMI approach needs more explicit support for

agility.

A gile and plan-driven methods both form part

of the planning spectrum. Despite certain

extreme terminology, each is part of the

responsible center rather than the radical fringe.

Indeed, agile methods perform a valuable service

by drawing erstwhile cowboy programmers toward

a more responsible center.

Both agile and plan-driven methods have a home

ground of project characteristics in which each

clearly works best, and where the other will have

difficulties. Hybrid approaches that combine both

methods are feasible and necessary for projects that

combine a mix of agile and plan-driven home-

ground characteristics. Risk analysis of your pro-

ject’s characteristics versus a given method’s

home-ground characteristics can help determine

the best balance the agile and plan-driven disci-

plines.

Although information technology trends are

moving us closer to agile methods’ emergent

requirements and rapid change home-ground char-

acteristics, increasing dependability concerns call

for measures best implemented with plan-based

solutions. To meet these disparate needs, organi-

zations must carefully evolve toward the best bal-

ance of agile and plan-driven methods that fits their

situation. I expect we will see agile methods used

increasingly for projects such as financial services,

electronic commerce, air traffic control; distributed,

mobile, semiautomated, network-centric military

or medical systems. ✸

Acknowledgments
This work was supported by the National

Science Foundation, the Department of Defense

Software Intensive Systems Directorate, and the

Affiliates of the USC Center for Software

Engineering.

References
1. J. Highsmith and A. Cockburn, “Agile Soft-

ware Development: The Business of Innova-

tion,” Computer, Sept. 2001, pp. 120-122.

2. A. Cockburn and J. Highsmith, “Agile Soft-

ware Development: The People Factor,”

Computer, Nov. 2001, pp. 131-133.

3. L. Copeland, “Developers Approach Extreme

Programming with Caution,” Computer-
world, 22 Oct. 2001, p. 7.

4. B. Boehm and W. Hansen, “The Spiral Model

as a Tool for Evolutionary Acquisition,”

CrossTalk, May 2001, pp. 2-11; http:/www.

stsc.hill.af.mil/Crosstalk/ crostalk.html.

5. L. Constantine, “Methodological Agility,”

Software Development, June 2001, pp. 67-69.

6. A. van Deursen, “Customer Involvement in Extreme

Programming: XP2001 Workshop Report,” ACM
Software Eng. Notes, Nov. 2001, pp. 70-73.

7. W.E. Royce, Software Project Management: A Uni-
fied Framework, Addison-Wesley Longman, Read-

ing, Mass., 1998.

8. M. Poppendieck, “Lean Programming: Part 2,” Soft-
ware Development, June 2001, pp. 71-75.

9. S. Ambler, “When Does(n’t) Agile Modeling Make

Sense?” http://www.agilemodeling.com/essays/

whenDoesAMWork.htm.

10. M. Fowler, “Is Design Dead?” Extreme Program-
ming Explained, G. Succi and M. Marchesi, eds.,

Addison-Wesley Longman, Reading, Mass., 2001.

11. J. Highsmith, Adaptive Software Development,
Dorset House, New York, 2000.

12. B. Boehm and D. Port, “Balancing Discipline and

Flexibility With the Spiral Model and MBASE,”

CrossTalk, Dec. 2001, pp. 23-28; http://www.stsc.

hill.af.mil/Crosstalk/crostalk.html.

13. A. Cockburn, “Agile Software Development Joins

the ‘Would-Be Crowd,’” Cutter IT Executive
Report, Jan. 2002.

14. M. Paulk, “Extreme Programming from a CMM

Perspective,” IEEE Software, Nov.-Dec. 2001, pp.

19-26.

Barry Boehm is director of the University of South-
ern California Center for Software Engineering.
Contact him at boehm@sunset.usc.edu.

January 2002 7

If you’re combining
agile and

plan-driven
methods, you can
use each method’s

home-ground
attributes to

determine relative
risks.

