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Abstract

GetOrganelle is a state-of-the-art toolkit to accurately assemble organelle genomes
from whole genome sequencing data. It recruits organelle-associated reads using a
modified “baiting and iterative mapping” approach, conducts de novo assembly,
filters and disentangles the assembly graph, and produces all possible configurations
of circular organelle genomes. For 50 published plant datasets, we are able to
reassemble the circular plastomes from 47 datasets using GetOrganelle. GetOrganelle
assemblies are more accurate than published and/or NOVOPlasty-reassembled
plastomes as assessed by mapping. We also assemble complete mitochondrial
genomes using GetOrganelle. GetOrganelle is freely released under a GPL-3 license
(https://github.com/Kinggerm/GetOrganelle).
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Background

The plastid genome (plastome, including the chloroplast and other plastid forms) and

mitochondrial genome (mitogenome or chondriome) represent the portions of endo-

symbiotic organelle inheritance in eukaryotes that have remained in the organelle with-

out being transferred to the nucleus or lost. The plastomes of photosynthetic

eukaryotes are generally 120–150 kb in size and typically map as a highly conserved

circular and quadripartite structure, with a pair of inverted repeat regions (IRs) that

separate the large single copy (LSC) region from the small single copy (SSC) region [1,

2]. Mitogenomes exist in nearly all eukaryotic organisms and vary greatly in genome

size and form. To date, six main types of mitogenome organization have been recog-

nized [3]. Animal mitogenomes map as a single circle molecule, ranging from 11 to 28

kb in size and either lacking introns (i.e., type I) or including introns (types II–VI).

Fungi and plants have single circular mitogenomes with introns from 19 to 1000 kb in

size (type II), or a large and homogenous circular molecule from 20 to 1000 kb in size

with small circular plasmid-like molecules (type III), or homogenous linear molecules
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from 1 to 200 kb in size (type V). Because of their near universal presence and high

copy numbers in the cell (individual organelles contain numerous plastome and/or

mitogenome copies), organelle DNA markers and genome sequences are easily ob-

tained and have been extensively used for phylogenetic and evolutionary analyses [4–8]

and DNA barcoding [9–12]. Since the rapid advances of high-throughput sequencing

technologies, sequencing costs have decreased tremendously in recent years. Due to the

high copy numbers of organelle genome in a single cell, it is feasible to get enough

reads from the low coverage whole genome sequencing (WGS) data to assemble

complete organelle genomes [13, 14].

To date, there are ca. 8400 embryophyte plastomes, ca. 65000 animal mitogenomes,

ca. 1300 fungi mitogenomes, and ca. 300 plants mitogenomes available in GenBank

(accessed on May 15, 2020). Multiple processes or pipelines for assembling organelle

genomes have been described, but their assembly qualities vary widely. For example,

SPAdes [15], SOAPdenovo2 [16], and CLC Genomics Workbench (https://www.qiagen-

bioinformatics.com/) have been widely used to assemble the WGS data, after which the

organelle genomic scaffolds/contigs were selected or filtered out using a reference gen-

ome for further concatenation [17] or post-assembly gap filling and closing [18, 19].

However, these approaches are not only computationally intensive but also error-prone

for inexperienced users and complicated samples [20]. The IOGA (Iterative Organellar

Genome Assembly) pipeline [21] conducts de novo plastome assembly by incorporating

Bowtie2 [22], SOAPdenovo2, SPAdes, and other dependencies for recruiting plastid-

associated reads, but the plastomic scaffolds/contigs created in this process need to be

finalized by other programs. Fast-Plast (https://github.com/mrmckain/Fast-Plast),

NOVOPlasty [23], and ORG.asm (https://git.metabarcoding.org/org-asm/org-asm/org-

asm) were proposed as fast tools to conduct de novo assembly of complete organelle

genomes from WGS data. However, these tools have not been systematically evaluated

until a recent preprint was posted at bioRxiv [24]. Freudenthal et al. [24] presented a

benchmark comparison of seven chloroplast assembly pipelines/toolkits and found sig-

nificant differences among those assemblers. In their tests, our toolkit, GetOrganelle

(https://github.com/Kinggerm/GetOrganelle), significantly outperformed all other as-

semblers in consistency (unlike consistency under different parameters in this paper),

accuracy, and success rate. Nevertheless, the broad application and versatile options of

GetOrganelle were not explored by Freudenthal et al. [24]. Additionally, organelle ge-

nomes may produce flip-flop configurations or other assembly isomers mediated by re-

peats [25–27]; these outcomes are not addressed by any of the abovementioned

pipelines/toolkits, except GetOrganelle. This capability also was not investigated by

Freudenthal et al. [24].

The GetOrganelle toolkit includes a number of scripts and libraries for recruiting tar-

get organelle reads from WGS read data, manipulating and disentangling assembly

graphs, and generating reliable organelle genomes, accompanied by labeled assembly

graphs for user-friendly manual completion and correction (Fig. 1). The from-reads-to-

organelle process can be completed using the script “get_organelle_from_reads.py” with

a single line command, which serves as the main workflow of GetOrganelle. This script

exploits Bowtie2, BLAST [28], and SPAdes, as well as the Python libraries Numpy,

Scipy, and Sympy as dependencies. It starts with recruitment of initial target-associated

reads by using Bowtie2 and taking target genome(s) or sequence(s) as the seed; the
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initial target-associated reads (seed-mapped reads) are treated as “baits” to get more

target-associated reads through multiple extension iterations, which is similar in con-

cept to those of the MITObim [29] and IOGA [21] pipelines. However, the core algo-

rithm of GetOrganelle for read extension uses a hashing approach, which cuts the

reads into substrings (“Words”) with a uniform length (“Word size”), and adds them to

a hash table (“Accepted Words,” AW). During each extension iteration, the AW dy-

namically increases as new target-associated (overlapped) reads are cut and added as

Fig. 1 The workflow of the GetOrganelle toolkit. The thumbnails inside data objects show an example of
plastome assembly. The solid arrows denote the data processing flows and associated directions, with their
width proportional to general computational burden. All green solid arrows together describe a complete
run from reads to organelle genome(s), which is encapsulated in a single command using the
script “get_organelle_from_reads.py”
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Words. Then, the total target-associated reads are de novo assembled into a FASTA as-

sembly Graph (“FASTG”) file using SPAdes. Non-target contigs in the FASTG assembly

are further automatically identified and trimmed by their connections, coverages, and

BLAST hit information using a target-gene-based “label” database. The slimmed

FASTG file is used to calculate all possible paths of the complete target organelle gen-

ome based on the graph characteristics and the coverages of the contigs (see Fig. 2). In

Fig. 2 An example of exstimating the multiplicities of contigs and exporting all configurations from a
target-complete assembly graph in GetOrganelle (steps 5b and 5c of the
script “get_organelle_from_reads.py”)
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some cases, when the assemblies cannot be solved as a circular path or are too compli-

cated to be solved, GetOrganelle will conservatively export the target contigs/scaffolds.

Meanwhile, the slimmed assembly graph (FASTG) and selected target assembly graph

(GFA) can also be visualized by Bandage [30] to assess the completeness of the final

graph, or export selected contigs/scaffolds, or manually remove “noisy” and non-target

contig/scaffold connections. The semi-manually cleaned assembly graph can then be

used to get the complete target genome or the target contigs/scaffolds using the script

“get_organelle_from_assembly.py.” In this study, we have illustrated the mechanism

and workflow of GetOrganelle. Moreover, we tested GetOrganelle with a wide range of

parameters and samples of plants, animals, and fungi in assembling plastomes and

mitogenomes and provide a detailed comparison of the assemblies of NOVOPlasty, the

assemblies of GetOrganelle, and the published plastomes.

Results

Reassembling plastomes from 50 published plant datasets using GetOrganelle

GetOrganelle reassembled the complete circular plastome(s) from 47 out of the 50

plant datasets (Additional file 2: Table S1), including samples with typical IRs,

contracted IRs, no IRs, and large direct repeats (DRs) (Fig. 3). Of the remaining three

species, two species (Ginkgo biloba L., ERR2206741 and Salvinia cucullata Roxb.,

Fig. 3 Selected assembly graphs of plastome show quadripartite structures with typical IRs, contracted IRs
and large DRs, and no large repeats
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SRR6478596) had two break points in the LSC/SSC region, and one species (Musa bal-

bisiana Colla, SRR2057084) consisted of 14 plastome fragments (Additional file 2:

Table S1; see details at https://github.com/Kinggerm/GetOrganelleComparison version

1.1.1). The GetOrganelle-reassembled complete circular plastomes were identical to the

published ones in 14 samples, and different from published plastomes by fewer than

five site-differences and/or less than 100-bp differences in 30 other samples (Additional

file 2: Table S1, Table S2). Most of the differences were due to repeats or indels. Read

mapping generally supported the GetOrganelle-reassembled plastomes more than the

published plastomes (Fig. 4; Additional file 2: Table S2). For example, the IR boundary

regions of Laurus nobilis L. (SRA: SRR5602602; GBK: KY085912.1), which showed sig-

nificant assembly differences between the published and GetOrganelle-reassembled

plastomes, had a smooth mapping plot for the GetOrganelle plastome but a drastically

fluctuating mapping plot for the published one (Additional file 1: Fig. S1). Those differ-

ences can also be monitored from the summarized mapping quality (Additional file 2:

Table S2), where the GetOrganelle-reassembled plastome had similar matched depth to

the published plastome (221.60 vs 221.65), with a much smaller standard deviation

(31.43 vs 37.88), and a smaller error rate (1.16% vs 1.17%) with a much smaller devi-

ation (1.11% vs 1.56%) (see the “Methods” section for the calculation).

Evaluations of assembling the 50 plant datasets showed that the mean memory, the

mean duration, and the number of circularized genomes all decreased with the word

size ratio (WSR, defined as the Word size over the effective mean read length) adjusted

from 0.6 to 0.8 (Fig. 5). Runs in an “auto” mode using an automatically estimated word

size for read extension generated circular plastomes in 39 samples ranked as the high-

est success ratio among the tested parameter sets, though “auto” mode also had the

most intense computational usage in both mean memory and duration (Fig. 5). Eight

more datasets were assembled into complete circular plastome(s) by adjusting the

Fig. 4 Comparisons of four sets of runs using GetOrganelle and four sets of runs using NOVOPlasty when
assembling 50 public plant datasets. The labels along the bottom denote the program and key settings for
each set of 50 runs. The dots in the upper boxplot show the time cost in seconds for finishing each run.
The dots in the middle boxplot show the maximum memory usage in gigabytes for finishing each run. The
bottom histogram shows the number of circularized genomes for each set
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Word size for extension, and/or adjusting the k-mer values for de novo assembly using

SPAdes, and/or using other empirical options (see details at https://github.com/King-

germ/GetOrganelleComparison version 1.1.1).

GetOrganelle exported all possible configurations mediated by potential flip-flop re-

combination induced by IRs [31] or other shorter repeats. When a complete circular

plastome was obtained, GetOrganelle generally outputted consistent assemblies with

the same raw reads using different parameters. In the 50 plant datasets, there were 33

samples that resulted in complete circular plastomes reassembled from multiple runs

using different parameters of GetOrganelle. Twenty-five out of 33 samples produced

identical assemblies using different parameters. Five out of 33 samples (SRA:

SRR5602586, SRR5602590, SRR5602594, SRR5602605, SRR6932851; we will use the

SRA number to represent the relevant samples thereafter) had assemblies that diverged

where there were 1- or 2-bp indels. For SRR5028199, the plastome of the

GetOrganelle-W0.6 run is longer than the plastome of any other three runs in a 19-bp

repeat (“GAAAAGAAAGAATGAGAAA”). For SRR5602597, the plastome of the

GetOrganelle-W0.8 run is shorter than the plastome of any other three runs in a 36-bp

repeat and a 273-bp indel/repeats. For SRR5602577, the plastome of the GetOrganelle-

W0.8 run is shorter than the customized run in a 6-bp poly-A/T indel.

Reassembling plastomes from 50 published datasets using NOVOPlasty

For reassembling plastomes from the same 50 plant datasets (see Additional file 2:

Table S1) using NOVOPlasty, only 15 samples were “claimed circular” (i.e., eight for k-

mer 23, ten for k-mer 31, eight for k-mer 39, and seven for k-mer 47) (Fig. 4; Additional

file 2: Table S2). Of the “claimed circular” samples, three samples had gaps or ambigu-

ous sites in K23 runs, six samples had gaps or ambiguous sites in K31 runs, five sam-

ples had gaps or ambiguous sites in K39 runs, and five samples had gaps or ambiguous

sites in K47 runs (see details at https://github.com/Kinggerm/GetOrganelleComparison

Fig. 5 Evaluating assembly qualities of GetOrganelle plastomes, NOVOPlasty plastomes, and published
plastomes using read mapping
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version 1.1.1). In addition, some claimed circular samples were not really circularized.

For example, there are two contigs in both the K31 run of SRR5602581 and the K47

run of SRR5602590. Some claimed circularized runs (such as the K23/K31 runs of

SRR2037123, and the K23 run of SRR5602581) were problematic because the lengths

of assemblies deviated strongly from both the published plastomes and the reassembled

plastomes using GetOrganelle. In the case of SRR2037123, NOVOPlasty lost the entire

large single copy region between a pair of direct repeats and produced a plastome that

was “reduced” in size by 60,647 bp (46.7%). Of the remaining 12 samples for which

NOVOPlasty obtained reasonable lengths, the read mapping qualities for NOVOPlasty

assemblies were good though generally not better than those of GetOrganelle, espe-

cially in the error rate (Fig. 4; Additional file 2: Table S2). Only three datasets (SRA:

ERR1917165, ERR964904, and SRR5602589) were assembled by NOVOPlasty into plas-

tomes that were identical to the published ones (Additional file 2: Table S2).

The average duration of NOVOPlasty runs increased as the k-mer values increased

from 23, through 31 and 39, to 47 (marked as K23, K31, K39, K47 runs separately),

while the average memory cost was very close among the four k-mer values (Fig. 5).

The average duration of NOVOPlasty K23 and K31 runs was generally shorter than

that of GetOrganelle runs. The average duration of K39 runs was similar to that of

GetOrganelle-W0.8 runs. The average duration of K47 runs was longer than that of

GetOrganelle runs except for GetOrganelle-auto runs. The average memory cost of the

NOVOPlasty runs was lower than those of GetOrganelle-W0.60 and GetOrganelle-auto

runs, but greater than those of GetOrganelle-W0.7 and GetOrganelle-W0.8.

Additionally, the assemblies of NOVOPlasty are largely inconsistent and varied

greatly when using different k-mer values. In nine samples, NOVOPlasty obtained the

complete circular plastome in multiple runs. However, NOVOPlasty generated consist-

ent assemblies using four k-mer values in only three samples (SRA: ERR1917165,

SRR5602589, and SRR5602602) out of the nine.

Assembling mitogenomes using GetOrganelle and NOVOPlasty

For 56 animal mitogenome datasets, GetOrganelle and NOVOPlasty successfully as-

sembled 29 and 23 complete circularized mitogenomes, respectively, with the overlap

of 19 datasets (Additional file 2: Table S3). Of the 19 datasets, GetOrganelle and

NOVOPlasty generated mitogenomes of similar sizes (≤ 2 bp differences) in 14 samples.

GetOrganelle failed to call any animal mitogenome contigs in four samples, while

NOVOPlasty used the same seed but failed in nine samples.

The average number of genes (number of genes here refers to number of gene hits

based on BLAST search; the same below) is 10.61 for GetOrganelle animal mitogenome

assemblies, and 8.38 for NOVOPlasty assemblies. In 10 samples that GetOrganelle suc-

ceeded and NOVOPlasty failed, NOVOPlasty assemblies called 70 genes in total while

GetOrganelle called 114 genes. In those four samples that NOVOPlasty succeeded but

GetOrganelle failed, GetOrganelle assemblies called 31 genes in total while NOVO-

Plasty assemblies called 45 genes.

For 50 fungal mitogenome datasets, GetOrganelle and NOVOPlasty successfully as-

sembled 24 and 26 complete circularized mitogenomes, respectively, with 21 being as-

sembled by both programs (Additional file 2: Table S4). Concerning the generated
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complete mitogenome size, GetOrganelle and NOVOPlasty generated closely simi-

lar sizes (< 15-bp difference) from 19 of the samples. In SRR5804015 that both

GetOrganelle and NOVOPlasty claimed circularized results, NOVOPlasty lost a

contig of 9606 bp in between a pair of direct repeats and lost seven functional

genes such as nad1 and apt6.

The average number of genes is 17.32 for GetOrganelle fungal mitogenome assem-

blies, and 12.76 for NOVOPlasty assemblies. In three fungal samples (SRR5803930,

SRR5804127, and SRR5804147) that GetOrganelle succeeded and NOVOPlasty failed,

NOVOPlasty generated highly fragmented contigs with unreasonable total lengths and

only 15 genes in total, comparing to 48 genes from three GetOrganelle assemblies. On

the contrary, in those five samples that NOVOPlasty succeeded but GetOrganelle

failed, GetOrganelle generated a nearly complete or comparable result with NOVO-

Plasty, losing only one gene out of the 94 genes detected in five NOVOPlasty

assemblies.

Features of GetOrganelle

To explore the influences of parameters and seed, we assembled reads of an angio-

sperm species, Haberlea rhodopensis Friz. [5M 100-bp paired-end Illumina reads; Gen-

Bank Sequence Reads Archive accession number (SRA): SRR4428742], using the

complete plastome or a short plastomic fragment rbcL gene of a gymnosperm species,

Gnetum parvifolium (Warb.) W.C. Cheng [GenBank accession (GBK): NC_011942.1] as

the seed (Fig. 6, Additional file 1: Fig. S2, Additional file 2: Table S5). The runs for all

tested WSR, except for 0.9, assembled an identical complete plastome, no matter

whether the initial seed was a complete plastome or a short plastomic fragment rbcL

gene, and regardless of whether pre-grouping (an ad hoc speeding-up algorithm, see

more in the “Methods” section) was enabled or not.

The run duration of GetOrganelle varied as the WSR set from 0.30 to 0.90 (Fig. 6).

The duration of the runs with unlimited number of rounds (lines with circle marks in

Fig. 2) increased drastically when the WSRs were 0.65 and 0.70. The duration of the

runs with minimum number of rounds and pre-grouping disabled (gray line with cross

marks) decreased when the WSR ranged from 0.30 to 0.65, while it increased with

WSR ranging from 0.70 to 0.90. The time cost of the runs with the minimum number

of rounds and pre-grouping enabled (green line with cross marks) decreased when the

WSR ranged from 0.30 to 0.55, but it did not increase when using large WSRs. The

maximum memory occupation generally decreased when the WSR was smaller than

0.65 and remained unchanged when the WSR reached 0.65. A too large WSR, such as

0.90 in our test, risked producing an incomplete result.

When testing with unlimited number of rounds, the runs with pre-grouping enabled

(gray line with circle marks) and the runs with pre-grouping disabled (gray line with

cross marks) recruited exactly the same number of the final accepted reads (Fig. 6);

thus, they generated the same final assemblies and similar computational durations and

memory costs. However, when considering the runs with minimum rounds, the pre-

grouping runs generally needed significantly fewer rounds of extension (< 6) to recruit

most of the target-associated reads to achieve a complete plastome or to stabilize an in-

complete result. Extension beyond the first five rounds is mostly to recruit non-target
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reads. By cutting off the latter unnecessary rounds of extension with minimum rounds

(lines with cross marks), the pre-grouping runs (green line with cross marks) can re-

duce both time and memory cost, sometimes significantly.

Fig. 6 Assessing the plastome assembly performance characteristics of GetOrganelle using online reads of
an angiosperm species, Haberlea rhodopensis (SRA: SRR4428742) as the dataset, using the complete
plastome of a gymnosperm species, Gnetum parvifolium (GBK: NC_011942.1) as the seed. The assessment
was conducted across a range of Word sizes (in the form of WSR, after the flag “-w” along the x axis). The
green marks denote using the pre-grouping value 200,000 (after the flag “-P”), while the gray marks denote
that the pre-grouping was disabled. The cross marks denote using the minimum number of rounds of
extension iterations for achieving a complete plastome or stabilizing the incomplete plastome result, while
the solid circle marks denote using unlimited number of rounds (“-R 1000” in practice). From top to bottom,
for assembling raw reads into the same complete plastome (or the same incomplete result in all runs of
“-w 0.90”), the five subgraphs present the total computational time cost in seconds, the maximum memory
cost in gigabytes, the actual number of rounds GetOrganelle took, the number of target plastid reads
GetOrganelle recruited, and the number of non-target reads GetOrganelle recruited, respectively
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Discussion

Accuracy of the published/reassembled plastomes

GetOrganelle-reassembled plastomes contained identical sequences to the published plas-

tomes in 14 of 50 plant samples, including a lycopod species, Selaginella kraussiana (Kunze)

A. Braun (SRR2037123) that was reported to have large DRs [32]. Read mapping plots of

GetOrganelle-reassembled complete or near complete plastomes are generally smooth. In

contrast, the NOVOPlasty-reassembled plastomes (e.g., ERR964904, SRR2037123,

SRR5602581, as mentioned above) had unreasonably shorter lengths, but were claimed to

be circularized. In addition, read mapping plots (see https://github.com/Kinggerm/GetOrga-

nelleComparison/tree/master/eval/Published version 1.1.1) showed that some published

plastomes (e.g., SRR1145775, SRR2057084, SRR5602601, SRR5602602, SRR6478596,

SRR7630500) have incorrect IR boundaries or contig overlaps as revealed by the local cover-

ages dramatically increasing or decreasing in the regions or sites.

Our evaluation using read mapping (Additional file 2: Table S2) showed that 37 of 50

assemblies generated by GetOrganelle had the best-ranked matched depths (smaller

average and smaller deviation). For three samples (SRR2057084, SRR6478596,

ERR2206741), GetOrganelle failed to generate a circular plastome. For SRR2037123,

NOVOPlasty had the best-ranked matched depths but produced a problematic assem-

bly. Of the remaining ten samples that GetOrganelle did not have the best-ranked

matched depths, all the GetOrganelle-reassembled plastomes have the best-ranked

error rate (smaller average and smaller deviation) and the best-ranked or nearly-best-

ranked number of mapped reads.

Our evaluation using read mapping (Additional file 2: Table S2) showed that 45 as-

semblies using GetOrganelle had the best-ranked error rate; the remaining five assem-

blies, of which three assemblies were not circular, had values very close to the best-

ranked ones. However, many published plastomes (e.g., SRR5602575-SRR5602578,

SRR5602581-SRR5602584, SRR5602587, SRR5602588, SRR5602592, SRR5602593,

SRR5602595, SRR5602597, SRR5602598, SRR5602599, SRR5602600, SRR5602609,

SRR5602610, SRR6932851, SRR7630500) have nucleotide sites that are incongruent

with the consensus of most mapping reads, as revealed by extremely high mismatch/

indel rates at some sites, identifiable as extremely outlier points in the mapping plot.

Our results also showed that GetOrganelle had outstanding consistency, indicating that

exact parameter settings are not required to obtain an accurate assembly. Of the 33 sam-

ples reassembled to complete circular plastome by multiple runs, there are 30 samples

that had identical or nearly identical (≤ 2 bp difference) results using different parameter

values. There are three main reasons for the discrepancies in the remaining few samples.

First, a large Word size recruits significantly fewer reads (e.g., -w 0.8 in SRR5602597) or

may even cause an incomplete result (e.g., -w 0.8 in SRR5028199, SRR5602590, and

SRR5602594, and -w 0.9 in the performance test). Second, there were small repeats that

could not be precisely identified by low local coverage, which might be the reason for in-

consistency in SRR5028199. Third, there were polymorphisms in the data causing an in-

complete result, such as in SRR5602577 recovered by the auto mode.

Our results also suggest that using read mapping quality is an easy and important ap-

proach of evaluating organelle genome assemblies. We tested 50 plant datasets here,

not only to show that GetOrganelle has higher accuracy for assemblies than other
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currently available assembly toolkits, but also to argue for the necessity for all plastome

providers to make raw data available to the public (e.g., SRA); this will allow assemblies

to be reproduced, evaluated, and amended to benefit future comparative analyses of or-

ganelle genomes [33].

Large inverted, direct repeats and “weird” plastome assembly

The entanglement of repeats is one of the challenges in assembling plastomes, though

none of the reported plastome assemblers has addressed this challenge. The largest re-

peat in a canonical plastome is a pair of generally identical inverted sequences that usu-

ally contain the ribosomal DNA genes, and is known simply as the inverted repeat (IR).

Given that flip-flop recombination mediated by the IRs is common [31, 34], a genuine

de novo assembler such as GetOrganelle should export at least two configurations

when IRs exist. Even if we assume that there was only one configuration in vivo, short

sequencing reads theoretically cannot tell the difference between those two configura-

tions when IRs exist. However, for example, NOVOPlasty produces, when successful,

only one representative of the plastome structure, which risks misleading less experi-

enced researchers to treat SSC orientations as an important inversion [34].

A key issue concerning IR recovery in plastid genome assembly is the identification

of the IR boundaries. A traditional assembly method, which uses CLC or another as-

sembler to make sequence contigs and complete the circular assembly based on a refer-

ence, is prone to create a plastome with a similar IR length/boundary as the reference.

In that case, PCR verification was required for the four boundaries of a canonical

quadripartite plastome in conventional assemblies. The concept of the necessity of PCR

verification still overshadows many empirical studies in the NGS age. However, our

graph-based method for completing the circular plastome uses the original contig con-

nections that are supported by actual read overlaps. When sufficient read coverages

(e.g., 100×) support the contig connections between the boundaries, there would be

neither need for PCR verification or read mapping for IR boundary identification. Based

on the nature of the overlap of short reads, the credibility of the IR boundaries is actu-

ally the same as that of other parts of the plastome. For a genuine organelle genome de

novo assembler, the IR boundaries can be constructed purely from read information ra-

ther than any references, the same as any other region of the genome. As evidence,

GetOrganelle correctly recovered the extreme contraction or loss of a large pair of IRs

in Juniperus cedrus Webb & Berthel. (SRR1145775) and two Picea species (ERR268390,

SRR5028199). Another interesting example is that GetOrganelle successfully assembled

the plastome of Selaginella kraussiana (SRR2037123) with two large DRs, without be-

ing supplied prior knowledge of the IRs or DRs. However, for the same sample,

NOVOPlasty only achieved part of the complete plastome, lost one copy of the large

DRs and one large single copy region, and claimed it to be circular (another similar in-

accurate NOVOPlasty result was the mitogenome assembly of SRR5804015). Our reas-

sembled plastome is identical to the published one (MH549643.1), which was

assembled using Velvet and SPAdes, and then verified using PCR [32]. For an IR lack-

ing species, such as a species in the IR-lacking clade of Fabaceae, GetOrganelle could

correctly generate a plastome without IRs, with a single circle assembly graph as visual-

ized by Bandage (e.g., R. Zhang et al., unpublished data).
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It is a challenge to assemble some “weird” plastomes (e.g., reduced plastomes, plas-

tomes with gene translocations, IR expansions, contractions, or losses) using some trad-

itional methodologies [20]. For example, non-photosynthetic plants typically have

reduced plastomes, pseudogenes, inversions, and gene translocations [20, 35, 36]. We

successfully assembled a complete and yet highly reduced plastome without IRs for the

holoparasite Cytinus hypocistis (L.) L. (ERR964904) using a customized strategy, exclud-

ing contigs with an obvious false hit. We also were able to assemble circular plastomes

for many holoparasites from Balanophoraceae, Convolvulaceae (e.g., Cuscuta spp.),

Lennoaceae, and Orobanchaceae, as well as hundreds of hemiparasites using GetOrga-

nelle (W.-B. Yu et al., unpublished data). Another type of “weird” plastomes are those

carrying insertions of mitochondrial DNA, such as carrot [37], milkweed [38], and

bamboo plastomes [39]. For such plastomes, we also assembled accurate plastomes

with the mitochondrial insertions (additional tests via https://github.com/Kinggerm/

GetOrganelleComparison version 1.1.1; based on 20M reads of SRR2147183 and 30M

reads of SRR4243000) using GetOrganelle without any prior hints of that insertion. In

the “embplant_pt” mode, GetOrganelle keeps both chloroplast contigs and mitochon-

drial contigs in the post-slimmed assembly graph, so that chloroplast and mitochon-

drial contigs can be more accurately and reasonably distinguished based on not only

blast hit, but also contig coverage and contig connections. If there is strong coverage or

graph character evidence for a mitochondrial insertion to be an indispensable part of

the plastome, GetOrganelle will keep that insertion.

Mitogenome assembly of fungi and animals

Despite similar mitogenome circularizing ratio, using the same seed, GetOrganelle was

generally better over NOVOPlasty in obtaining mitogenome contigs and genes, even in

samples with a relatively low mitogenome coverage (Additional file 2: Table S3, S4). Be-

sides, in the fungal mitogenome assembly of SRR5804015, NOVOPlasty lost a contig of

9606 bp with seven functional genes in between a pair of direct repeats, in addition to

the large-scale loss in the Selaginella kraussiana (SRR2037123) plastome assembly. The

early termination of sequence extension might be an issue underlying the algorithm of

NOVOPlasty.

The mitogenomes of fungi and animals usually have a much higher nucleotide substi-

tution rate than plastomes [40, 41]. Therefore, unlike assembling plastomes, a relatively

closely related seed or label database would be indispensable for assembling and identi-

fying mitogenomes using the extension and assembly strategy of GetOrganelle. If

GetOrganelle fails using the default database for animals or fungi mitogenome assem-

bly, we suggested that users rerun the same sample using their own seed and label

databases.

Although GetOrganelle has demonstrated success at separating different organelle

components (e.g., separating plastome and mitogenome components in complex as-

sembly graphs in samples such as SRR5602593 and ERR1917165) and repeat resolution,

this ability of GetOrganelle largely relies on an accurate assembly graph output by

SPAdes. The only run in these tests that violated this prerequisite was the fungal mito-

genome assembly of SRR5802125, which generated abnormal connections that in turn

distorted the multiplicity estimations of contigs. Although the assemblies using both
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tools obtained the same gene hits, the contig multiplicities estimated by GetOrganelle

are obviously disproportionate to the contig coverages. This issue could be solved by

incorporating different assembly engines and reporting the disproportionality of contig

multiplicities over the contig coverages to warn users, a feature planned for a future

version of GetOrganelle.

Other small repeats, broken graph, and manual completion

When attempting to solve the organelle genome structure, other small repeats can

cause awkward tangles in the assembly graph. Plastomes of some plant clades have

been reported to have multiple short repeats, such as some clades in Ericaceae [42, 43],

Geraniaceae [44], and Pinaceae [26, 45]. Most plant mitogenomes contain a high num-

ber of short repeats [46–48]. In contrast, mitogenomes in animals and most fungi are

contracted and generally lack repeats [49]. However, in our trial analyses, we did dis-

cover a few samples of fungi (e.g., SRR5801935, Macrolepiota dolichaula (Berk. &

Broome) Pegler & R.W. Rayner, SRR5802125, Collybia sp., and SRR5804018 Grifola

frondosa (Dicks.) Gray) and animals (e.g., SRR136494, Mayetiola destructor Say,

SRR4340274, Daphnia magna Straus, SRR1298377, Halyomorpha halys Stål) that have

multiple repeats, which may result in isomeric assemblies. Organelle genomes with

many short or long sequence repeats, such as the plastomes of Chlamydomonas and

some Ericaceae and Geraniaceae species, may be intractable for short-read sequencing

data. With such genomes, GetOrganelle may generate tens of thousands of circular se-

quences or highly fragmented contigs; long read data such as PacBio HiFi data may

provide a solution for improved automated assembly in these difficult cases.

One common feature of organelle genomes is tandem repeats, which can be visual-

ized as whirls in the assembly graph. The main challenge with disentangling tandem re-

peats in an assembly graph is determining the multiplicity (copy number) of the

contigs. Many bacterial genome assemblers use the minimum or the greedy algorithm

for detecting multiplicity, which is simply assuming every tandem repeat contig has

multiplicity two and constructing the assembly as a path that traverses the repeat twice

[50–52]. GetOrganelle disentangles the tandem repeats based on both the connection

information and the contig coverage, a more reality-based approach, which has a better

chance of success if the target organelle genome has some tandem repeats of more than

two copies and the reads are of sufficiently high coverage to overcome the error (Fig. 2).

Other repeats, such as short inverted repeats other than the large IRs, cause not only

assembly graph tangles, but could also mediate recombination, potentially producing

isomers in the same individual [25–27, 53]. For researchers studying plastome re-

arrangement and recombination dynamics, GetOrganelle is the right tool to exhaust

the limits of the assembly graph and presents all possible configurations, such as plas-

tomes of Juniperus cedrus (SRA: SRR1145775) and Picea species (ERR268390,

SRR5028199) and mitogenomes of some fungal (SRR5801935, SRR5804018) and animal

species (SRR4340274, SRR136494). Currently, the potential configurations mediated by

short repeats need to be confirmed by read pair mapping or PCR verification. With the

development of long insert size libraries and long-read sequencing platforms (e.g., Pac-

Bio), these data can be added for improving repeat resolution and configuration con-

firmation. A function that incorporates long library reads or long-read sequencing data
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in estimating the proportion of all candidate isomers is planned for future versions of

GetOrganelle.

Some assembly graphs may not be organelle-sufficient (broken graph) or are too

complicated to estimate multiplicity. In such cases, users are recommended to perform

manual completion or manual multiplicity estimation with the simplified assembly

graph using Bandage, along with the target-hit-contig table from the concomitant, cog-

nominal TAB-formatted file. An advantage of manual completion is that it is possible

to detect sequence interchange between the nuclear genome, mitogenome, and plas-

tome. This is especially the case when multiple organelle genome mode is selected for

plant datasets. The result could be a tangly assembly graph mixed with plastome, mito-

genome, and plastome-mitogenome-shared contigs. If de novo assembly and manual

completion cannot yield a complete sequence of the plastome, gap filling and PCR veri-

fication are needed [20, 42].

Seed and label database in GetOrganelle

GetOrganelle does not rely on having a closely related plastome for successful assem-

bly; in fact, it is possible to accurately assemble the plastome from short reads of an

angiosperm species, Haberlea rhodopensis, with high and homogeneously distributed

plastid coverage, using the plastome of a gymnosperm species, Gnetum parvifolium, as

the initial seed. For the same set of reads, using a short, conserved DNA fragment

(rbcL) as the seed is sufficient to recruit almost all target-associated reads to assemble a

complete plastome, but less efficient. The reason for this is that the seed is only used

for read mapping to collect the initial target-associated reads, after which the seed will

no longer be used (Fig. 1). GetOrganelle then uses the initial target-associated reads to

recruit more target-associated reads using multiple rounds of extension, which is

mainly based on the nature of the read overlaps with the previously recruited target-

associated reads, rather than using the seed as a reference in assembly process. Never-

theless, using the organelle genome of a non-related species as the seed can only be ap-

plied to plastome seed recruitment, but not to animal and fungal mitogenome seed

recruitment due to their high divergences owing to rapid rates of sequence evolution

(see the section “Mitogenome assembly of fungi and animals”).

Since the label database (see Fig. 1) in GetOrganelle is used to provide a supervision

signal for labeling contigs prior to semi-supervised learning, the label database should

come from conserved regions, such as coding regions, but not necessarily a complete

set of genes. After labeling, GetOrganelle uses an integrated strategy (see the “Methods”

section) to identify target contigs, which largely relies on the contig coverages and as-

sembly graph characteristics. Thus, the label database of gene fragments has limited in-

fluence on the final organelle-complete graph output and would have only a minor

effect on the scaffolding of organelle contigs, except for cases where the assemblies

have no hits against the database.

Word size in GetOrganelle

Word size, like the k-mer in De Bruijn graph-based assembly, is important to the feasi-

bility and efficiency of read extension, but it differs from k-mer in providing the overlap

threshold for data filtering. The smaller the Word size is, the lower the threshold is.
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The use of Word size not only does examine the nature of connection between any

two target reads, but also in a way assesses the connection strength by the coverage.

Even if the plastome shares similar sequence with mitogenome or nuclear genome, the

reads of those non-target genomes would not be largely recruited due to the low cover-

age, meaning that any two reads of those non-target reads are less likely to be con-

nected in the shallow coverage WGS data.

The Word size is generally negatively correlated with memory usage (Fig. 6), while k-

mer is generally positively correlated with memory usage. Memory cost decreases when

the Word size increases because the larger the overlap threshold (causing fewer reads

to be connected and recruited based on the overlap), the smaller the word space during

extension. Thus, k-mer only influences the assembly process, while the Word size influ-

ences the extension process, the numbers of reads to be recruited, and the assembly

process. For many real datasets, because the plastome might share homologous regions

with non-target genomes [37–39], a small Word size means that a relaxed threshold

would not promptly stop the extension when the extension was walking through the

non-target genomes. In the case shown in Fig. 6, using a WSR < 0.65 wastes computa-

tional resources.

The duration of a whole assembly run is affected by the Word size in various ways

(Fig. 6). Generally, with unlimited number of rounds, there are two significant but an-

tagonistic effects shaping the curve of the duration against the Word size (or in the

form of WSR). The first one is the “slowing-speed effect”, meaning that a larger Word

size means smaller steps in extension and consumes more rounds and more time to re-

cruit the same set of reads. The second one is the “reducing-data effect,” meaning that

a larger Word size also results in a briefer extension period with fewer non-target

reads, reducing the run time in de novo assembly and other downstream calculation. In

the performance test (Fig. 6), a typical manifestation of both effects was where the time

cost remarkably increased at WSRs in 0.65 and 0.70, which was caused by the relatively

slow speed in extension and a relatively high amount of non-target reads to recruit. In

this test, using the minimum number of rounds could cut off most non-target reads

and eliminate the “reducing-data effect” in a slow-paced extension (a relatively large

WSR, i.e., ≥ 0.65 in the pre-grouping disabled case and ≥ 0.55 in the pre-grouping en-

abled case), but cut off less non-target reads as the WSR become smaller (Fig. 6).

Therefore, when pre-grouping was disabled and the minimum rounds were run, the

plot of duration against WSR was not a monotonic rising curve (“slowing-speed effect”)

but suffered the “reducing-data effect” when the WSR < 0.65 (Fig. 6). Using the pre-

grouping algorithm could generally eliminate the “slowing-speed effect”. Consequently,

in this test, the time cost is nearly constant when the WSR ≥ 0.55, but still suffers the

“reducing-data effect” when the WSR < 0.55 (Fig. 6). In empirical studies, the minimum

number of rounds required is unknown. Using the pre-grouping algorithm with a suffi-

cient value (i.e., empirically 2E5 for normal plastome percent), five rounds of extension

typically recruited target reads covering the whole plastome (although 15 rounds were

required in a very few cases with extremely low plastome coverage (data not shown)).

The optimal Word size is dictated by read length, read quality, total number of reads,

percentage of organelle DNA content, heterogeneity of organelle base coverage, and

other factors. If there is no user-assigned Word size value, “get_organelle_from_read-

s.py” will automatically estimate an optimal Word size value using a set of customized
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empirical functions based on the characteristics of the dataset. The automatically

estimated Word size tends to be small to enhance the success rate, but possibly at

the cost of increasing the computational burden (Fig. 5). Importantly, though, the

automatically estimated Word size does not guarantee the best performance in as-

sembly results (see eight plastome samples with customized parameters in our

tests) nor in computational costs.

k-mer in GetOrganelle

GetOrganelle uses SPAdes as the core de novo assembler, which allows the user to use

a k-mer gradient for assembly. One advantage of this is that SPAdes combines the as-

semblies from multiple k-mers. In our tested 50 plant datasets, the most successful as-

semblies were the results of the largest k-mers that the data permitted, which is 127 for

read length ≥ 150 bp or 91 for read length up to 100 bp. Someone might draw a spe-

cious conclusion that the base coverage is usually high enough to use the largest k-mer

for assembling the complete plastome or mitogenome from WGS data. However, ex-

cept for those with low base coverage for the plastome (e.g., SRR5602610, ca. 14×),

plastome assembly still suffered from the base coverage heterogeneity or read error,

which create regions where large k-mers do not overlap. For example, if only one large

k-mer value was used for each run (i.e., 91 for read length ca. 100 bp and 127 for read

length ≥ 150 bp), some samples (tests not shown) would not assemble a complete circu-

lar plastome, while by using a k-mer gradient, those samples achieved a complete plas-

tome at the same large k-mer.

Another advantage of using a k-mer gradient is that GetOrganelle could iteratively at-

tempt to disentangle the assembly graph of each k-mer from the largest to the smallest,

then find a larger one with the organelle-sufficient graph. A larger k-mer value is pref-

erable when there are longer repeats and coverage is sufficiently high. However, when

the largest k-mer used in the analysis does not obtain the complete circular plastome/

mitogenome, the assembly graph of a smaller k-mer is checked automatically. The

“GetOrganelle-auto” runs of SRR5602587 and SRR5028199 benefitted from this design.

Computational consumption of GetOrganelle

Freudenthal et al. [24] showed that GetOrganelle has moderate efficiency in both time

and memory usage among tested assemblers. However, they only used the default op-

tions for evaluation, which are designed to have high chloroplast genome completion

rate, rather than high computational efficiency. If the aim of studies is not to assemble

complete organelle genomes, researchers could easily adjust the options, such as in-

creasing the Word size or turning on “--fast” to significantly speed up assembly and re-

duce memory usage, and still keep both the success rate and assembly quality at a

higher level than those of other assemblers (additional tests via https://github.com/

Kinggerm/GetOrganelleComparison version 1.1.1). However, we do not recommend

these options. Firstly, in the current version of GetOrganelle, the complete circular as-

semblies are better than incomplete results, justifying a reasonable tradeoff of assembly

accuracy against computation speed. Secondly, extremely high Word size may generate

higher error rate in assemblies with two cases in the 50 plant datasets (i.e.,

GetOrganelle-W0.8 runs of SRR5602577 and SRR5602597).
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Conclusions

GetOrganelle is a fast and versatile toolkit for de novo assembly of complete and accurate

organelle genomes using low coverage WGS data. Our evaluations show that the GetOr-

ganelle toolkit can efficiently and accurately assemble different types of organelle genomes

from a broad range of organisms. In general, compared with NOVOPlasty, GetOrganelle

has far better success rates for assembling plastomes while consuming similar or even less

computational resources. Additionally, GetOrganelle-reassembled plastomes generally

have much higher accuracy than those reassembled by NOVOPlasty or published ones

that were assembled by various tools in accordance with the read mapping evaluation.

GetOrganelle can also generate all possible configurations when plastomes or mitogen-

omes have flip-flop configurations or other isomers mediated by repeats.

Potential applications of GetOrganelle include quickly extracting organelle genomes

from whole genome assemblies and evaluating organelle genome quality. Assembling

organelle genomes from metagenomic data would also be possible by using a custom-

ized database and scheme. The maximum extending length option enables rough con-

trol of the length of the target assembly, which could be used to quickly assemble

interesting loci or genes from the metagenomic and transcriptomic data. Additionally,

the Python Classes and Functions defined in GetOrganelleLib could be used to ma-

nipulate and disentangle non-organelle assembly graphs.

Currently, GetOrganelle exports all possible configurations without using library in-

formation of the paired-end reads. However, the long insert size library or long-read se-

quencing data can be used for repeat resolution and configuration verification. A

function that could use this information and estimate the proportion of all the potential

isomers (configurations) is expected in a future version of GetOrganelle. Improvements

in the seed databases and the label databases are also expected, which should result in

better parameter estimation and higher success rates in assembling mitogenomes.

Methods

Workflow of organelle genome assembly using GetOrganelle

GetOrganelle v1.6.2 consists of two major scripts (“get_organelle_from_reads.py” and

“get_organelle_from_assembly.py”) and 17 minor scripts (under the directory “Utilities”;

for processing or evaluating organelle assemblies) (Fig. 1), a series of libraries (under

the directory “GetOrganelleLib”; including default seed database, default label database,

and Python Classes/Functions), and dependencies (under the directory “GetOrganelle-

Dep”; including Bowtie2, SPAdes, BLAST+). The major script “get_organelle_from_

reads.py” could pipe all 5 steps described below (also see green solid arrows in Fig. 1)

together using a single line command to assemble organelle genome(s) from raw reads.

The major script “get_organelle_from_assembly.py” could extract organelle genome(s)

from assembly graphs generated using SPAdes [15] or Velvet [54] (steps 4–5; also see

blue solid arrows in Fig. 1).

Step 1. Mapping reads to seed and assembling seed-mapped reads for parameter

estimation

The initial step of assembling target organelle genome(s) from reads via GetOrganelle

(“get_organelle_from_reads.py”) uses Bowtie2 to map reads to seed sequence(s) (i.e.,

Jin et al. Genome Biology          (2020) 21:241 Page 18 of 31



the default seed database), which may include complete reference organelle genome(s)

or organelle fragment(s) (Fig. 1, green solid arrow 1). Currently, the default seed of

GetOrganelle (under the directory “GetOrganelleLib/SeedDatabase”) covers embryo-

phyte plastomes, non-embryophyte plastomes, embryophyte mitogenomes, embryo-

phyte nuclear ribosomal DNA, animal mitogenomes, and fungal mitogenomes (in the

option referred as “embplant_pt,” “other_pt,” “embplant_mt,” “embplant_nr,” “animal_

mt,” “fungus_mt,” respectively). These mapped reads are here called seed-mapped reads

(stored at *.initial.fq).

The seed-mapped reads will be treated as initial “baits” to recruit more target-

associated reads in the next step. In the “auto” mode (see the last paragraph of step 2

below), the seed-mapped reads will be also coarsely assembled into seed contigs, which

will be used for parameter estimation in step 2.

Step 2. Recruiting more target-associated reads through extending iterations

After creating “baits,” GetOrganelle (“get_organelle_from_reads.py”) recruits new

target-associated reads by comparing candidate reads to “baits” and updating the “baits”

with overlapped new reads (Fig. 1, green solid arrow 2). In this extension process, the

key comparison method for determining overlaps is classic substring hashing. Sub-

string(s) are referred as Word(s) here to distinguish them from k-mers, a similar con-

cept in the assembly process. The uniform length of the Words is thus named as Word

size.

Before the core extension iterations, “get_organelle_from_reads.py” creates an index

and assigns unique ids for each set of duplicated reads to avoid repeatedly calculating

(information stored at file “temp.indices.1”). Those reads with duplicates can also be

used for downstream “pre-grouping”. Pre-grouping is an algorithm for speeding up

target-read recruitment. This algorithm is based on the idea that it would be more effi-

cient to firstly compare reads that are more likely to be target-associated. Given that

the organelle genomes usually have more copies, and hence higher base coverage than

most non-organelle chromosomes, the duplicated reads are more likely to be organelle-

associated than non-duplicated reads. The “get_organelle_from_reads.py” script will

group a certain number of duplicated reads (after option “-P”) into groups based on

read overlap using the same substring hashing method mentioned above. Any groups,

including those with only a single read, will have a hash table storing Words chopped

from all reads of this group. Any two groups sharing at least a single Word in their

hash table will be merged. After pre-grouping, a group resembles a set of connected

pseudo-contigs (information stored at file “temp.indices.2”). During the following ex-

tension iterations, once a read is accepted as a target-associated read, all other reads

(ids) in the same group will be marked as acceptable.

The “get_organelle_from_reads.py” script begins the core extension iterations with

constructing a hash table, by cutting the initial reads (“baits”) into Words and adding

those initial Words to the hash table (AW). If a Word of a candidate read hits the AW,

all Words of this read are also added to AW, and the index of this read will be marked

as accepted (Accepted Index, AI). As mentioned above, all other read ids in the same

group will be treated as accepted. During each iteration (round), “get_organelle_from_

reads.py” goes through all candidate reads one by one to check whether a read is
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acceptable. After a user-specified number of rounds or when no new read has been ac-

cepted in a complete round, “get_organelle_from_reads.py” will stop the extension

process and output all accepted reads (stored at file “filtered_*.fq”). For low memory

machines or testing purposes, accepted reads per round can be outputted separately

after each round (followed with flag “--out-per-round”) along with AW emptied after

each round.

Word size (followed with flag “-w”), like k-mer length in assembly, is crucial to the

feasibility and efficiency of this process. The best Word size for extension is affected by

read length, read quality, total number of reads, percentage of organelle genome reads,

heterogeneity of organelle base coverage, and other factors. In the “auto” mode when

there is no user-assigned Word size value, “get_organelle_from_reads.py” will automat-

ically estimate a proper Word size with a set of empirically customized functions, based

on the data characteristics.

Step 3. Conducting de novo assembly

The recruited target-associated reads will be then automatically assembled using

SPAdes (Fig. 1, green solid arrow 3). Both paired and unpaired reads will be used. The

outputs of each k-mer of SPAdes include an assembly graph (FASTG format), which re-

cords the connections of contigs as a graph with some allelic polymorphism and assem-

bly uncertainty. Other assemblers that are able to generate the assembly graph, such as

Velvet, may be used for completing this step, but are not yet implemented in GetOrga-

nelle. The intermediate results are stored in the subfolder “filtered_spades”.

Step 4. Roughly filtering for target-like contigs

Because sequences are often shared among plastomes, mitogenomes, and nuclear ge-

nomes, the accepted reads from step 2 sometimes unavoidably include non-target

reads. As a consequence, the output assembly graph might also include non-target con-

tigs. However, previously reported tools did not account for or adequately addressed

this concern.

GetOrganelle searches for the target-like contigs from the original assembly graph file

by jointly using the contig label table, contig connections, and contig coverages (Fig. 1,

green solid arrow 4 and blue solid arrow 1). To create the contig label table, GetOrga-

nelle takes the contigs in the assembly graph as the queries, conducts the BLAST

search against a local label database (see next paragraph), generates the BLAST hit

table, and converts the generated BLAST hit table into the contig label table, which re-

cords the gene identities and organelle types of those BLAST matches. By conserva-

tively deleting non-target contigs, GetOrganelle outputs a simplified assembly graph

file, along with a concomitant cognominal TAB-formatted file recording the contig

label table (with the extension “.csv” to be in conformity with Bandage). This step is

completed automatically by the two major scripts or can be independently executed

using the script “slim_fastg.py”.

For GetOrganelle, the default label database of a certain organelle is made from the

coding regions of that organelle genome. We created six default label databases that

correspond to the six types of organelle genome in the seed databases. A contig that hit

the target organelle database will be labeled with gene identity in the “.csv” file and
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called target-hit-contig here. Any contig that is directly or indirectly connecting to that

target-hit-contig is called a target-associated-contig. Here, we define a group of inter-

connected contigs as a connected component of the assembly graph. GetOrganelle by

default retains all connected components with target-hit-contig(s). Additionally, in the

embplant_pt or embplant_mt mode, GetOrganelle by default retains both plastome and

mitogenome connected components for downstream clustering contigs by coverage.

Generally, this roughly filtering step is designed to be conserved and avoiding removing

true target contigs.

Step 5. Identifying target contigs and exporting all configurations

GetOrganelle then uses the simplified assembly graph file and the contig label table to

(5a) further accurately identify (narrow down to) target organelle contigs, (5b) estimate

multiplicities (copy number) of contigs in an organelle-only graph, and (5c) export all

possible distinctive path(s) [stored as FASTA file(s)] from the organelle assembly graph

(stored as a cognominal GFA format file) (Fig. 1, green solid arrow 5 and blue solid

arrow 2). Each path represents a possible configuration of the target organelle genome.

This step is fulfilled by the two major scripts or can be separately executed using the

script “disentangle_organelle_assembly.py”. In case of organelle genome with a large

number of repeats, GetOrganelle sets up an option for limiting the calculation time of

disentangling to avoid generating inexhaustible combinations. When the major scripts

failed to export circular sequence(s) from the assembly graph for the reasons enumer-

ated below in step 5′ or because of the time limit, they will execute a second run to ex-

port the contigs, which would be mainly the target-hit-contigs.

Three concepts need to be clarified:

1. An “organelle-sufficient graph” is an assembly graph with contigs completely

covers one complete organelle genome.

2. An “organelle-only graph” is an assembly graph only with true contigs of one

organelle genome.

3. An “organelle-equivalent graph” is both an organelle-sufficient graph and an

organelle-only graph.

GetOrganelle requires three assumptions to disentangle the assembly and declare the

result as a complete circular organelle:

Assumption 1: All configurations, if there are more than two, of the target organelle

genome are compositionally identical. This assumption limits the multiplicities of

contigs to be the same among different configurations. In other words, polymers are

found in real plastid DNA molecules [55], whereas GetOrganelle can only export the

monomer form; potential sub-genomic configurations are currently not implemented

in the current version. If there are parallel contigs caused by nucleotide polymorphism,

all subgraphs composed of any of those polymorphisms will be disentangled independ-

ently. Therefore, all configurations of each subgraph will be compositionally identical.

Assumption 2: The topology of each organelle genome will be represented as a single

circular molecule. This assumption holds when the real organelle genome is a circular
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molecule or organized in polymers (most plastomes, and type I and type II

mitogenomes) and the assembly graph is an organelle-sufficient graph. If this assump-

tion is violated, GetOrganelle only exports the target contigs.

Assumption 3: The coverage values of contigs of the same organelle genome are

generally proportional to their multiplicities (copy numbers). Therefore, coverage

values of contigs with the same multiplicity of the same organelle genome generally

are consistent.

5a. Further identifying target organelle contigs Using the BLAST hit information

alone to identify target organelle contigs is risky. Some contigs, including mitochondrial

contigs that have short sequence of plastome origin or target-like shallow-depth con-

taminant contigs, would be labeled incorrectly as target-hit-contigs (false positive). On

the other hand, some sequences might be true target contigs but are too short or diver-

gent from sequences in the label database to be labeled as target-hit-contigs (false nega-

tive). Therefore, we used additional information to improve the identification of target

contigs, such as the assembly graph characters (Assumptions 1 and 2) and contig

coverage values (Assumption 3). GetOrganelle uses an integrated strategy that itera-

tively uses all or part of the following modules to approach this task until no more

changes are going to be made to the assembly graph.

1) Using the BLAST hit information to roughly cluster contigs with target labels.

Specifically, GetOrganelle first calculates a customized hit weight value (HW) for

each BLAST hit record (gene identity label restored from the contig label table).

For records representing the same gene in the local BLAST database, only the

record with the best HW is kept as the only valid hitting record for that gene. The

HW of a hit record is simply defined as the product of the hitting length of the

query (HL) and query contig coverage (QC) (HW = HL * QC). Given our

experience that the false positive hits generally correspond to shorter length and

shallower depth contigs, HW can be a criterion for excluding the false positive hit

records. Each gene in the BLAST database is thus aligned to no more than one

contig in the assembly graph. Then, GetOrganelle calculates a customized contig

weight value (CW) of a target organelle genome for each contig as CWtarget = ∑

HWtarget. For example, the plastid CW for a contig is defined as the sum of the

HWs of all plastid gene hit records of that contig, while the mitochondrial CW for

the same contig is defined as the sum of the HWs of all mitochondrial gene hit

records of the same contig. For a contig, if the target CW is much larger (default

factor: 3 times) than the non-target organelle CW, this contig would be labeled as

a target-anchor contig (very likely to be a true target contig), and vice versa. Using

the HW and CW, GetOrganelle roughly eliminates most non-target contigs with

false positive BLAST hits.

2) Adding more target labels to some target contigs that do not hit the label database

according to assembly graph characters. Based on Assumption 2, any configuration

of the target organelle genome is a single circular molecule. As a result, in an

organelle-sufficient graph, both ends of any true target contig should be connected

to at least one true target contig. If the tail end of a true target contig, Contig A
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(marked as Atail) has only one edge that connects Atail and the head end of another

unknown contig, Contig B (Bhead), then Contig B should be a true target contig.

However, in a real assembly graph with missing contigs (incomplete organelle gen-

ome), Contig B may be missing and the unknown contig connected to Atail may be

a non-target contig. In consideration of complicated situations like this, only when

Contig B is between two target-anchor contigs (Contig A and Contig C) with the

sequence (Atail-Bhead-Btail-Chead), and when Atail only connects to Bhead and Chead

only connects to Btail, GetOrganelle labels Contig B as a target-anchor contig with

CW= 0.

3) Using coverage values of contigs to remove contigs with coverage value that

significantly deviates from the target-anchor contigs. Based on Assumption 3,

GetOrganelle uses the Gaussian mixture distribution to approximate the coverage

values of all contigs in the simplified assembly graph, which is a mixture of differ-

ent organelle contigs and nuclear contigs. In most cases of empirical plant genome

skimming data, the plastome has significantly higher coverage than the mitogen-

ome, the coverage of which in turn is higher than the nuclear genome except for

highly repeated regions. Therefore, in a plant WGS dataset, the coverage values of

plastid and mitochondrial and nuclear contigs are expected to be classified into dif-

ferent Gaussian components of the Gaussian mixture distribution. GetOrganelle

could thus delete the contigs with coverage value far from the target coverage dis-

tribution. Specifically, GetOrganelle applies an EM (Expectation-Maximization) al-

gorithm with the semi-supervised learning and the weighted Gaussian mixture

model to cluster the coverage values of all candidate contigs. Here, the semi-

supervised learning means that the coverage values of the target-anchor contigs

(the labeled data) are not updated during EM iterations. The coverage value of a

contig in the Gaussian mixture model is weighted by the length of the contig.

4) Removing contigs isolated from the main target connected component that

includes the target-anchor contigs. Based on Assumption 2, true target contigs in

an organelle-sufficient assembly graph should occur in one connected component.

Thus, for a real organelle-sufficient assembly graph, GetOrganelle retains the con-

nected component with the most target-anchor contigs and deletes other such

connected components. Specifically, GetOrganelle calculates a customized target

weight value (TW) for each connected component of the assembly graph. The TW

of a connected component is defined as the sum of the target CWs of all contigs in

that connected component. Assuming organelle-sufficiency, GetOrganelle sorts

connected components by their TWs, finds the connected component with the sig-

nificantly largest TW (100 times larger than the second largest TW by default),

and removes the contigs of other connected components from the assembly graph.

If GetOrganelle fails to find such a connected component, disentangling the assem-

bly graph as a circular organelle genome fails and GetOrganelle reverts to “linear

mode.” In a “linear mode”, when GetOrganelle tries to disentangle the assembly

graph as contigs or scaffolds, several connected components with large TW are

retained, and only the connected components with TWs 10,000 times (by default)

less than the largest TW will be removed.

5) Removing tip contigs. A tip contig is a contig with one or both ends that do not

connect to any other contigs in the assembly graph nor to itself as circular. Based

Jin et al. Genome Biology          (2020) 21:241 Page 23 of 31



on Assumption 2, an organelle-equivalent graph will not contain any tip contig, be-

cause any partial sequence of a circular DNA molecule will have both upstream

and downstream sequences. GetOrganelle will check whether a tip contig is a

target-anchor contig before removing it. If the tip contig is a target-anchor contig,

it is likely that Assumption 2 is violated, and in most cases, the assembly graph is

not an organelle-sufficient graph but rather “a broken organelle graph”.

5b. Estimating the multiplicities of contigs in an organelle-only graph There are

sources of information resources for estimating multiplicities for contigs in GetOrga-

nelle. One is contig coverage value (k-mer coverage in practice but referred to as cover-

age in this paragraph). According to Assumption 3, we could roughly estimate the

multiplicity of each contig based on its coverage. Given that any contig in an organelle-

only graph would have at least one copy, GetOrganelle first assumes all contigs have

the multiplicity of one and estimates a primary value of the average coverage of the tar-

get genome. Then, GetOrganelle optimizes the multiplicities of all contigs by dividing

the coverage value of a contig by the average coverage and rounding the result to the

nearest integer. GetOrganelle iteratively optimizes the average coverage of the target

genome and the multiplicities of the contigs, with the constraint that the genome aver-

age coverage should not be below the minimum coverage of all contigs according to

Assumption 1. Here, the stabilized multiplicities estimated on the base of the coverage

values of contigs are called observed multiplicities (OCi, with Ci denoting the contig

name) (Fig. 2).

Another type of information comes from the graph characteristics, which offers a set

of hard constraints for the multiplicities of contigs (MCi, with Ci denoting the contig

name). Using the Python library Sympy, GetOrganelle creates a set of linear equations

to characterize the multiplicity relationship among connected contigs. In detail, there

are mainly four constraints to build this set of equations. First, the multiplicity of a

self-loop contig has no constraints. Second, if Contig A is not a tip contig nor a self-

loop contig, MCA is equal to the sum of the multiplicities of the contigs connected to

Ahead and equal to the sum of the multiplicities of the contigs connected to Atail. Third,

the multiplicity of a tip contig is arbitrarily set to 1 to avoid over-estimation, although

this risks failure in solving the equations. Last, in considering symmetry of large

inverted repeats (such as IRs in plastome), the multiplicity of a sequential repeat contig

is constrained to be an integer multiple of the multiplicity of one of its nearby contigs,

e.g., the multiplicity of a sequential repeat inside the IR region of a plastome assembly

graph must be an even number and no smaller than 4. This set of equations would be

then simplified using Sympy.solve. The multiplicity values of all contigs would be repre-

sented as linear expression of several free variables.

By minimizing the difference of the multiplicities based on the above two types of in-

formation using least square, meaning minimizing
Pn

i¼0ðMCi −OCiÞ
2 , GetOrganelle

achieved the values of those freedom variables, therefore all the MCi (Fig. 2).

5c. Exporting all possible distinctive path(s) GetOrganelle then exhaustively searches

for all possible paths from this organelle-only graph with contig multiplicities. Each

configuration combination would be saved as an independent FASTA file, with the
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same sequence-name style to manual completion using Bandage [30] (see below). A cir-

cular sequence would also be marked “(circular)” in the sequence name. For plastomes

with repeats inside the large IRs, there would be 6 paths, meaning 6 potential isomers

(see Fig. 2; another similar but more complicated example is SRR5602601 with 12

paths). However, in considering symmetry, only those isomers with identical large IRs

(path1 & 2 in Fig. 2) are biologically possible paths. In these cases, GetOrganelle would

mark these results with identical IRs as the first repeat pattern in the file name.

Step 5′. Manual completion

If GetOrganelle fails to export a complete circular organelle genome, because of insuffi-

cient target assembly graph, too short a disentangling run time, too many possible con-

figuration sequences, or misidentification of target contigs, manual completion is

needed to clean “noisy” and non-target contig/scaffold connections (Fig. 1, gray solid

arrow 4 and 5). The simplified assembly graph can be visualized using Bandage [30].

Meanwhile, the concomitant annotation “csv” file can be imported into Bandage and

added to the graph as labels, which helps to manually identify target-like contigs/scaf-

folds. The semi-manually cleaned assembly graph can be then finalized using another

main script “get_organelle_from_assembly.py” (Fig. 1) or be manually exported from

the cleaned assembly graph using Bandage.

Assessing the performance characteristics of GetOrganelle

To investigate the performance characteristics of GetOrganelle, we varied relevant pa-

rameters of the program: word size values (as the form of WSR, i.e., 0.3, 0.35, 0.4, 0.45,

0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9), the number of rounds (unlimited vs. mini-

mum), and pre-grouping either activated (-P 2E5, i.e., using the top 2E5 duplicated

reads to conduct the pre-grouping) or disabled (-P 0). The minimum number of rounds

mode is defined as fewest rounds of extension iterations required to obtain a complete

plastome or stabilizing an incomplete plastome.

We used these various settings to assemble the plastome of the angiosperm species

Haberlea rhodopensis Friv. (Gesneriaceae) from a reduced published dataset (500Mb,

SRA: SRR4428742), with the complete plastome of a gymnosperm species, Gnetum par-

vifolium (Warb.) W.C.Cheng (GBK: NC_011942.1) as the seed. We additionally use

only the rbcL gene sequence of Gnetum parvifolium (GBK: NC_011942.1) as the seed

and the WSR of 0.75 to assemble the same dataset.

To assess the characteristics of recruited reads per round, the option “--out-per-

round” was specified for the script “get_organelle_from_reads.py”. The script “round_

statistics.py” was used to assess the increasing cover percent of the organelle genome

using a read mapping approach. Using Bowtie2, this script maps reads of each round to

the final assembled plastomes and calculates the percentage of bases in the plastome

that are covered by mapped reads over a certain coverage threshold (the defaults were

0 and 10). The minimum number of rounds occurs when the percentage of covered

bases reaches 100% or stays unchanged and when the final assembly is stabilized. Be-

sides, if Python library Matplotlib is available, the script “round_statistics.py” could gen-

erate the base coverage across the organelle genome plot for each extension round to

visualize the extension process.
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De novo assembly of the plastomes of 50 plant datasets using GetOrganelle and

NOVOPlasty

To evaluate the working efficiency and assembly success, we selected 50 datasets of vas-

cular plants with raw reads from the GenBank Sequence Reads Archive (SRA) (Add-

itional file 2: Table S1). The 50 vascular plants represented 42 species of angiosperms

(from eight major clades, 21 orders and 29 families), four species of gymnosperms,

three species of ferns, and one species of lycophytes. Notably, the raw reads of these 50

samples are associated with published plastomes [56–59], allowing comparison with

newly reassembled plastome using GetOrganelle. Since 2018, NOVOPlasty has received

more than 400 citations for assembly chloroplast genome in Google Scholar (accessed

31 Dec 2019) and became one of the most widely used tools for plastome assembly.

We thus reassembled 50 samples using NOVOPlasty for comparisons.

The data resources are paired-end reads. The read length varied from 100 to 300 bp

(Additional file 2: Table S1). In all tests, if the tested data included fewer than 10,000,

000 reads for each end, we used all the reads; if the data included more than 10,000,

000 reads of each end, we only select the first 10,000,000 reads for each end. We set up

four testing groups, i.e., three groups with different word size values (w = 0.6, 0.7, 0.8)

(i.e., GetOrganelle-W0.6, GetOrganelle-W0.7, GetOrganelle-W0.8) and an auto-

estimated word size group (i.e., GetOrganelle-auto). The extension rounds of all tests

were set to 10. All other options including the seed were set to default. Because incom-

plete assemblies are unsuitable for comparing mapping qualities in the next part, we

additionally added extra runs for eight samples, in which GetOrganelle-auto could not

achieve complete plastomes, with customized options (GetOrganelle-customized) for

mapping quality comparison. A detailed record of commands, as well as the final re-

sults and log files recording the memory usage and time cost of all the tests are avail-

able at https://github.com/Kinggerm/GetOrganelleComparison (version 1.1.1).

Plastomes from the same 50 datasets were also reassembled by NOVOPlasty using

four k-mer values, i.e., 23, 31, 39, and 47. The config file of NOVOPlasty was down-

loaded from the NOVOPlasty GitHub repository (https://github.com/ndierckx/NOVO-

Plasty/blob/master/config.txt), with “Type” as “chloro,” “Genome Range” as 15,000–

180,000, “Save assembled reads” as “yes,” “Seed Input” as the same seed as running

GetOrganelle, and “Read Length” as the mean read length of each sample (seed Add-

itional file 2), with all other parameters unchanged.

Read mapping to evaluate plastome assemblies

The script “evaluate_assembly_using_mapping.py” was used to evaluate circular/non-

circular assemblies (Fig. 1, gray solid arrow 8). It uses Bowtie2 to map reads to circu-

lar/non-circular assemblies; parses the SAM file; counts the number of mapped paired

and unpaired reads; counts matched bases for each site (M), mismatched bases for each

site (X), insertions between any two sites (I), and deletions for each site (D); and calcu-

lates the average and standard deviation of matched depth (ΣM and var(M)), average

and standard deviation of mismatched depth (ΣX and var(X)), average and standard de-

viation of insertions between any two reference sites (ΣI and var(I)), and average and

standard deviation of deletions per reference site (ΣD and var(D)) for each contig and

the whole assembly. If ΣM> 0, a customized error rate would be also calculated as
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(ΣX + ΣI + ΣD)/ΣM with a customized deviation as (var(X) + var(I) + var(D))/ΣM. If

“--draw” is chosen, the script “evaluate_assembly_using_mapping.py” generates the plot

of M/X/I/D at each site/site-interval across the whole assembly using Python library

Matplotlib. For reproducibility when using the same random seed, a circular assembled

sequence was relinearized to make sure that biologically the same circular plastome

would have identical start and end since identical linear sequence. By default, Bowtie2

does not support mapping reads to a circular sequence, the script “evaluate_assembly_

using_mapping.py” gets around this problem by adding an extra fragment of the head

of the original sequence to the tail, and counting the mapping statistics (M/X/I/D) of

the sites in the extra fragment back to the statistics of the head part of the original

sequence.

The script “evaluate_assembly_using_mapping.py” was used to assess all the assem-

bled plastomes. The abnormal characters, such as “*” and “-” in the FASTA-format as-

semblies of NOVOPlasty, were replaced with “N.” NOVOPlasty would also produce

multiple completely different sequences with the same sequence name in the assem-

blies, which would be also modified with different names before assessment. For

NOVOPlasty, the evaluation statistics of each sample were based on the best result

among those using different k-mer values. Here the best result is determined in turn by

being true circularized, the largest number of mapped paired reads, the largest number

of mapped unpaired reads, the largest matched depth, the smallest error rate, the smal-

lest deviation of matched depth, and the smallest deviation of error rate. For GetOrga-

nelle, except for 8 samples that were generated using the customized parameters, other

evaluation statistics were based on the assemblies from the “GetOrganelle-auto” runs.

For each sample, when comparing the evaluation statistics of different assemblies, the

“best” mapped reads (the hat mark in Table S3) is defined as the largest number of

mapped paired reads or equal-largest number of mapped paired reads with the largest

number of mapped unpaired reads; the “best” mapped depth is defined as the largest

matched depth or equal-largest matched depth with the smallest deviation of matched

depth; the “best” error rate is defined as the smallest error rate or equal-smallest error

rate with the smallest deviation of error rate.

De novo assembly and evaluation of the mitogenomes using GetOrganelle and

NOVOPlasty

In total, 56 animal (the test samples of MitoZ [14], see Additional file 2: Table S3) and

50 fungal samples (Additional file 2: Table S4) were used to test the capability of

GetOrganelle to assemble mitogenomes. The mitogenomes of plants generally have a

relatively slow nucleotide substitution rate [9, 60]; therefore, it is feasible for GetOrga-

nelle to achieve sufficient reads to construct the mitogenome-sufficient assembly graph

even with a remotely related seed, provided that there is enough coverage. However,

there are two main challenges for short-read sequencing data to confirm the mitogen-

ome architecture. Firstly, lots of repeats in the plant mitogenome cause the awkward

tangles in the assembly graph [47, 61, 62]. Secondly, most of plant mitogenomes are

not one single circular structure; rather they often consist of one large circular mol-

ecule and small circular plasmid-like molecules (type III), or homogenous linear mole-

cules (type V) [63]. There are also frequent horizontal transfers from plastome to
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mitogenome. In this case, when the coverage of the plastome is much higher than that

of mitogenome, the multiplicity of shared contigs would be hard to estimate. When the

coverage of the plastome is similar to that of the mitogenome, the parallel contigs in

between the shared contigs would be difficult to distinguish. Thus, we did not include

plant mitogenome testing due to the general infeasibility of assembling complete circu-

larized plant mitogenome from WGS data.

The data resources are paired-end reads. The read length varied from 92 to 301 bp

(see Additional file 2: Table S3, Table S4). In animal tests, if the tested data included

fewer than 75,000,000 reads for each end, we used all the reads; if the data was more

than 75,000,000 reads of each end, we only used the first 75,000,000 reads for each end.

The same maximum number of reads for fungi was 15,000,000. All GetOrganelle tests

were performed with default settings with the k-mer values set to 21,43,65,87,127. All

NOVOPlasty test were performed with the default k-mer 39 (also been the best k-mer

in the plastome analysis). Commands, results, and log files of all the tests are available

at https://github.com/Kinggerm/GetOrganelleComparison (version 1.1.1).

The script “slim_fastg.py” was used to evaluate mitogenome assemblies by generating

the gene hits table. “slim_fastg.py” could conduct a BLAST search against the label

database and generate a concomitant cognominal TAB-formatted file recording many

hitting information of contigs. By summarizing the gene hits of each contig, we calcu-

lated the number of gene hits for each assembly.

Computer resources for testing

All assemblies were executed on an Intel Xeon CPU machine containing 144 cores of

2.40 GHz, a total of 3 TB of RAM (64 GB RAM is sufficient for all tests, while the 3 TB

RAM makes it possible to run different tests simultaneously), and set up with Linux

(Linux version 3.10.0-514.el7.x86 (Red Hat 4.8.5-11)). The testing environment also in-

cludes Python v3.6.5, Perl v5.16.3, GetOrganelle v1.6.2, Bowtie2 v2.3.5.1, SPAdes

v3.13.0, BLAST 2.2.30+, Numpy v1.13.3, Scipy v0.19.1, Sympy v1.1.1, Matplotlib v3.0.2,

Psutil v5.4.7, and NOVOPlasty 2.7.2 [23]. GetOrganelle is capable of multi-processing

in mapping and assembly process, which was disabled in this test for comparable with

NOVOPlasty. Tests can be reproduced by accessing zenodo (doi: https://doi.org/10.

5281/zenodo.3943877) or Github (https://github.org/Kinggerm/GetOrganelleCompari-

son version 1.1.1).
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Additional file 1: Figure S1. Reads mapping comparisons among the plastomes reassembled using
GetOrganelle and NOVOPlasty, and the plastome from GenBank (KY085912) based on the same raw data
SRR5602602 (Laurus nobilis L.). Figure S2. The covering positions and corresponding coverages at the plastome of
newly captured reads during each round using GetOrganelle, with different arguments. A whole plastome and an
rbcL region (right) from a gymnosperm species Gnetum parvifolium (Warb.) W.C.Cheng (GenBank nucleotide
accession number: NC_011942.1) as the seed to assemble the plastome of an angiosperm species Haberlea
rhodopensis from an online WGS dataset (GenBank SRA accession number: SRR4428742).

Additional file 2: Table S1. The sampling and basic assembly information of 50 plant samples. Table S2.

Evaluation of the published plastomes, GetOrganelle reassembled plastomes and NOVOPlasty reassembled
plastomes of same GenBank SRA accession number using reads mapping. Table S3. The sampling and basic
assembly information of 56 animal samples using GetOrganelle and NOVOPlasty. Table S4. The sampling and
basic assembly information of 50 fungi samples using GetOrganelle and NOVOPlasty. Table S5. Performance
characteristics of GetOrganelle using the plastome of a gymnosperm species Gnetum parvifolium (Warb.)
W.C.Cheng (GenBank SRA accession number: NC_011942.1) as the seed to assemble the plastome of an
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angiosperm species Haberlea rhodopensis from an online WGS dataset (GenBank SRA accession number:
SRR4428742).
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