
Getting More Flexible Scheduling in the RTSJ

Alexandros Zerzelidis and A.J. Wellings, University of York, U.K., {alex,andy}@cs.york.ac.uk

Abstract
This paper illustrates how the Real-Time

Specification for Java (RTSJ) can be modified to allow
applications to implement more flexible scheduling.
The proposed approach is a two-level scheduling
mechanism where the first level is the RTSJ priority
scheduler and the second level is under application
control. Minimum, backward-compatible changes to
the RTSJ specification are discussed to motivate the
required interface. The only assumptions made about
the underlying real-time operating system is that it
supports pre-emptive priority-based dispatching and
that changes to priorities have immediate effect.

1. Introduction

Scheduling is the ordering of thread/process executions
so that the underlying hardware resources (processors,
networks, etc.) and software resources (shared data
objects) are efficiently and predictably used. The Real-
Time Speciation for Java (RTSJ) [8] provides a
framework from within which real-time scheduling can
be performed for single-processor systems. The
intention is that a range of schedulers should be
supportable, with all schedulers conforming to the
abstract Scheduler class. However, the current
specification defines only a base scheduler, the
PriorityScheduler. The scheduling framework can
be summarized as follows:
Scheduling Policy: The RTSJ uses the notion of the
“execution eligibility” of “schedulable objects” to
determine the execution order. Execution eligibility is
encapsulated in the SchedulingParameters class and
its subclasses PriorityParameters and Importance-
Parameters. For the base scheduler, priorities are
assigned by the programmer, and the scheduler
implements priority inheritance algorithms on resource
accesses (hence, it supports the notion of base and
active priorities).
Scheduling Mechanism: For the base scheduler, the
RTSJ requires pre-emptive priority-based dispatching
of schedulable objects. An executable schedulable
object with the highest active priority is always
executing on the processor at any given time.
However, RTSJ makes no statement on whether it
supports “pre-emptive execution eligibility
dispatching” in general.

Feasibility Analysis: The RTSJ requires no specific
feasibility analysis to be implemented.

Whilst it is clear that the RTSJ’s intention is to
support multiple schedulers, it is far from clear that the
provided framework is adequate for this purpose.
Furthermore, it is unclear the extent to which priority-
based dispatching is so ingrained in the specification
that all other schedulers must express “execution
eligibility” in terms of priority.

Section 2 defines a framework within which
multiple application-defined schedulers can be
implemented. Section 3 then uses this framework to
show how an application-defined EDF scheduler can
be constructed. Related work is briefly considered in
Section 4. Section 5 summarises the changes needed in
the RTSJ to support our approach, and the impact on
feasibility analysis. Finally, the conclusions are given.

The remainder of this paper assumes that priority
changes that require OS intervention occur
immediately and are not deferred. The terms “thread”
and “schedulable object” are used interchangeably.

2. Dynamic Priorities and Flexibility

The general scheduling mechanism supported by the
RTSJ is undefined. In part, this is due to the variety of
execution environments in which an application may
execute. Whatever the execution environment, the
“write-once carefully, run-anywhere conditionally”
goal dictates that the RTSJ should define its scheduling
mechanism. Most real-time operating systems support
pre-emptive priority-based dispatching. Consequently,
this paper argues that the RTSJ should define this as
the base scheduling mechanism. However, many
modern applications require more flexible scheduling
[3], [14]. Furthermore, some applications may need to
be scheduled by one policy while others may need a
different policy; e.g. fixed priority for hard real-time
threads and EDF for soft real-time threads. Hence,
state-of-the-art real-time OSs nowadays support
hierarchical scheduling [10].

In this paper we propose that the RTSJ should
support hierarchical scheduling within a fixed-priority
framework. More specifically, we present a two-level
scheduling scheme, with the RTSJ’s priority scheduler
at the top level. Under this scheme an application can
implement its own scheduler, which may have its own
notion of execution eligibility, and request a band of

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSITE DE MARNE LA VALLEE. Downloaded on October 17, 2008 at 13:03 from IEEE Xplore. Restrictions apply.

priorities. The application-defined scheduler can direct
the execution of threads within the requested band by
manipulating their priorities. Adopting this approach
also allows multiple schedulers to be integrated. It is
also sympathetic to the notion that priority-based
scheduling is more ingrained in the RTSJ than
intended, and that a more general scheduling
mechanism would require more fundamental changes
to the RTSJ than is acceptable to the community.

2.1. The Proposed Model

Currently the Scheduler class is defined as follows:
package javax.realtime;
public abstract class Scheduler {
 protected Scheduler();

protected abstract boolean addToFeasibility(
 Schedulable sched);
 protected abstract Boolean removeFromFeasibility(
 Schedulable sched);
 public abstract boolean isFeasible();
 public abstract boolean setIfFeasible(
 Schedulable sched, ReleaseParameters rel,
 MemoryParameters mem);
 public static Scheduler getDefaultScheduler();
 public static void setDefaultScheduler(
 Scheduler scheduler);

...
}

As can be seen from this specification, the
Scheduler is mainly concerned with manipulating the
feasibility set and performing feasibility analysis. In
other words, although the scheduler is responsible for
releasing schedulable objects, monitoring deadline
misses and cost overruns, implementing the required
priority inheritance algorithm etc, there is no API
support for these. Most of the semantics of scheduling
in the RTSJ are defined to be for the priority scheduler
and are carried out under the hood. This was to allow
greater flexibility to an RTSJ implementation that
would want to support other schedulers1. However, this
now means that, in order to expose the underlying
mechanisms, a radical overhaul of the RTSJ scheduling
API would be required.

The approach taken here is different. In order to
keep changes to the API as small as possible, we keep
the scheduling mechanism invisible to applications,
relying instead on the priority-based dispatching to
carry out application-defined scheduling policy
decisions. An application-defined scheduler is assigned
four priority queues of the PriorityScheduler. We
name these H(high), M(medium), ML(medium-lock),
and L(low). This set of priority queues is called a
scheduling band. These priorities are to be used in the
following manner:

1 Since the semantics for methods like waitForNextPeriod()
are only defined for the PriorityScheduler, other schedulers
can support different semantics.

• When schedulable objects are released (or become
unblocked), they are to be released at the high priority
level. This priority is where all scheduling decisions
need to be carried out.
• The application-defined scheduler keeps track of the
thread with the highest execution eligibility. This
object has its priority set to the medium level.
• Queue L is where all the application scheduler’s
threads usually reside when they are not running.
• Finally, priority ML is associated with object locking
and will be discussed later in the paper.

In the next subsection we will see how the
PriorityScheduler uses these priorities to enforce
application-defined scheduling policy decisions.

2.1.1. The new PriorityScheduler class. The
basic idea behind this paper is that any scheduling
policy can be supported by simply manipulating
priorities, assuming we know when the RTSJ
library/virtual machine is about to call an OS routine
that might potentially block the calling schedulable
object and cause a context switch. To facilitate this,
four new methods are introduced into the
PriorityScheduler class. The four methods are:
package javax.realtime;
public class PriorityScheduler extends Scheduler{
 ...
 // constants for “reason” argument

public static final int WAIT_FOR_NEXT_RELEASE;
public static final int SLEEP;

 ...
 // constants for “state” argument

public static final int LOCKED;
public static final int UNLOCKED;
// new methods

 protected static final void prepareToSuspend(
 Schedulable sched, int reason);
 protected static final void prepareToSuspend(
 Schedulable sched, Object lock,
 MonitorControl monitor);
 protected static final void reschedule(
 Schedulable sched, Object lock,
 MonitorControl monitor, int state);
 protected static final void reschedule(
 Schedulable sched);
}

The goal is to give control to the base scheduler
(PriorityScheduler) just before the schedulable
object calls a potentially suspending OS call and right
after it returns from such a call2. prepareToSuspend()
precedes the OS call and reschedule() comes
immediately after that. The RTSJ virtual machine and
libraries are modified accordingly. As we can see,
there are two variations for each method; the version
with the lock argument is for the special case of
locking an object through a synchronized statement or

2 This assumes that the RTSJ adopts a native thread model and that
the OS performs all context switches. If the RTSJ performs its own
scheduling, it calls the methods just before and after the context
switch code.

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSITE DE MARNE LA VALLEE. Downloaded on October 17, 2008 at 13:03 from IEEE Xplore. Restrictions apply.

method. Locking will be discussed more thoroughly in
later sections. The other version of the two methods is
for all other potentially suspending situations, as
specified by the reason argument, e.g.
WAIT_FOR_NEXT_RELEASE, SLEEP, IO_WAIT, etc.
prepareToSuspend() is called before a thread executes
a potentially blocking operation (e.g. after the end of
each release). It sets the caller’s priority to high (ready
for the next release), and then asks the application-
defined scheduler for the thread with the next highest
execution eligibility. It sets the priority of this thread to
medium and the method returns. The result is that, if
the thread blocks, the next eligible thread will
automatically execute. If the thread doesn’t block, it
will immediately call reschedule(). reschedule()

takes care of a thread when it becomes available to run.
It compares the execution eligibility of the calling
thread with that of its current most eligible thread. If
the caller has higher execution eligibility, the previous
most eligible thread has its priority set to low and the
caller has its priority set to medium. For example,
consider some code in the RTSJ implementation that is
about to put a thread to sleep through a POSIX call:
 sleep(seconds);

This would be rewritten as:
 PriorityScheduler.prepareToSuspend(
 RealtimeThread.currentRealtimeThread(), SLEEP);
 sleep(seconds);
 PriorityScheduler.reschedule(
 RealtimeThread.currentRealtimeThread());

With this code, an initial thread T1 runs at medium
priority M. The prepareToSuspend() method raises
the priority of the thread to high (H). It then asks the
thread’s application-defined scheduler for the next
most eligible thread (say T2) in its band. It sets T2’s
priority to M and returns. Following, the POSIX call to
sleep() is executed and T1 suspends (while at priority
H). Priority-based dispatching will now select the next
thread, which is T2 at priority M. When seconds have
elapsed, T1 awakens, preempting T2 since its priority is
still H>M. It immediately calls reschedule(), which
checks which thread has the highest eligibility, sets its
priority to M and the other thread’s priority to low (L).

The API between the base scheduler and the user-
defined schedulers is given in the next subsection.

2.1.2. Application-defined schedulers. To allow
application-defined schedulers, a new subclass of
Scheduler is introduced:
package javax.realtime;
public abstract class ApplicationDefinedScheduler
 extends Scheduler {

public ApplicationDefinedScheduler(int low, int
 medium_lock, int medium, int high,
 ProcessingGroupParameters cap,
 int preemptLevels);

protected abstract void released(
 Schedulable sched, boolean running);

protected abstract void preempted(

 Schedulable current, Schedulable newcomer);
protected abstract void lockedObject(

 Schedulable sched, int objectCeiling);
protected abstract void unlockedObject(

 Schedulable sched, int objectCeiling);
protected abstract void suspended(

 Schedulable sched, int reason);
protected abstract Schedulable getMostEligible();
protected abstract Schedulable

 compareEligibility(Schedulable sched1,
 Schedulable sched2);

protected abstract boolean setScheduler(
 Schedulable sched);

protected static final ApplicationDefinedScheduler
 getScheduler(int priority);

protected static final ApplicationDefinedScheduler
 getScheduler(Schedulable sched);

protected static final int getSchedulingBand(
 int priority);

public static final int getLevelsPerBand();
public static final void setLevelsPerBand(

 int levels);
protected static final int calculateAbsolute(

 int band, int level);
 protected static final void setSchedulable(
 Schedulable sched,
 ApplicationDefinedScheduler appScheduler);
}

In order to create an application-defined scheduler
we must inherit from this class and implement all
abstract methods, which form the one-way API
between the PriorityScheduler and every application
scheduler (only the base scheduler can issue calls to
other schedulers). Following, we give a description of
each abstract method: released() is called when a
new thread in the scheduler’s band has been started;
preempted(Schedulable, Schedulable) is called
when preemption happens within the band; locked-
Object() tells the scheduler that one of its threads has
locked an object (i.e. entered a synchronized region);
unlockedObject() informs the scheduler that one of
its threads has released an object lock (i.e. exited a
synchronized region); suspended() informs the
scheduler that a thread has been suspended (in reality,
this method is called right before the thread is actually
suspended); the getMostEligible() method asks from
the application scheduler to return its next most
eligible thread; compareEligibility() asks the
scheduler to specify which of the two given threads has
greater eligibility according to the scheduler’s
scheduling policy; finally, setScheduler() notifies an
application scheduler that a thread has been assigned to
it. There are also six static methods, which will be
discussed in the next subsection.

As an example of threads running under an
application-defined scheduler let us consider the
execution of three real-time threads (T1, T2 and T3)
shown in Figure 1. They are released at times t1, t2, and
t3 respectively (where t1<t2<t3). T2 has the highest
execution eligibility, followed by T3 and T1. The upper
part of Figure 1 shows what priority each thread has at
any given point in time, while the lower part shows the
resulting thread execution schedule. Note how all

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSITE DE MARNE LA VALLEE. Downloaded on October 17, 2008 at 13:03 from IEEE Xplore. Restrictions apply.

threads execute at high when they are released and
during a prepareToSuspend() call.

Figure 1: Manipulating Operating System Priorities

With this approach, a thread with lower execution
eligibility will execute in preference to a higher
execution eligibility thread but only for a limited time
when it is released. This is similar to an OS that must
allow a thread to be released before deciding what
priority it should run at.

2.1.3. Multiple Schedulers. With the above approach
multiple user-defined schedulers can coexist in the
system, if they are allocated non-overlapping bands in
the RTSJ priority range. Hence, the proposal supports
two-level scheduling. The first level scheduler is
priority-based, the second level is user-defined within a
scheduling band. The ApplicationDefinedScheduler
class, apart from specifying the API for application
schedulers, also manages the system’s scheduling
bands, and for this reason it specifies a static API for
the PriorityScheduler to use, as seen in the previous
subsection. Each application-defined scheduler’s
constructor must invoke the ApplicationDefined-

Scheduler constructor through super(). The
arguments passed are: the four priority levels the
scheduler wants reserved (low, medium_lock, medium,
high); a ProcessingGroupParameters object (cap)
through which each application-defined scheduler is
given a processor capacity for the schedulable objects
it manages; and the numbers of preemption levels the
band is going to need (preemptLevels) – this last
argument will be discussed in the next subsection. The
ApplicationDefinedScheduler class keeps all band
related information (band-scheduler pairings). If the
requested priority levels overlap with previous
reservations, the ApplicationDefinedScheduler

constructor throws an unchecked exception. The static
methods are: getScheduler(int) returns the
ApplicationDefinedScheduler assigned to the given
priority level; getScheduler(Schedulable) returns the
ApplicationDefinedScheduler which schedules the
given thread; getSchedulingBand(int) returns the
low priority of the band to which the given priority
belongs to; getLevelsPerBand() and setLevels-

PerBand(int) manipulate the default number of
preemption levels per band; setSchedulable() is
called by the setScheduler() method of each user-

defined scheduler to inform the ApplicationDefined-
Scheduler that a particular thread will be scheduled by
the calling scheduler; finally, calculateAbsolute()
will be discussed later in this paper.

2.2. Execution Eligibility Inversions

Execution eligibility inversion can occur whenever a
schedulable object is blocked waiting for a resource. In
order to limit the length of that blocking, the RTSJ
requires that the priority scheduler maintain all queues
used by the real-time virtual machine in priority order.
So, for example, the queue of schedulable objects
waiting for an object lock must be priority ordered.
Where there is more than one schedulable object in the
queue at the same priority, the order between them is
defined to be first-in-first-out (FIFO). Similarly, the
queues resulting from calls to the wait methods in the
Object class should be priority FIFO ordered.

The RTSJ also provides facilities for the
programmer to specify the use of different priority
inversion control algorithms. By default, the RTSJ
requires priority inheritance to occur whenever a
schedulable object is blocked waiting for a resource
(for example, an object lock). The programmer can
change the default priority inversion control algorithm
for individual objects (or for all objects) via the
MonitorControl class hierarchy. At the root of this
hierarchy is the following abstract class:
package javax.realtime;
public abstract class MonitorControl {

protected MonitorControl();
 public static MonitorControl getMonitorControl();

public static MonitorControl getMonitorControl(
 Object monitor);

public static MonitorControl setMonitorControl(
 MonitorControl policy);

public static MonitorControl setMonitorControl(
 Object monitor, MonitorControl policy);
}

The four static methods allow the getting/setting of
the default policy and the getting/setting for an
individual object (the methods return the old policy).
The RTSJ defines two policies, subclasses of
MonitorControl: PriorityInheritance (default
policy) and PriorityCeilingEmulation.

2.2.1. Adding preemption levels. The role of priority
inversion control algorithms is to bind the time during
which a higher priority schedulable object can be
blocked (by a lower priority schedulable object) when
trying to access a shared resource. Baker [2] used the
concept of preemption levels to introduce execution
eligibility inversion control to scheduling algorithms
with different notions of execution eligibility, other
than a fixed priority. With preemption levels, a
schedulable object can only preempt another object if it
has a higher preemption level. Each schedulable object

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSITE DE MARNE LA VALLEE. Downloaded on October 17, 2008 at 13:03 from IEEE Xplore. Restrictions apply.

is assigned a preemption level according to the
following rule: if a schedulable object has higher
execution eligibility than another, but arrives later than
the other, then it must have a higher preemption level
than the other. This is to say that, in situations where
no locking takes place, preemption levels concur with
priorities as to which schedulable should run next.
Each shared resource is given a ceiling preemption
level, which, for single unit resources, is the highest
preemption level of all the schedulable objects
accessing the resource. Based on these definitions,
Baker defined an execution eligibility inversion
avoidance protocol, known as Stack Resource Policy
(SRP), which states that a schedulable object can start
execution only if it has the highest execution eligibility
and its preemption level is higher than the ceiling of
each locked resource. To make this check easier, the
notion of the system ceiling is introduced, which is the
highest ceiling amongst the locked resources, so that a
thread’s preemption level need only be higher than the
system ceiling. This check ensures that once a thread
starts its execution it cannot block on a lock3.

Preemption levels are ideal in helping us control
resource sharing between scheduling bands. They can
be applied to any scheduling policy, so effectively we
can assign them across all bands and have a uniform
way of controlling priority inversion throughout the
whole range of priorities (for fixed-priority scheduling
the preemption level equals the priority). As we have
seen, when constructing an application scheduler we
assign it a number of preemption levels (this must be at
least equal to the number of threads the scheduler will
manage). From this range, we assign each thread a
relative preemption level, which is the level it has
within its scheduler. So, for example, if we assign 5
preemption levels to a band then for any thread in that
band its relative preemption level must be between 1
and 5. Based on this we can calculate the thread’s
absolute preemption level using the next formula:

rpllevelsapl
n

i
i += ∑

=1

where apl is the thread’s absolute preemption level,
rpl is the relative preemption level, n is the number of
bands below the thread’s band, and levelsi is the
number of preemption levels used by band i. In
essence, the absolute preemption level is known if we
know the pair (low, rpl), where low is the low priority
of the thread’s band, because we can calculate n when
we know low. This is the calculation that the
calculateAbsolute() static method in

3 Baker’s algorithm assumes that threads do not voluntarily suspend
themselves whilst holding a lock.

ApplicationDefinedScheduler does, returning the
absolute preemption level for a given pair of (band,
preemption level).

We can now define a resource ceiling to be a pair
(low, rpl) such that the absolute preemption level that it
yields is the highest amongst the threads accessing the
resource. To extend the RTSJ to support preemption
levels, the following new classes are introduced4:
package javax.realtime;
public class PreemptionLevelParameters
 extends PriorityParameters {
 public PreemptionLevelParameters(
 int relativePreemptionLevel);
 public void setPreemptionLevel(
 int relativePreemptionLevel);

public int getPreemptionLevel();
}

public class StackResourcePolicy
 extends MonitorControl {

private StackResourcePolicy(int band,
 int ceiling);

public int getSchedulingBand();
public int getCeiling();
public static int getMaxPreemptionLevel();
public static StackResourcePolicy instance(

 int band, int ceiling);
}

Implementation of the priority inversion control
algorithm is done at the middleware layer and is
transparent to the OS. Every resource, which is
accessed by threads running under an application-
defined scheduler, should be governed by a
MonitorControl object of type StackResourcePolicy.
In light of locking, a thread’s current band (the band it
is currently executing in) can be either its own
(original) band or a higher band. Before a thread enters
a synchronized region, prepareToSuspend(sched,

lock, monitor) is called, raising the thread to the high
priority of its current band. Because of the SRP, the
thread is guaranteed not to block, so no checking is
needed. The method just sets the thread’s priority to
the appropriate level; if the getSchedulingBand()
method of the StackResourcePolicy object, associated
with the resource to be locked, returns a higher band
than the thread’s current band, locking takes place
outside the band and the thread is moved to the high
priority of the higher band. If the band returned is the
same as the thread’s current band, then the thread stays
at the high priority of the current band. It is an
erroneous condition for the method to return a lower
band than the locking thread’s own band, but it could
return a lower band than the thread’s current band (i.e.
the thread has already locked another resource outside
its own band). In this case the system ceiling doesn’t

4 Note, this is an extension of PriorityParameters as the
PriorityScheduler ultimately schedules each schedulable
object. Also, the base priority is not set by the application when
creating PreemptionLevelParameter objects. It is set by the
PriorityScheduler.

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSITE DE MARNE LA VALLEE. Downloaded on October 17, 2008 at 13:03 from IEEE Xplore. Restrictions apply.

change when the locking takes place. Next the
synchronized call takes place (notice that no matter
which band the thread is locking at, its priority when
making the synchronized call is high for the respective
band). Immediately after, reschedule(sched, lock,
monitor, LOCK) is called, which, depending on
whether the thread is on its own or on a higher band,
takes the thread to the medium or medium_lock priority
of the band, respectively. When unlocking we call
reschedule(sched, lock, monitor, UNLOCK), which
raises the thread to the high priority of the current band
and checks to see if there is a thread available to run in
the current band (it could be the case that a thread was
released while the calling thread was holding the lock,
but couldn’t run because of the system ceiling). At this
point there are two things to consider: i) “is the current
band the thread’s own band?”, and if not, ii) “is the
thread returning to its own band?” If the answer to the
first question is yes, then reschedule() calls
getMostEligible(), places the returned thread at the
middle queue, and, if this thread is different from the
calling thread, places the calling thread at the low
queue. If the answer is no, then reschedule() calls
getMostEligible() and places the returned thread (if
any) at the middle queue of the current band.
Depending, now, on whether the calling thread is
returning to its own or to a higher-than-its-own band, it
is placed on the middle queue of its own band or on the
middle_lock queue of the band it returns to. Note that
the scheme can cope with nested locking. However,
there is one condition that needs to hold: the locking
thread must never suspend itself.5.

Consider an example of two EDF schedulers (EDF1
and EDF2), which have been allocated to priority bands
(L1=1, ML1=2, M1=3, H1=4) and (L2=7, ML2=8, M2=9,
H2=10) respectively, as illustrated in Figure 2
(priorities 5-6 and 11-28 have not been allocated to any
application-
defined scheduler,
so they are
scheduled directly
by the default
priority scheduler).

The EDF1
scheduler has three
schedulable
objects (S11, S12,
S13) that have
preemption levels
(PL11<PL12<PL13)

5 Note that the RTSJ does allow this. It is outside this paper’s scope
to discuss the modifications to our approach needed to cope with this
behaviour. As it is, we maintain the system ceiling, when suspension
occurs while locking.

respectively. The EDF2 scheduler has two schedulable
objects (S21 and S22) that have preemption levels
(PL21<PL22) respectively. S12, S13, S21, and S22 all
access a shared Object O. Since the highest absolute
preemption level amongst the schedulables accessing
O is that of S22, the ceiling of the object will be the pair
(L2, PL22). Now whenever S12 (or S13) accesses the
object its priorities have to be raised to ML2=10. This
will ensure that S12 (S13) cannot be preempted by S13
(S12), or by anything running on priority queues 5-8.
Now, as S21 and S22 also access the resource, they may
become executable whilst S12 (or S13) is accessing the
resource. Consider the case where S21 becomes
executable at H2 priority level. It will preempt S12
(S13). The EDF2 scheduler will move S21 to the L2
level, since its preemption level will not be higher than
the system ceiling, which is (L2, PL22). L2 is lower than
ML2, so S12 (S13) will continue to run. When S12 (S13)
unlocks the object, it will be elevated to H2 and query
EDF2 for its most eligible schedulable. This will return
S21, which will be put on M2. S12 (S13) will next be
moved to M1, thus being preempted by S21.

3. An EDF Scheduler

As an example and proof of concept for our user-
defined scheduling scheme, we implemented an EDF
scheduler.
public class EDFScheduler
 extends ApplicationDefinedScheduler {

public EDFScheduler(
 int low, int medium_lock, int medium,
 int high, ProcessingGroupParameters cap,
 int preemptLevels);
 ...
}

The class implements all abstract Scheduler and
ApplicationDefinedScheduler methods, and contains
methods for manipulating all internal structures needed
to implement the scheduler (EDF queues). The basis
for our implementation is the preemption level protocol
(PLP) by Burns et al. [5]. The preemption level
protocol implements the EDF scheduling algorithm on
priority queues and is based on the stack resource
policy. Preemption levels are assigned according to the
relative deadline of each schedulable object (the
shorter the deadline, the higher the preemption level)
[2]. In our implementation, the EDF scheduler has its
own internal priority queues where threads are
logically placed. The priorities of these queues equal
the relative preemption levels used in the EDF band.
The PLP protocol is well defined in [5] and we will not
repeat it here.

Figure 3 shows the mapping of EDFScheduler
queues to PriorityScheduler queues. Box (a) shows
the application code instantiating an EDFScheduler.
Box (b) shows the created internal EDF queues (there

Figure 2: An Example
with Multiple Schedulers

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSITE DE MARNE LA VALLEE. Downloaded on October 17, 2008 at 13:03 from IEEE Xplore. Restrictions apply.

can be any number of these queues). Box (c) shows the
four queues reserved for the EDFScheduler in the
PriorityScheduler. Finally, box (d) shows the
mapping between the threads on the priority queues
and their logical counterparts on the EDF queues. Here
we are not interested on how the threads are placed on
the EDF queues. The aim is to show that while threads
are placed on priority queues in FIFO order, their
logical counterparts are placed in EDF order, and
hence the overlapping arrows that show the mapping.

4. Related Work

There are three approaches to achieve flexible
scheduling:
• Pluggable schedulers – in this approach the system
provides a framework into which different schedulers
can be plugged. The CORBA Dynamic Scheduling
[13] specification is an example of this approach.
Kernel loadable schedulers also fall into this category,
such as that used within the SHaRK kernel [11].
• Application-defined schedulers – in this approach,
the system notifies the application every time an event
occurs that requires a scheduling decision to be taken.
The application then informs the system which thread
should execute next. The proposed extensions to real-
time POSIX support this approach [1].
• Implementation-defined schedulers – in this
approach, an implementation is allowed to define
alternative schedulers. Typically this would require the
underlying operating system (virtual machine, in the
case of Java) to be modified. The Ada 95 language
allows this approach.

Currently, the RTSJ adopts the implementation-
defined schedulers approach (although it also tries to
provide a framework for the implementation to follow)
and allows for applications to determine dynamically
whether the real-time JVM on which it is executing has

a particular scheduler. Unfortunately, this is the least
portable approach, as an application cannot rely on any
particular implementation-defined scheduler being
supported. The only scheduler an application can rely
on being present is the PriorityScheduler. The work
reported in this paper only assumes the presence of the
priority scheduler and that priority changes have an
immediate effect. An attempt has been made [9] to
support a utility accrual scheduler in the RTSJ but this
required a non standard interface and was not
generalized. Similarly, although JTime supports
multiple schedulers, this has been achieved in an ad
hoc manner [7].

The use of dynamic priority changes to support
alternative scheduling policies is well established. The
approach adopted here is based on [4]. Li et al [12]
have recently taken this approach and provided a
formalized POSIX framework, although they do not
support resource sharing between different schedulers.

5. Discussion and Conclusions

5.1. Specification Changes

The current RTSJ scheduler framework is under-
specified and alternative schedulers cannot be
implemented in a standard way. Furthermore,
applications that use such implementation-defined
schedulers will not be portable (by definition) between
different implementations. Consequently, it is
inevitable that the specification will have to evolve if it
is to meet the demands of future real-time applications.
In addition to the changes made to the
PriorityScheduler class and the introduction of the
new ApplicationDefinedScheduler class, a new
MonitorControl policy is required to provide support
for execution-eligibility inheritance. Baker’s pre-
emption level control policy is already well established
and provides a sound theoretical basis for this. The
implementation strategy given in [5] also allowed this
to be applied effectively within a priority framework.

Moreover, the following additions to the RTSJ
infrastructure are needed to fully support the approach:
• It is an anomaly that RTSJ does not provide the CPU
time consumed by a schedulable object (or remaining)
for the current release. These are essential for some
scheduling algorithms (e.g. value-density scheduling).
• Several of the semantics governing the behaviour of
schedulable objects are defined to be scheduler
specific, with only those for the priority scheduler
given. With the approach proposed in this paper, these
semantics will be applied to all SO irrespective of their
controlling application-defined schedulers.

Figure 3: Mapping between
EDFScheduler and PriorityScheduler

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSITE DE MARNE LA VALLEE. Downloaded on October 17, 2008 at 13:03 from IEEE Xplore. Restrictions apply.

5.2. Impact on Feasibility Analysis

As well as providing a framework for schedulers, the
RTSJ includes a framework for the supporting on-line
feasibility analysis. However, the default feasibility
analysis for the priority scheduler is very crude (it
simply assumes an adequately fast machine to handle
the periodic and sporadic load). The proposal here
allocates all application-defined schedulers a CPU
budget and replenishment period using the RTSJ
processing group parameters mechanism. This means
that the threads within a scheduling band can be treated
as if they are being served by a deferrable server [15].
Hence, if the priority scheduler is supporting true
feasibility analysis, then this is not undermined by the
proposed approach.

Within a band, the application-defined scheduler
can only assume that it gets no more than its full
budget each period. Hence, it can only give
independent partial guarantees. To give full guarantees
needs a global server-based analysis (see [6]). To give
full independent guarantees requires the base scheduler
to guarantee the capacity specified in the processing
group parameters, which would be a change to the
processing group semantics.

5.3. Conclusions

One of the initial goals of the RTSJ was to support the
state-of-practice in real-time systems development and
mechanisms to allow advances in state-of-the-art. As a
result of this, the specification provides several
frameworks that are only partially instantiated. The
scheduler framework is one of them (the others being
the feasibility analysis framework, the clock
framework and the physical memory framework).
Whilst this is laudable, more specification work is
needed if these frameworks are to become usable in a
standard and portable way. In this paper we have
extended the scheduler framework to allow the
hierarchical scheduling of real-time systems within
priority bands. The approach is backward` compatible
with the current version of the RTSJ in that programs
that do not define their own schedulers will execute
unchanged on a version of RTSJ that supported the
approach proposed in this paper.

A longer version of the paper can be found at:
http://www.cs.york.ac.uk/rts/publications.html

Acknowledgements

The authors gratefully acknowledge the discussions
they had with Alan Burns, Hao Cai, Rob Davis and
Peter Dibble.

References

[1] Aldea Rivas, M., and González Harbour, M. (2002),
“POSIX-Compatible Application-Defined Scheduling in
MaRTE OS”, 14th Euromicro Conference on Real-Time
Systems, IEEE Computer Society Press, pp. 67–75.

[2] Baker, T.P (1991) , “Stack-Based Scheduling of Real-
Time Processes”, Real-Time Systems Journal, 3(1), pp.
57-99.

[3] Brandt et al (2003), “Dynamic Integrated Scheduling of
Hard Real-Time, Soft Real-Time and Non-Real-Time
Processes”, pp.396, 24th IEEE RTSS.

[4] Burns, A., and Wellings, A.J. (1995), "Concurrency in
Ada, 2nd Edition", Addison Wesley.

[5] Burns, A., Wellings, A.J., and Taft, T. S. (2004),
“Supporting Deadlines and EDF Scheduling in Ada”,
Lecture Notes in Computer Science, Springer-Verlag,
Volume 3063 / 2004, pp. 156-165.

[6] Davis, R. I., and Burns, A. (2005), “Hierarchical Fixed
Priority Pre-emptive Scheduling”, p.389-398, RTSS 2005.

[7] Dibble, P. and Wellings, A.J. (2004), “The Real-Time
Specification for Java: Current Status and Future
Direction”, 7th International Conference on Object-
Oriented Real-Time Distributed Computing, ISORC 2004,
pp. 71-77.

[8] Dibble (Ed) (2005), “The Real-Time Specification for
Java”, Version 1.0.1, www.rtsj.org

[9] Feizabadi et al (2003), “Utility Accrual Scheduling with
Real-Time Java”, JTRES 03, pp. 550-563, Lecture Notes
in Computer Science, Springer-Verlag Heidelberg, Vol.
2889/2003.

[10] “FIRST” European Union IST Project (2005), “FIRST:
Flexible Integrated Real-Time Systems Technology, Final
Report”, Deliverable D-FR, June 2005,
http://130.243.76.81:8080/salsart/first/.

[11] Gai et al (2001), “A New Kernel Approach for Modular
Real-Time Systems Development”, p. 199, Proceedings of
the 13th Euromicro Conference on Real-Time Systems.

[12] Li et al (2004), “A Formally Verified Application-Level
Framework for Real-Time Scheduling on POSIX Real-
Time Operating Systems”, IEEE Transactions on Software
Engineering, 30(9), pp. 613-629.

[13] OMG (2003), “Real-time Corba Version 2.0”, OMG
Document formal/03-11-01,
http://www.omg.org/docs/formal/03-11-01.pdf

[14] Regehr, J., Jones, M. B., and Stankovic, J. A. (2000),
“Operating System Support for Multimedia: The
Programming Model Matters”, Technical Report MSR-
TR-2000-89,
http://research.microsoft.com/~mbj/papers/tr-2000-89.pdf.

[15] Strosnider, J. K., Lehoczky, J. P., and Sha, L. (1995),
“The deferrable server algorithm for enhanced aperiodic
responsiveness in hard real-time environments”, pp.73–
91, IEEE Transactions on Computers 44, 1 (January 1995).

Proceedings of the Ninth IEEE International Symposium on Object and Component-Oriented Real-Time Distributed Computing
0-7695-2561-X/06 $20.00 © 2006 IEEE

Authorized licensed use limited to: UNIVERSITE DE MARNE LA VALLEE. Downloaded on October 17, 2008 at 13:03 from IEEE Xplore. Restrictions apply.

