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Abstract 
This paper illustrates how the Real-Time 

Specification for Java (RTSJ) can be modified to allow 
applications to implement more flexible scheduling. 
The proposed approach is a two-level scheduling 
mechanism where the first level is the RTSJ priority 
scheduler and the second level is under application 
control. Minimum, backward-compatible changes to 
the RTSJ specification are discussed to motivate the 
required interface. The only assumptions made about 
the underlying real-time operating system is that it 
supports pre-emptive priority-based dispatching and 
that changes to priorities have immediate effect. 

1. Introduction 

Scheduling is the ordering of thread/process executions 
so that the underlying hardware resources (processors, 
networks, etc.) and software resources (shared data 
objects) are efficiently and predictably used. The Real-
Time Speciation for Java (RTSJ) [8] provides a 
framework from within which real-time scheduling can 
be performed for single-processor systems. The 
intention is that a range of schedulers should be 
supportable, with all schedulers conforming to the 
abstract Scheduler class. However, the current 
specification defines only a base scheduler, the 
PriorityScheduler. The scheduling framework can 
be summarized as follows: 
Scheduling Policy: The RTSJ uses the notion of the 
“execution eligibility” of “schedulable objects” to 
determine the execution order. Execution eligibility is 
encapsulated in the SchedulingParameters class and 
its subclasses PriorityParameters and Importance-
Parameters. For the base scheduler, priorities are 
assigned by the programmer, and the scheduler 
implements priority inheritance algorithms on resource 
accesses (hence, it supports the notion of base and 
active priorities). 
Scheduling Mechanism: For the base scheduler, the 
RTSJ requires pre-emptive priority-based dispatching 
of schedulable objects. An executable schedulable 
object with the highest active priority is always 
executing on the processor at any given time. 
However, RTSJ makes no statement on whether it 
supports “pre-emptive execution eligibility
dispatching” in general. 

Feasibility Analysis: The RTSJ requires no specific 
feasibility analysis to be implemented. 

Whilst it is clear that the RTSJ’s intention is to 
support multiple schedulers, it is far from clear that the 
provided framework is adequate for this purpose. 
Furthermore, it is unclear the extent to which priority-
based dispatching is so ingrained in the specification 
that all other schedulers must express “execution 
eligibility” in terms of priority. 

Section 2 defines a framework within which 
multiple application-defined schedulers can be 
implemented. Section 3 then uses this framework to 
show how an application-defined EDF scheduler can 
be constructed. Related work is briefly considered in 
Section 4. Section 5 summarises the changes needed in 
the RTSJ to support our approach, and the impact on 
feasibility analysis. Finally, the conclusions are given. 

The remainder of this paper assumes that priority 
changes that require OS intervention occur 
immediately and are not deferred. The terms “thread” 
and “schedulable object” are used interchangeably. 

2. Dynamic Priorities and Flexibility 

The general scheduling mechanism supported by the 
RTSJ is undefined. In part, this is due to the variety of 
execution environments in which an application may 
execute. Whatever the execution environment, the 
“write-once carefully, run-anywhere conditionally” 
goal dictates that the RTSJ should define its scheduling 
mechanism. Most real-time operating systems support 
pre-emptive priority-based dispatching. Consequently, 
this paper argues that the RTSJ should define this as 
the base scheduling mechanism. However, many 
modern applications require more flexible scheduling 
[3], [14]. Furthermore, some applications may need to 
be scheduled by one policy while others may need a 
different policy; e.g. fixed priority for hard real-time 
threads and EDF for soft real-time threads. Hence, 
state-of-the-art real-time OSs nowadays support 
hierarchical scheduling [10]. 

In this paper we propose that the RTSJ should 
support hierarchical scheduling within a fixed-priority 
framework. More specifically, we present a two-level 
scheduling scheme, with the RTSJ’s priority scheduler 
at the top level. Under this scheme an application can 
implement its own scheduler, which may have its own 
notion of execution eligibility, and request a band of 
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priorities. The application-defined scheduler can direct 
the execution of threads within the requested band by 
manipulating their priorities. Adopting this approach 
also allows multiple schedulers to be integrated. It is 
also sympathetic to the notion that priority-based 
scheduling is more ingrained in the RTSJ than 
intended, and that a more general scheduling 
mechanism would require more fundamental changes 
to the RTSJ than is acceptable to the community. 

2.1. The Proposed Model 

Currently the Scheduler class is defined as follows: 
package javax.realtime; 
public abstract class Scheduler { 
  protected Scheduler(); 

protected abstract boolean addToFeasibility( 
      Schedulable sched); 
  protected abstract Boolean removeFromFeasibility( 
      Schedulable sched); 
  public abstract boolean isFeasible(); 
  public abstract boolean setIfFeasible( 
      Schedulable sched, ReleaseParameters rel, 
      MemoryParameters mem); 
  public static Scheduler getDefaultScheduler(); 
  public static void setDefaultScheduler( 
      Scheduler scheduler); 

... 
}

As can be seen from this specification, the 
Scheduler is mainly concerned with manipulating the 
feasibility set and performing feasibility analysis. In 
other words, although the scheduler is responsible for 
releasing schedulable objects, monitoring deadline 
misses and cost overruns, implementing the required 
priority inheritance algorithm etc, there is no API 
support for these. Most of the semantics of scheduling 
in the RTSJ are defined to be for the priority scheduler 
and are carried out under the hood. This was to allow 
greater flexibility to an RTSJ implementation that 
would want to support other schedulers1. However, this 
now means that, in order to expose the underlying 
mechanisms, a radical overhaul of the RTSJ scheduling 
API would be required. 

The approach taken here is different. In order to 
keep changes to the API as small as possible, we keep 
the scheduling mechanism invisible to applications, 
relying instead on the priority-based dispatching to 
carry out application-defined scheduling policy 
decisions. An application-defined scheduler is assigned 
four priority queues of the PriorityScheduler. We 
name these H(high), M(medium), ML(medium-lock), 
and L(low). This set of priority queues is called a 
scheduling band. These priorities are to be used in the 
following manner:

                                                       
1 Since the semantics for methods like waitForNextPeriod()
are only defined for the PriorityScheduler, other schedulers 
can support different semantics.

• When schedulable objects are released (or become 
unblocked), they are to be released at the high priority 
level. This priority is where all scheduling decisions 
need to be carried out. 
• The application-defined scheduler keeps track of the 
thread with the highest execution eligibility. This 
object has its priority set to the medium level. 
• Queue L is where all the application scheduler’s 
threads usually reside when they are not running. 
• Finally, priority ML is associated with object locking 
and will be discussed later in the paper. 

In the next subsection we will see how the 
PriorityScheduler uses these priorities to enforce 
application-defined scheduling policy decisions. 

2.1.1. The new PriorityScheduler class. The 
basic idea behind this paper is that any scheduling 
policy can be supported by simply manipulating 
priorities, assuming we know when the RTSJ 
library/virtual machine is about to call an OS routine 
that might potentially block the calling schedulable 
object and cause a context switch. To facilitate this, 
four new methods are introduced into the 
PriorityScheduler class. The four methods are: 
package javax.realtime;
public class PriorityScheduler extends Scheduler{ 
   ... 
  // constants for “reason” argument 

public static final int WAIT_FOR_NEXT_RELEASE; 
public static final int SLEEP;  

  ... 
  // constants for “state” argument 

public static final int LOCKED; 
public static final int UNLOCKED; 
// new methods

  protected static final void prepareToSuspend( 
            Schedulable sched, int reason);
  protected static final void prepareToSuspend( 
            Schedulable sched, Object lock, 
            MonitorControl monitor); 
  protected static final void reschedule( 
            Schedulable sched, Object lock, 
            MonitorControl monitor, int state); 
  protected static final void reschedule( 
            Schedulable sched); 
}

The goal is to give control to the base scheduler 
(PriorityScheduler) just before the schedulable 
object calls a potentially suspending OS call and right 
after it returns from such a call2. prepareToSuspend()
precedes the OS call and reschedule() comes 
immediately after that. The RTSJ virtual machine and 
libraries are modified accordingly. As we can see, 
there are two variations for each method; the version 
with the lock argument is for the special case of 
locking an object through a synchronized statement or 

                                                       
2 This assumes that the RTSJ adopts a native thread model and that 
the OS performs all context switches. If the RTSJ performs its own 
scheduling, it calls the methods just before and after the context 
switch code.
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method. Locking will be discussed more thoroughly in 
later sections. The other version of the two methods is 
for all other potentially suspending situations, as 
specified by the reason argument, e.g. 
WAIT_FOR_NEXT_RELEASE, SLEEP, IO_WAIT, etc. 
prepareToSuspend() is called before a thread executes 
a potentially blocking operation (e.g. after the end of 
each release). It sets the caller’s priority to high (ready 
for the next release), and then asks the application-
defined scheduler for the thread with the next highest 
execution eligibility. It sets the priority of this thread to 
medium and the method returns. The result is that, if 
the thread blocks, the next eligible thread will 
automatically execute. If the thread doesn’t block, it 
will immediately call reschedule(). reschedule()

takes care of a thread when it becomes available to run. 
It compares the execution eligibility of the calling 
thread with that of its current most eligible thread. If 
the caller has higher execution eligibility, the previous 
most eligible thread has its priority set to low and the 
caller has its priority set to medium. For example, 
consider some code in the RTSJ implementation that is 
about to put a thread to sleep through a POSIX call:
  sleep(seconds); 

This would be rewritten as: 
  PriorityScheduler.prepareToSuspend(
    RealtimeThread.currentRealtimeThread(), SLEEP); 
  sleep(seconds); 
  PriorityScheduler.reschedule(
    RealtimeThread.currentRealtimeThread()); 

With this code, an initial thread T1 runs at medium 
priority M. The prepareToSuspend() method raises 
the priority of the thread to high (H). It then asks the 
thread’s application-defined scheduler for the next 
most eligible thread (say T2) in its band. It sets T2’s 
priority to M and returns. Following, the POSIX call to 
sleep() is executed and T1 suspends (while at priority 
H). Priority-based dispatching will now select the next 
thread, which is T2 at priority M. When seconds have 
elapsed, T1 awakens, preempting T2 since its priority is 
still H>M. It immediately calls reschedule(), which 
checks which thread has the highest eligibility, sets its 
priority to M and the other thread’s priority to low (L). 

The API between the base scheduler and the user-
defined schedulers is given in the next subsection. 

2.1.2. Application-defined schedulers. To allow 
application-defined schedulers, a new subclass of 
Scheduler is introduced: 
package javax.realtime; 
public abstract class ApplicationDefinedScheduler  
                extends Scheduler { 

public ApplicationDefinedScheduler(int low, int
    medium_lock, int medium, int high, 
    ProcessingGroupParameters cap, 
    int preemptLevels); 

protected abstract void released( 
    Schedulable sched, boolean running); 

protected abstract void preempted( 

    Schedulable current, Schedulable newcomer); 
protected abstract void lockedObject( 

    Schedulable sched, int objectCeiling); 
protected abstract void unlockedObject( 

    Schedulable sched, int objectCeiling); 
protected abstract void suspended( 

    Schedulable sched, int reason); 
protected abstract Schedulable getMostEligible(); 
protected abstract Schedulable 

  compareEligibility(Schedulable sched1, 
                     Schedulable sched2); 

protected abstract boolean setScheduler( 
    Schedulable sched); 

protected static final ApplicationDefinedScheduler 
  getScheduler(int priority); 

protected static final ApplicationDefinedScheduler 
  getScheduler(Schedulable sched); 

protected static final int getSchedulingBand( 
    int priority); 

public static final int getLevelsPerBand(); 
public static final void setLevelsPerBand( 

    int levels); 
protected static final int calculateAbsolute( 

    int band, int level); 
  protected static final void setSchedulable( 
    Schedulable sched, 
    ApplicationDefinedScheduler appScheduler); 
}

In order to create an application-defined scheduler 
we must inherit from this class and implement all 
abstract methods, which form the one-way API 
between the PriorityScheduler and every application 
scheduler (only the base scheduler can issue calls to 
other schedulers). Following, we give a description of 
each abstract method: released() is called when a 
new thread in the scheduler’s band has been started; 
preempted(Schedulable, Schedulable) is called 
when preemption happens within the band; locked-
Object() tells the scheduler that one of its threads has 
locked an object (i.e. entered a synchronized region); 
unlockedObject() informs the scheduler that one of 
its threads has released an object lock (i.e. exited a 
synchronized region); suspended() informs the 
scheduler that a thread has been suspended (in reality, 
this method is called right before the thread is actually 
suspended); the getMostEligible() method asks from 
the application scheduler to return its next most 
eligible thread; compareEligibility() asks the 
scheduler to specify which of the two given threads has 
greater eligibility according to the scheduler’s 
scheduling policy; finally, setScheduler() notifies an 
application scheduler that a thread has been assigned to 
it. There are also six static methods, which will be 
discussed in the next subsection. 

As an example of threads running under an 
application-defined scheduler let us consider the 
execution of three real-time threads (T1, T2 and T3)
shown in Figure 1. They are released at times t1, t2, and 
t3 respectively (where t1<t2<t3). T2 has the highest 
execution eligibility, followed by T3 and T1. The upper 
part of Figure 1 shows what priority each thread has at 
any given point in time, while the lower part shows the 
resulting thread execution schedule. Note how all 
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threads execute at high when they are released and 
during a prepareToSuspend() call. 

Figure 1: Manipulating Operating System Priorities 

With this approach, a thread with lower execution 
eligibility will execute in preference to a higher 
execution eligibility thread but only for a limited time 
when it is released. This is similar to an OS that must 
allow a thread to be released before deciding what 
priority it should run at. 

2.1.3. Multiple Schedulers. With the above approach 
multiple user-defined schedulers can coexist in the 
system, if they are allocated non-overlapping bands in 
the RTSJ priority range. Hence, the proposal supports 
two-level scheduling. The first level scheduler is 
priority-based, the second level is user-defined within a 
scheduling band. The ApplicationDefinedScheduler
class, apart from specifying the API for application 
schedulers, also manages the system’s scheduling 
bands, and for this reason it specifies a static API for 
the PriorityScheduler to use, as seen in the previous 
subsection. Each application-defined scheduler’s 
constructor must invoke the ApplicationDefined-

Scheduler constructor through super(). The 
arguments passed are: the four priority levels the 
scheduler wants reserved (low, medium_lock, medium,
high); a ProcessingGroupParameters object (cap)
through which each application-defined scheduler is 
given a processor capacity for the schedulable objects 
it manages; and the numbers of preemption levels the 
band is going to need (preemptLevels) – this last 
argument will be discussed in the next subsection. The 
ApplicationDefinedScheduler class keeps all band 
related information (band-scheduler pairings). If the 
requested priority levels overlap with previous 
reservations, the ApplicationDefinedScheduler

constructor throws an unchecked exception. The static 
methods are: getScheduler(int) returns the 
ApplicationDefinedScheduler assigned to the given 
priority level; getScheduler(Schedulable) returns the 
ApplicationDefinedScheduler which schedules the 
given thread; getSchedulingBand(int) returns the 
low priority of the band to which the given priority 
belongs to; getLevelsPerBand() and setLevels-

PerBand(int) manipulate the default number of 
preemption levels per band; setSchedulable() is 
called by the setScheduler() method of each user-

defined scheduler to inform the ApplicationDefined-
Scheduler that a particular thread will be scheduled by 
the calling scheduler; finally, calculateAbsolute()
will be discussed later in this paper.

2.2. Execution Eligibility Inversions 

Execution eligibility inversion can occur whenever a 
schedulable object is blocked waiting for a resource. In 
order to limit the length of that blocking, the RTSJ 
requires that the priority scheduler maintain all queues 
used by the real-time virtual machine in priority order. 
So, for example, the queue of schedulable objects 
waiting for an object lock must be priority ordered. 
Where there is more than one schedulable object in the 
queue at the same priority, the order between them is 
defined to be first-in-first-out (FIFO). Similarly, the 
queues resulting from calls to the wait methods in the 
Object class should be priority FIFO ordered. 

The RTSJ also provides facilities for the 
programmer to specify the use of different priority 
inversion control algorithms. By default, the RTSJ 
requires priority inheritance to occur whenever a 
schedulable object is blocked waiting for a resource 
(for example, an object lock). The programmer can 
change the default priority inversion control algorithm 
for individual objects (or for all objects) via the 
MonitorControl class hierarchy. At the root of this 
hierarchy is the following abstract class: 
package javax.realtime; 
public abstract class MonitorControl { 

protected MonitorControl(); 
  public static MonitorControl getMonitorControl(); 

public static MonitorControl getMonitorControl( 
         Object monitor); 

public static MonitorControl setMonitorControl( 
         MonitorControl policy); 

public static MonitorControl setMonitorControl( 
         Object monitor, MonitorControl policy); 
}

The four static methods allow the getting/setting of 
the default policy and the getting/setting for an 
individual object (the methods return the old policy). 
The RTSJ defines two policies, subclasses of 
MonitorControl: PriorityInheritance (default 
policy) and PriorityCeilingEmulation.

2.2.1. Adding preemption levels. The role of priority 
inversion control algorithms is to bind the time during 
which a higher priority schedulable object can be 
blocked (by a lower priority schedulable object) when 
trying to access a shared resource. Baker [2] used the 
concept of preemption levels to introduce execution 
eligibility inversion control to scheduling algorithms 
with different notions of execution eligibility, other 
than a fixed priority. With preemption levels, a 
schedulable object can only preempt another object if it 
has a higher preemption level. Each schedulable object 
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is assigned a preemption level according to the 
following rule: if a schedulable object has higher 
execution eligibility than another, but arrives later than 
the other, then it must have a higher preemption level 
than the other. This is to say that, in situations where 
no locking takes place, preemption levels concur with 
priorities as to which schedulable should run next. 
Each shared resource is given a ceiling preemption 
level, which, for single unit resources, is the highest 
preemption level of all the schedulable objects 
accessing the resource. Based on these definitions, 
Baker defined an execution eligibility inversion 
avoidance protocol, known as Stack Resource Policy 
(SRP), which states that a schedulable object can start 
execution only if it has the highest execution eligibility 
and its preemption level is higher than the ceiling of 
each locked resource. To make this check easier, the 
notion of the system ceiling is introduced, which is the 
highest ceiling amongst the locked resources, so that a 
thread’s preemption level need only be higher than the 
system ceiling. This check ensures that once a thread 
starts its execution it cannot block on a lock3.

Preemption levels are ideal in helping us control 
resource sharing between scheduling bands. They can 
be applied to any scheduling policy, so effectively we 
can assign them across all bands and have a uniform 
way of controlling priority inversion throughout the 
whole range of priorities (for fixed-priority scheduling 
the preemption level equals the priority). As we have 
seen, when constructing an application scheduler we 
assign it a number of preemption levels (this must be at 
least equal to the number of threads the scheduler will 
manage). From this range, we assign each thread a 
relative preemption level, which is the level it has 
within its scheduler. So, for example, if we assign 5 
preemption levels to a band then for any thread in that 
band its relative preemption level must be between 1 
and 5. Based on this we can calculate the thread’s 
absolute preemption level using the next formula: 

rpllevelsapl
n

i
i += ∑

=1

where apl is the thread’s absolute preemption level, 
rpl is the relative preemption level, n is the number of 
bands below the thread’s band, and levelsi is the 
number of preemption levels used by band i. In 
essence, the absolute preemption level is known if we 
know the pair (low, rpl), where low is the low priority 
of the thread’s band, because we can calculate n when 
we know low. This is the calculation that the 
calculateAbsolute() static method in 

                                                       
3 Baker’s algorithm assumes that threads do not voluntarily suspend 
themselves whilst holding a lock.

ApplicationDefinedScheduler does, returning the 
absolute preemption level for a given pair of (band,
preemption level). 

We can now define a resource ceiling to be a pair 
(low, rpl) such that the absolute preemption level that it 
yields is the highest amongst the threads accessing the 
resource. To extend the RTSJ to support preemption 
levels, the following new classes are introduced4:
package javax.realtime; 
public class PreemptionLevelParameters 
       extends PriorityParameters {
  public PreemptionLevelParameters( 
     int relativePreemptionLevel); 
  public void setPreemptionLevel( 
    int relativePreemptionLevel); 

public int getPreemptionLevel(); 
}

public class StackResourcePolicy 
       extends MonitorControl { 

private StackResourcePolicy(int band, 
       int ceiling); 

public int getSchedulingBand(); 
public int getCeiling(); 
public static int getMaxPreemptionLevel(); 
public static StackResourcePolicy instance( 

       int band, int ceiling); 
}

Implementation of the priority inversion control 
algorithm is done at the middleware layer and is 
transparent to the OS. Every resource, which is 
accessed by threads running under an application-
defined scheduler, should be governed by a 
MonitorControl object of type StackResourcePolicy.
In light of locking, a thread’s current band (the band it 
is currently executing in) can be either its own 
(original) band or a higher band. Before a thread enters 
a synchronized region, prepareToSuspend(sched,

lock, monitor) is called, raising the thread to the high
priority of its current band. Because of the SRP, the 
thread is guaranteed not to block, so no checking is 
needed. The method just sets the thread’s priority to 
the appropriate level; if the getSchedulingBand()
method of the StackResourcePolicy object, associated 
with the resource to be locked, returns a higher band 
than the thread’s current band, locking takes place 
outside the band and the thread is moved to the high
priority of the higher band. If the band returned is the 
same as the thread’s current band, then the thread stays 
at the high priority of the current band. It is an 
erroneous condition for the method to return a lower 
band than the locking thread’s own band, but it could 
return a lower band than the thread’s current band (i.e. 
the thread has already locked another resource outside 
its own band). In this case the system ceiling doesn’t 

                                                       
4 Note, this is an extension of PriorityParameters as the 
PriorityScheduler ultimately schedules each schedulable 
object. Also, the base priority is not set by the application when 
creating PreemptionLevelParameter objects. It is set by the 
PriorityScheduler.
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change when the locking takes place. Next the 
synchronized call takes place (notice that no matter 
which band the thread is locking at, its priority when 
making the synchronized call is high for the respective 
band). Immediately after, reschedule(sched, lock, 
monitor, LOCK) is called, which, depending on 
whether the thread is on its own or on a higher band, 
takes the thread to the medium or medium_lock priority 
of the band, respectively. When unlocking we call 
reschedule(sched, lock, monitor, UNLOCK), which 
raises the thread to the high priority of the current band 
and checks to see if there is a thread available to run in 
the current band (it could be the case that a thread was 
released while the calling thread was holding the lock, 
but couldn’t run because of the system ceiling). At this 
point there are two things to consider: i) “is the current 
band the thread’s own band?”, and if not, ii) “is the 
thread returning to its own band?” If the answer to the 
first question is yes, then reschedule() calls 
getMostEligible(), places the returned thread at the 
middle queue, and, if this thread is different from the 
calling thread, places the calling thread at the low
queue. If the answer is no, then reschedule() calls 
getMostEligible() and places the returned thread (if 
any) at the middle queue of the current band. 
Depending, now, on whether the calling thread is 
returning to its own or to a higher-than-its-own band, it 
is placed on the middle queue of its own band or on the 
middle_lock queue of the band it returns to. Note that 
the scheme can cope with nested locking. However, 
there is one condition that needs to hold: the locking 
thread must never suspend itself.5.

Consider an example of two EDF schedulers (EDF1
and EDF2), which have been allocated to priority bands 
(L1=1, ML1=2, M1=3, H1=4) and (L2=7, ML2=8, M2=9, 
H2=10) respectively, as illustrated in Figure 2 
(priorities 5-6 and 11-28 have not been allocated to any 
application-
defined scheduler, 
so they are 
scheduled directly 
by the default 
priority scheduler). 

The EDF1
scheduler has three 
schedulable 
objects (S11, S12,
S13) that have 
preemption levels 
(PL11<PL12<PL13)

                                                       
5 Note that the RTSJ does allow this. It is outside this paper’s scope 
to discuss the modifications to our approach needed to cope with this 
behaviour. As it is, we maintain the system ceiling, when suspension 
occurs while locking.

respectively. The EDF2 scheduler has two schedulable 
objects (S21 and S22) that have preemption levels 
(PL21<PL22) respectively.  S12, S13, S21, and S22 all 
access a shared Object O. Since the highest absolute 
preemption level amongst the schedulables accessing 
O is that of S22, the ceiling of the object will be the pair 
(L2, PL22). Now whenever S12 (or S13) accesses the 
object its priorities have to be raised to ML2=10. This 
will ensure that S12 (S13) cannot be preempted by S13
(S12), or by anything running on priority queues 5-8. 
Now, as S21 and S22 also access the resource, they may 
become executable whilst S12 (or S13) is accessing the 
resource. Consider the case where S21 becomes 
executable at H2 priority level. It will preempt S12
(S13). The EDF2 scheduler will move S21 to the L2
level, since its preemption level will not be higher than 
the system ceiling, which is (L2, PL22). L2 is lower than 
ML2, so S12 (S13) will continue to run. When S12 (S13)
unlocks the object, it will be elevated to H2 and query 
EDF2 for its most eligible schedulable. This will return 
S21, which will be put on M2. S12 (S13) will next be 
moved to M1, thus being preempted by S21.

3. An EDF Scheduler 

As an example and proof of concept for our user-
defined scheduling scheme, we implemented an EDF 
scheduler. 
public class EDFScheduler  
       extends ApplicationDefinedScheduler { 

public EDFScheduler( 
       int low, int medium_lock, int medium, 
       int high, ProcessingGroupParameters cap, 
       int preemptLevels); 
  ... 
}

The class implements all abstract Scheduler and 
ApplicationDefinedScheduler methods, and contains 
methods for manipulating all internal structures needed 
to implement the scheduler (EDF queues). The basis 
for our implementation is the preemption level protocol
(PLP) by Burns et al. [5]. The preemption level 
protocol implements the EDF scheduling algorithm on 
priority queues and is based on the stack resource 
policy. Preemption levels are assigned according to the 
relative deadline of each schedulable object (the 
shorter the deadline, the higher the preemption level) 
[2]. In our implementation, the EDF scheduler has its 
own internal priority queues where threads are 
logically placed. The priorities of these queues equal 
the relative preemption levels used in the EDF band. 
The PLP protocol is well defined in [5] and we will not 
repeat it here. 

Figure 3 shows the mapping of EDFScheduler
queues to PriorityScheduler queues. Box (a) shows 
the application code instantiating an EDFScheduler.
Box (b) shows the created internal EDF queues (there 

Figure 2:  An Example 
with Multiple Schedulers
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can be any number of these queues). Box (c) shows the 
four queues reserved for the EDFScheduler in the 
PriorityScheduler. Finally, box (d) shows the 
mapping between the threads on the priority queues 
and their logical counterparts on the EDF queues. Here 
we are not interested on how the threads are placed on 
the EDF queues. The aim is to show that while threads 
are placed on priority queues in FIFO order, their 
logical counterparts are placed in EDF order, and 
hence the overlapping arrows that show the mapping. 

4. Related Work 

There are three approaches to achieve flexible 
scheduling: 
• Pluggable schedulers – in this approach the system 
provides a framework into which different schedulers 
can be plugged. The CORBA Dynamic Scheduling 
[13] specification is an example of this approach. 
Kernel loadable schedulers also fall into this category, 
such as that used within the SHaRK kernel [11]. 
• Application-defined schedulers – in this approach, 
the system notifies the application every time an event 
occurs that requires a scheduling decision to be taken. 
The application then informs the system which thread 
should execute next. The proposed extensions to real-
time POSIX support this approach [1]. 
• Implementation-defined schedulers – in this 
approach, an implementation is allowed to define 
alternative schedulers. Typically this would require the 
underlying operating system (virtual machine, in the 
case of Java) to be modified. The Ada 95 language 
allows this approach. 

Currently, the RTSJ adopts the implementation-
defined schedulers approach (although it also tries to 
provide a framework for the implementation to follow) 
and allows for applications to determine dynamically 
whether the real-time JVM on which it is executing has 

a particular scheduler. Unfortunately, this is the least 
portable approach, as an application cannot rely on any 
particular implementation-defined scheduler being 
supported. The only scheduler an application can rely 
on being present is the PriorityScheduler. The work 
reported in this paper only assumes the presence of the 
priority scheduler and that priority changes have an 
immediate effect. An attempt has been made [9] to 
support a utility accrual scheduler in the RTSJ but this 
required a non standard interface and was not 
generalized. Similarly, although JTime supports 
multiple schedulers, this has been achieved in an ad 
hoc manner [7]. 

The use of dynamic priority changes to support 
alternative scheduling policies is well established. The 
approach adopted here is based on [4].  Li et al [12] 
have recently taken this approach and provided a 
formalized POSIX framework, although they do not 
support resource sharing between different schedulers. 

5. Discussion and Conclusions 

5.1. Specification Changes 

The current RTSJ scheduler framework is under-
specified and alternative schedulers cannot be 
implemented in a standard way. Furthermore, 
applications that use such implementation-defined 
schedulers will not be portable (by definition) between 
different implementations. Consequently, it is 
inevitable that the specification will have to evolve if it 
is to meet the demands of future real-time applications. 
In addition to the changes made to the 
PriorityScheduler class and the introduction of the 
new ApplicationDefinedScheduler class, a new 
MonitorControl policy is required to provide support 
for execution-eligibility inheritance. Baker’s pre-
emption level control policy is already well established 
and provides a sound theoretical basis for this. The 
implementation strategy given in [5] also allowed this 
to be applied effectively within a priority framework.  

Moreover, the following additions to the RTSJ 
infrastructure are needed to fully support the approach: 
• It is an anomaly that RTSJ does not provide the CPU 
time consumed by a schedulable object (or remaining) 
for the current release. These are essential for some 
scheduling algorithms (e.g. value-density scheduling). 
• Several of the semantics governing the behaviour of 
schedulable objects are defined to be scheduler 
specific, with only those for the priority scheduler 
given. With the approach proposed in this paper, these 
semantics will be applied to all SO irrespective of their 
controlling application-defined schedulers. 

Figure 3: Mapping between 
EDFScheduler and PriorityScheduler
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5.2. Impact on Feasibility Analysis 

As well as providing a framework for schedulers, the 
RTSJ includes a framework for the supporting on-line 
feasibility analysis. However, the default feasibility 
analysis for the priority scheduler is very crude (it 
simply assumes an adequately fast machine to handle 
the periodic and sporadic load). The proposal here 
allocates all application-defined schedulers a CPU 
budget and replenishment period using the RTSJ 
processing group parameters mechanism. This means 
that the threads within a scheduling band can be treated 
as if they are being served by a deferrable server [15]. 
Hence, if the priority scheduler is supporting true 
feasibility analysis, then this is not undermined by the 
proposed approach. 

Within a band, the application-defined scheduler 
can only assume that it gets no more than its full 
budget each period. Hence, it can only give 
independent partial guarantees. To give full guarantees 
needs a global server-based analysis (see [6]). To give 
full independent guarantees requires the base scheduler 
to guarantee the capacity specified in the processing 
group parameters, which would be a change to the 
processing group semantics. 

5.3. Conclusions 

One of the initial goals of the RTSJ was to support the 
state-of-practice in real-time systems development and 
mechanisms to allow advances in state-of-the-art. As a 
result of this, the specification provides several 
frameworks that are only partially instantiated. The 
scheduler framework is one of them (the others being 
the feasibility analysis framework, the clock 
framework and the physical memory framework). 
Whilst this is laudable, more specification work is 
needed if these frameworks are to become usable in a 
standard and portable way. In this paper we have 
extended the scheduler framework to allow the 
hierarchical scheduling of real-time systems within 
priority bands. The approach is backward` compatible 
with the current version of the RTSJ in that programs 
that do not define their own schedulers will execute 
unchanged on a version of RTSJ that supported the 
approach proposed in this paper. 

A longer version of the paper can be found at: 
http://www.cs.york.ac.uk/rts/publications.html 
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