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Abstract: Skyline queries have recently received a lot of attention due to their 
intuitive query formulation: users can state preferences with respect to several 
attributes. Unlike numerical preferences, preferences over discrete value domains 
do not show an inherent total order, but have to rely on partial orders as stated by 
the user. In such orders typically many object values are incomparable, increasing 
the size of skyline sets significantly, and making their computation expensive. In 
this paper we explore how to enable interactive tasks like query refinement or 
relevance feedback by providing ‘prime cuts’. Prime cuts are interesting subsets of 
the full Pareto skyline, which give users a good overview over the skyline. They 
have to be small, efficient to compute, suitable for higher numbers of query 
predicates, and representative. The key to improved performance and reduced 
result set sizes is the relaxation of Pareto semantics to the concept of weak Pareto 
dominance. We argue that this relaxation yields intuitive results and show how it 
opens up the use of efficient and scalable query processing algorithms. Assessing 
the practical impact, our experiments show that our approach leads to lean result 
set sizes and outperforms Pareto skyline computations by up to two orders of 
magnitude. 

1. Introduction 

Due to the ever growing volume of database content and the personalization needs in 
information searches, human preferences already play an essential part in today’s 
information systems. This is because mere SQLstyle queries only too often produce 
empty or too numerous results. First approaches at cooperative databases as those by 
[LL87, Mo88], handled user queries that retrieved empty results with respect to a 
database instance by automatic relaxation of query predicates. Using score values to 
express the utility of database objects with respect to a query, cooperative queries come 
in various flavors: 
• Top-k queries (see e.g. [GBK00, FLN01]) have shifted retrieval models from exact 

matching of attribute values to the notion of best matching database objects. Top-k 
models rely on basic scorings of objects for each query predicate and a utility 
function to aggregate the objects’ total scores. 



• Skyline queries extend this principle to cases where still score-based preferences 
exist for each query predicate, but no utility function is a-priori known to 
compromise between predicates (see e.g. [BKS01,TEO01,PTF03,BGZ04]). Skyline 
approaches adopt the principle of Pareto optimality, i.e. only those objects are 
returned, where no object exists in the database having better or equal predicate 
values. 

• Multi-objective retrieval [BG04] finally allows for the interleaved evaluation of 
arbitrary compositions of skyline and top-k queries with proven instance-optimal 
complexity. 

Especially the skyline paradigm has proven its usefulness in a variety of applications 
(e.g., digital item adaptation [KB06] or location-based services [HJ04]), since users 
generally cannot be expected to provide sensible weightings for a utility function. But 
while score-based approaches generally allow for efficient query evaluation, their 
expressiveness in terms of human user preferences remains rather limited, cf. [Fi99]. 
With the use of preferences modelled as strict partial orders with intuitive “I like A 
better than B” semantics ([Ch02, Ki02]), this lack of expressiveness was remedied at the 
price of more expensive query evaluation. A first evaluation algorithm of such partial 
order preference queries was given only recently by [CET05]. Also here the Pareto 
principle was used for evaluating queries involving several partial order preferences: 
• In [Ki02] and [CET05] a strong Pareto dominance principle called Pareto 

accumulation is used: an object has to be better or identical in all attribute values 
for the query predicates, and strictly better in at least one to dominate another 
object. 

• In contrast [Ch03] and [BG05] propose a weak Pareto dominance principle called 
Pareto composition, where an object’s attribute values has to be better, identical or 
incomparable in all predicates, and strictly better in at least one to dominate another 
object. 

The Pareto principle extends querying capabilities and the result set contains all possible 
best database objects with respect to arbitrary utility functions. On the other hand Pareto 
sets grow exponentially in size with increasing numbers of preferences [Be78]. Thus, 
typical tasks during the query process (like query refinement) rather need a good (and 
efficiently computed) overview over skylines. 

For instance, [KRR02] presents an online algorithm where users can influence the order 
in which skyline objects are produced. Eventually the entire skyline is calculated, but at 
every stage of the computation users can provide a direction where most relevant objects 
might be expected. The work in [BZG05] also relies on user interaction, by presenting 
the user with a representative sample of the expected skyline set, and then exploiting 
user feedback to elicit an appropriate utility function for the final result ranking. [KP05] 
proposes to cover the skyline set with ε-spheres where each center of a sphere is a 
representative for all skyline objects within a distance of at most ε. This set of 
representatives is subsequently returned to the user. However, the computation of an 
ε-sphere cover was shown to be NP-hard for more than 2 independent predicates. 
Moreover, the calculation of such approximations always needs expensive computations 
of the entire skyline. These approaches only focus on total-order preferences: all objects 



can be compared in each predicate, which makes combinations of different predicates 
simple. Due to the indifference property in partial order preferences the Pareto 
combination leads to even bigger result sets: if an object is incomparable to other objects 
with respect to just a single preference, it still is Pareto-optimal and thus part of the 
skyline, even if it is the least preferred object with respect to all other preferences. In 
practical applications such incomparability often occurs: users can be indifferent 
between items and very rarely model preference relations between all possible attribute 
values for a query predicate anyway. 

Recent research in [Ki05] has started to combat such indifference in partial order 
preferences by means of ‘substitute values’. The substitute values (SV) semantics 
assigns equal usefulness to some incomparable values. Still, this semantics only 
remedies a small number of cases and is comparable in size and evaluation time to the 
complete skyline.  

Our goal is somewhat more ambitious. We want to efficiently provide ‘prime cuts’ of the 
skyline that can be used in an interactive query process. These prime cuts have to be 
both manageable in size and representative of the Pareto skyline. In this paper we 
present an innovative algorithm for the efficient computation of such prime cuts which 
relies on weak Pareto dominance, as defined in [BG05]. Weak Pareto dominance 
changes the preference semantics to an even higher degree than SV semantics. The 
resulting ‘restricted skyline’, i.e., all objects not weakly Pareto dominated, contains 
intuitively appealing objects, can be derived surprisingly efficient, and thus will deliver 
our prime cuts. The contribution of our approach is therefore twofold: 
• Restricted skylines derive manageable subsets of the partial order skylines (useful 

e.g. as a preview, or for query refinement) by taming the effects of incomparability. 
Our evaluation shows that sizes of restricted skylines are usually lean. 

• Our approach allows to efficiently approximate these restricted skylines without 
having to compute the entire Pareto set first. Query processing relies on progressive 
iteration of ranked result lists for each predicate and allows for pruning. 

In the following we will give a motivating scenario for partial order skylines and explain 
the semantics of the restricted skyline set. We will present the efficient evaluation 
algorithm for restricted skylines and perform extensive experiments to prove the 
practical applicability. 

2. Weak Pareto Dominance and Restricted Skylines 

The following example will illustrate Pareto skylines and lead to the basic notion of 
weak Pareto dominance. 

Example 1: Given preferences P1 on car types and P2 on colors in Figure 1 and the 
following database instance: a green roadster, a black coupé, a blue SUV, a yellow truck 
and a pink limousine. None of them are dominated. The green roadster is maximal in P1. 
It does not dominate the black coupé, because black color is preferred over green. 
Furthermore, the user is indifferent between black and blue cars, thus the blue SUV is 



not dominated by the black coupe, nor dominated by the green roadster because of P2. 
Though the yellow truck has the worst car type, the user has not given any judgment on 
its color, thus making it incomparable. Finally, the pink limousine is completely 
incomparable to all other objects. Thus, the Pareto skyline contains all five elements. 

roadster

SUV

preference P1

truck

coupé

       

blue

red

grey

black

green

preference P2        

limousinepink
truckyellow

roadstergreen
SUVblue
coupéblack
typecolor

limousinepink
truckyellow

roadstergreen
SUVblue
coupéblack
typecolor

database instance  
Figure 1. Partial order preference example  

Using the normal definition of Pareto sets, in Example 1 the entire database would have 
to be retrieved and returned to the user. Since a user usually is interested in refining 
queries according to the most promising result objects, retrieving a sophisticated 
selection from the skyline is a far more cooperative behavior. Our restricted skyline is 
such a selection. But on what grounds can we select ‘better’ objects from the full Pareto 
skyline?  

Generally speaking, skyline queries are only sensible if no ordering or weightings 
between individual predicates are provided. Otherwise utility-based ranking schemes 
such as top-k queries would be far more efficient to use. Pareto sets are designed to 
consist of all optimal objects with respect to all possible utility functions. Therefore, 
selecting a subset of the skyline will always ignore objects that are nevertheless optimal 
for some utility function. In other words, any selection will consider some utility 
functions as being more probable than others. Such an assessment has to be based on 
heuristics. We rely on the heuristic that all user preferences should be relaxed evenly and 
as little as possible, i.e. the relaxation scheme should be fair. In any case, a selection 
doesn’t have to be the final result set. If it can be computed reasonably fast and yields 
manageable result sets, it can also be used as a good starting point for focused searches 
such as the online algorithm in [KRR02] or the feedback algorithm in [BZG05]. Since 
our selection relies on weak Pareto dominance, we will formalize its semantics in the 
following definition (cf. Pareto composition in [Ch03]): 

Definition 1: (weak Pareto dominance)  
Let O be a set of database objects and x, y ∈ O. An object x is said to weakly dominate 
object y with respect to partial order preferences P1, …, Pn, if and only if there is an 
index i (1 ≤ i ≤ n) such that x dominates y with respect to Pi and there is no index j (1 ≤ j 
≤ n) such that y dominates x with respect to Pj. That means, with >P denoting the 
domination with respect to partial order P:  

x weakly dominates y  <=> ∃ i (1 ≤ i ≤ n): x >Pi y ∧ ¬∃ j (1 ≤ j ≤ n): y >Pj x 

We call the set of all non-weakly-dominated objects the ‘restricted’ skyline. Please note 
that for total order preferences, weak and strong Pareto dominance coincide, because 



there are no incomparable objects. Let us reconsider our example and see what changes, 
if we restrict the skyline set using weak Pareto dominance. 
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Figure 2. Sample weak dominance graph 

Example 1 (cont.): Consider the objects from above under the notion of weak Pareto 
dominance (Figure 2). There is still no weak dominance relation between the green 
roadster, and the black coupé, because black color is preferred to green, but a roadster is 
deemed better than a coupé. However, both of them now weakly dominate the yellow 
truck and it can be removed in the restricted skyline. Removing the yellow truck seems 
indeed a very intuitive thing to do, because P1 tells us that everything is better than a 
truck and the user, although voicing explicit color preferences, did not express his/her 
opinions on yellow cars. Moreover, we have to take a closer look at the relation between 
the black coupé and the blue SUV. The user is indifferent between both colors. But the 
black coupé fits his/her car type wishes to a higher degree, hence is probably more 
desirable. The weak dominance relation reflects this semantics: the blue SUV is weakly 
dominated by the black coupé and can be removed. Please note that the pink limousine 
with incomparable predicate values only is still not dominated by anything and will thus 
also be part of the restricted skyline. This reflects the notion that an item may be 
desirable, even if a user was not aware of it when formulating the query. 

In the end, the result size in our small example is almost halved and only less intuitive 
candidates have been pruned. Our work in [BG05] shows that restricted skylines are a 
proper subset of the normal skyline, i.e. the strong Pareto set. The same applies to the 
substitute values skyline, as shown in [Ki05]. Finally, it can be shown that the restricted 
skyline is always a subset of the SV-skyline. 

3. Efficiently Computing Restricted Skylines 

Unlike numerical skylines, any partial order algorithm needs to handle object 
incomparability. This makes algorithms on total orders (such as NN [KRR02] and BBS 
[PTF03]) unsuitable. In contrast we rely on a scheme using topologically ordered lists: 
for each query predicate a list of all database objects sorted according to the respective 
user preference is created. Incomparability can be resolved by exploiting the level order 
of the preference. The algorithm’s main challenge is to determine, if all relevant objects 
have already been seen. In each query evaluation our algorithm therefore first computes 
possible value combinations (so-called l-cuts), which guarantee safe pruning: if a set of 



objects instantiate any l-cut no relevant object can exist in the tails (higher than level l) 
of the sorted lists. The creation of the sorted lists and the calculation of the pruning 
thresholds are only dependent on preference size, not on database size, and therefore fast 
to compute. 
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Figure 3. Level order example  

3.1 Level Order for Partial Order Preferences 

For pruning, we have to arrange for sorted access to objects for each query predicate: 
possibly relevant objects should be returned earlier than rather irrelevant objects. To 
create a proper sorting from the given partial preference orders, we use a simple breadth 
first topological ordering defining ‘levels’: 

Definition 2: (level order)  
Let P be a partial order preference. A value v is said to belong to level l or level(v) = l 
with respect to P, if and only if the longest path from any maximum attribute value in P 
to v consists of (l - 1) edges. Values not explicitly expressed in P belong to level 1. We 
denote the set of all values in level l as levell := {v | level(v) = l}. 

Analogously, a database object x is said to be in level l with respect to P, iff its attribute 
value is in level l. 

This notion of levels imposes an intuitive sorting: all maximum (i.e. non-dominated) 
objects of P are on level 1, all objects that are only dominated in P by maximum objects 
are on level 2, and so on. We call this order level order. In the special case of numerical 
or total order preferences the level corresponds to each object’s rank, if objects with 
identical scores/attribute values are considered to have equal rank. But for partial orders 
this level order has another nice property: 

Lemma 1: (level order domination)  
Let O be a set of database objects and x, y ∈ O. Then object x can only dominate object y 
with respect to a partial order preference P, if level(x) < level(y) with respect to P.  

Proof: If x dominates y there is a path of length q > 0 from x to y in P. Thus it directly 
follows from the definition of levels by longest paths in Definition 2, that:  

       level(x) < level(x) + q ≤  level(y).                                                                           ■ 



Though objects can only be dominated by objects in smaller levels, due to the partial 
order semantics they do not have to be dominated by all objects in these levels, but can 
also be incomparable. For example, blue cars are in a smaller level than grey cars for our 
preference P2, although both are incomparable (see Figure 3). In the following we will 
assume all database objects to be accessed in level order for each preference.  

Note that it is not necessary to compute a complete object index based on the level order 
for each incoming query. Instead, the database maintains object sets clustered by value, 
i.e., the sets of objects sharing the same value for a predicate. Then, creating a list in 
level order just means to sort references to these sets, not to sort all database objects. 
Since user preferences are typically rather small, producing level orders is fast even for 
large databases. 

3.2 Identifying the Pruning Thresholds 

In the last section we have defined a sorted list of objects for each predicate. For pruning 
we introduce the concept of l-cuts. While iterating over the lists, we have to check 
whether all relevant (i.e. not weakly dominated) objects have been accessed already.  

Definition 3: (l-cut of preference orders)  
For a partial order preference P and natural number l, a subset of values C ⊆ P is called 
l-cut, if 

(a)      ∀ v ∈ C : level(v) ≤ l  
(b)      ∀ (w ∈ P\C) ∃ v ∈ C : v >P w  

A set of database objects D forms an instance of an l-cut C if for each v ∈ C ∃ o ∈ D: o 
has attribute value v. An l-cut C is minimal, if no subset C’ ⊂ C is an l-cut. 

The intuitive meaning of l-cuts is to form sets of attribute values that if instantiated by 
database objects, dominate all object values beyond the l-th level. Every completely 
instantiated level of values forms a trivial l-cut. But generally l-cuts will be much 
smaller, and in the following we only need to consider minimum l-cuts. 

Example 1 (cont.): Every single red car is instance of a 1-cut with respect to P2. A 2-cut 
is instantiated by any pair of a blue and a black car. Regarding preference P1, every 
roadster is instance of the 1-cut, every coupé instantiates a 2-cut, and so on. 

For efficient pruning in our skyline evaluation we have to allow for quick tests whether a 
set of objects instantiating an l-cut has already been accessed. Hence, our first step in 
query evaluation is to compute all minimal l-cuts for each preference dimension. If we 
later find some object set instantiating any such cut we have found a pruning threshold. 
We now present a simple way to calculate minimal l-cuts. We first split the preference 
graph into levels, according to Definition 2: 

 

 



Algorithm 1 (calculating attribute value levels) 
0. Select level1 as the set of all maximum attribute values in a preference graph P, i.e. 

all attribute values that are not dominated by any other attribute value. 
l := 1 

1. levell+1 := ∅ 
2. While there are attribute values in levell do  

2.1. Consider the next attribute value x in levell 
2.2. For each attribute value y directly dominated by attribute value x with respect 

to P do 
2.2.1. If y ∉ level0 ∪…∪ levell +1,  

   then levell +1 := levell +1 ∪ {y} 
2.2.2. If y ∈ levelj for some j ≤  l,  

   then remove y from levelj and set  
   levell+1 := levell+1 ∪ {y} 

3. If levell+1 is not empty, set l := l+1 and proceed with step 1. 
 

From these level sets, we can now determine minimal l-cuts. Obviously, each complete 
set levell is a cut candidate, because all objects having attribute values in levelj with l < j 
are dominated by some object having an attribute value from set levell. Moreover, if we 
replace some cut element by any object dominating that cut element, the resulting set 
still forms a cut. Thus, to find all possible cut candidate value sets, we have to 
systematically enumerate all possible replacements. For this purpose, we first build a cut 
candidate value set from each complete levell and then exhaustively replace attribute 
values by dominating values. Finally we remove redundant values to identify minimal 
cuts.  

Algorithm 2 (calculating minimal cut value sets) 
0. Given n sets of attribute values level1 ,…, leveln as output by algorithm 1 and 

initialize candidates1,…, candidatesn := ∅, replace1,…, replacen := ∅ and 
minimalcuts1,…, minimalcutsn := ∅.  

1. For l := 1 to n do 
1.1. If levell ∉ candidatesl  

   then candidatesl := candidatesl ∪ {levell} 
1.2. For j := 1 to |levell| do 

1.2.1. Consider the j-th attribute value aj in an enumeration of levell and 
initialize  
replacej := ai 

1.2.2. For each y with aj <P y and y ∉ replacej do replacej := replacej ∪ {y} 
1.3. Generate all possible combinations {x1,…,x|level l|} with xl ∈ replacel and in 

each combination remove redundant attribute values, i.e. duplicates and values 
dominated by another value in the set.   
candidatesl := candidatesl ∪ {x1,…,x|level l|} 

1.4. Consider all candidate sets cand in candidatesl and if no subset of cand is in 
candidatesl, mincutsl := mincutsl ∪ {cand} 



Algorithm 2 is exponential in the size of the partial order preference. However, this size 
is typically rather small, and l-cut computation is always independent of the actual 
database size. Therefore, query processing efficiency is dominated by the actual skyline 
computation described in the next subsection. Please not that we nevertheless include the 
cost of the minimal l-cut computations in the query processing times in all our 
experiments. 
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Figure 4. False positives due to pruning  

3.3 Correctly Pruning Database Objects 

In each preference we identified all minimal l-cuts. Now we are ready to present a way 
for pruning irrelevant parts of the database without missing elements of the restricted 
skyline. This is the major component needed to build an efficient evaluation algorithm 
for partial order preference queries under the weak Pareto dominance paradigm. The 
following theorem will show a sufficient condition to correctly prune database objects: 

Theorem 1: (absence of false negatives)  
Let O be a set of database objects and S1,…, Sn be level-ordered lists of O with respect to 
partial order preferences P1,…,Pn. Let o1,…,ok ∈ O and assume that o1,…, ok have 
already been accessed in all level ordered lists and {o1,…, ok } form an l-cut with respect 
Pi for some numbers i and l. Then no object that for all 1 ≤ j ≤ n occurs on a higher level 
than l in Sj can be part of the restricted skyline. 

Proof: Let {o1,…, ok } be as defined above and u ∈ O be an object that has not yet been 
accessed in any Pj (1 ≤ j ≤ n). For the sake of contradiction we will assume that object u 
belongs to the restricted skyline set, i.e. it is not weakly dominated by any other object. 
Since {o1,…, ok} form an l-cut in Pi, u has to be dominated by some object om (1 ≤ m ≤ k) 
with respect to Pi. Because we have assumed u to be not weakly dominated by any 
object, there has to be at least one preference where u dominates om Since om has already 
been accessed in all Pj and u has not yet been accessed with respect to any Pj, its level 
levelj(u) ≥ levelj(om). Now according to Lemma 1 u cannot dominate om in any 
preference and thus must be weakly dominated. This contradicts the assumption of u 
being part of the restricted skyline.                                                                                    ■ 



Now we know that unseen objects can never be part of the restricted skyline and can be 
correctly pruned after we have a completely known set of objects that instantiates an l-
cut. Unfortunately, due to the intransitivity of weak Pareto dominance, in some rare 
cases an unseen object could still weakly dominate a member of the restricted skyline 
candidate set, thus resulting in a false positive. 

Example 3: Given preferences P1 on car types and P2 on colors in Figure 4 and the 
following database instance: a blue coupé, a blue SUV, a green SUV and a grey 
limousine. Let us assume that we have iterated over the sorted lists up to level 2 in each 
preference, i.e. we have seen all roadsters, coupés and SUVs and all red, blue and black 
cars. Given the database instance, we have accessed the blue coupé, blue SUV and green 
SUV. Moreover the first two items have been accessed in both preferences and form a 2-
cut with respect to P1. Following theorem 1 we can now prune all remaining objects, i.e. 
the grey limousine. This pruning is indeed correct, since the grey limousine is weakly 
dominated by the blue coupé. But whereas neither the blue coupé, nor the blue SUV 
dominate the green SUV, it is dominated by the pruned grey limousine and thus a false 
positive in the restricted skyline set. 

As we can see from Example 2, preference graphs where such false positives can occur 
have to consist of long isolated branches and the database instance should be rather 
sparse on top objects. In fact, finding these conditions in all preferences is very unlikely 
(cf. Section 4.7). 

3.4 Efficiently Approximating the Restricted Skyline 

For computing the correct restricted skyline we have to 
• derive the Pareto skyline,  
• test all elements against all other database objects for weak Pareto dominance, and  
• finally remove all weakly dominated objects. 
However, this is very inefficient since for Pareto skyline computation with partial order 
preferences usually all database objects have to be accessed (for example on a database 
with only 500,000 tuples and 5 partial order preferences calculating the Pareto skyline 
takes about 22 minutes). Exploiting sorted lists and the pruning condition defined in 
section 3, in the following algorithm we will take a few false positives into account. 
However, in return we may prune large parts of the database and thus get an efficient 
query processing, while still always correctly deriving all objects of the restricted skyline 
(for example calculating the approximate restricted skyline in the same scenario and 
setting as above takes only 35 seconds). 

 

 

 

 



Algorithm 3: (approx. restricted skyline computation) 
0. Given a set of database objects O and a query containing n partial order preferences 

P1,…, Pn; given a set of n sorted lists S1,…, Sn of O with respect to P1,…,Pn in level 
order. Initialize a set for all accessed objects accessed := ∅, sets for all objects 
accessed in the n lists accessed1,…, accessedn := ∅, a set for all objects already 
accessed with respect to all preferences complete := ∅, and a set for all objects 
currently under consideration current := ∅. Compute all sets of minimal cuts 
mincutsi,l for the 1 ≤ i ≤ n preferences and 1 ≤ l ≤ maxleveli levels, using Algorithms 
1 and 2. Initialize a counter for the levels l := 1, for the current preference i := 1. 

1. If none of the preferences P1,…,Pn has an l-th level, then return ∅ as the restricted 
skyline and terminate. If preference Pi has no l-th level, proceed with step 4. 

2. Get all attribute values of level l for the i-th preference Pi and iterate over list Si 
retrieving all objects having any of these attribute values into the set current.  

3. If current ≠ ∅ then  
3.1. accessedi := accessedi ∪ current and accessed  := accessed ∪ current 
3.2. complete := accessed1 ∩ … ∩ accessedn 
3.3. If there exists some set of objects C ⊆ complete such that the respective set of 

i-th attribute values of the objects in C is equal to some element of  mincutsi,l, 
i.e. the objects in C instantiate an l-cut with respect to Pi and have already been 
accessed in all lists S1,…, Sn, do 

3.3.1. For j := i+1 to n do get all attribute values of level l for the j-th preference 
Pj (if level l exists in Pj) and iterate over list Sj. Union all objects having 
any of these attribute values with the sets accessedj and accessed like in 
step 3.1. 

3.3.2. complete := accessed1 ∩ … ∩ accessedn 
3.3.3. Compare all objects from set accessed pairwise for weak domination and 

subsequently remove all weakly dominated objects from set accessed. 
3.3.4. Return the set accessed as the restricted skyline and terminate. 

4. If i < n, then set i := i+1, else set i := 1 and l := l+1. Set current := ∅ and proceed 
with step 1.  

Basically the algorithm iterates over the preference information in a round robin fashion. 
It considers all objects that form a level in a preference. Of course instead of using sorted 
lists, all objects with a certain attribute value could also be retrieved using a database 
index (step 2). The algorithm then checks if an l-cut has been instantiated by completely 
known objects on the current level, and – if not – proceeds to process the next 
preference. Whenever a round is complete, it proceeds to the next level. If an l-cut has 
been instantiated by completely known objects, the current level is completed in all 
preferences and all higher levels are pruned (which is correct according to Theorem 1). 
The algorithm then checks for weak dominations and removes all dominated objects. 

 



Parameter Value 
Database size 25000 
Data distribution Uniform 
Number of preferences 5 
Preference size  15 
Isolated incomparable values 0 
Preference depth 5 
Edge ratio 1.2 

 

Table 1: Default evaluation settings 

4. Evaluation 

To evaluate the performance of our algorithm and compare skyline sizes, we conducted 
extensive experiments with various parameter settings. To avoid bias, both data and 
preferences are synthesized randomly, and we show averages over multiple runs in our 
evaluation. The database content is generated according to several different distributions. 
Preferences are generated based on several parameters: 
• Preference size. The number of attribute values in a preference. 
• Preference depth. The number of levels in the preference graph (cf. Definition 2). 
• Edge ratio. The ratio between nodes and edges in the preference graph, i.e. the 

average node degree. 

We evaluated different scenarios to study the influence of these parameters. In all 
scenarios, we measured the time required to compute the skylines (runtimes) and the 
skyline sizes for the restricted skyline, substitute values (SV) skyline and Pareto skyline. 
For restricted skyline computation, we use the algorithm described in Section 3. For all 
other skylines, we need to do a pair-wise object comparison for all object pairs1. 

Table 1 shows our default configuration used as baseline setting. In all experiments, 
parameters not explicitly mentioned are set to these default values. We ran all 
experiments on a 2.4 GHz AMD Opteron64 Dual-processor Linux machine, equipped 
with 20GB main memory. The algorithm is not (yet) parallelized, therefore only one 
processor was actually used. Memory consumption was not regularly captured. We only 
measured it for the largest database size (1 million objects), where the computation of 
restricted skylines required 811MB. 

In the next sections, we describe each experiment and its outcome in detail. Please note 
that we always use a logarithmic scale for both time and size to suit the large differences 
between skyline types. 

                                                           
1 The BBS+ or SDC+ algorithms described in [CET05] may yield better runtime results for the Pareto skyline 
case. However, the experiments in [CET05] show results only for queries including 1 or 2 partially ordered 
preferences, and due to the underlying R-Tree indexing structure performance is bound to suffer for higher-
dimensional skyline queries. 
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Figure 5. Database size effect on a) runtime and b) skyline size  

 

4.1 

4.2 

Influence of database size 

To determine the influence of the database size in terms of our algorithm’s scalability, 
we varied the number of database objects between 50.000 and 1.000.000. Restricted 
skylines are in all cases computed by about two orders of magnitude faster than SV and 
Pareto skylines (see Figure 5a). In absolute figures, runtimes for Pareto skylines of more 
than 15 minutes on a powerful server can hardly be considered practical. Our algorithm 
can compute the skyline about two orders of magnitude faster. The dominant operations 
are pair-wise object comparisons which proceed for each object until a) a dominating 
object is found or b) the object has been compared to all others. Due to the weakened 
domination definition case a) occurs much more frequently in our approach. 
Additionally, on average far fewer comparisons are required until a dominating object is 
found. Figure 5b shows that the restricted skyline size starts very small (32 for 50.000 
objects) and stays manageable even for large databases (297 for 1 million objects). In 
contrast, SV and Pareto skylines always comprise several thousand objects, already an 
unacceptable size for practical usage, e.g., in query refinement or relevance feedback. In 
summary, our proposed skyline algorithm scales well in terms of computation and 
skyline size. 

Influence of query dimensionality 

The goal in this scenario was to see how the number of preferences specified in a query 
affects skylines. After a small decrease in skyline sizes for 2-3 dimensions (where domi-
nation relationships are not yet outweighed by incomparability between the growing 
number of possible pairs of dimensions), the SV and Pareto skylines are touched by the 
curse of dimensionality. Like comparable work shows: their sizes quickly increase 
significantly up to nearly the whole database. On the other hand, the restricted skyline 
size only increases slightly (see Figure 6b). But what is more, even for large numbers of 
preferences it is still computed about an order of magnitude faster than SV and Pareto 
skylines, as shown in Figure 6a. We can state that the restricted skyline approach makes 
interactive refinement or feedback in high-dimensional skyline querying practical. 
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Figure 6. Preference dimensionality effect on a) runtime and b) skyline size 

4.3 Influence of preference size and shape 

In this experiment, we varied the preference size between 5 and 30 attribute values. 
Figure 7a shows that between 5 to 20 attribute values, SV and Pareto skyline sizes grow 
up to 20%, rsp. 25% of the database. Further increase of preference sizes doesn’t show a 
significant impact on skyline sizes. In contrast, the restricted skyline shrinks to a 
minimum at preference sizes of 20, and then stays fairly constant. For preference depth, 
we see a different picture (Figure 7b). Pareto and SV skyline shrink notably when 
increasing depth from 2 to 15. This happens due to the reduction of incomparable 
attribute values. For depth 15, we already get a linear dominance order, without any 
incomparable value pairs left. For this case, Pareto, SV, and restricted skylines becomes 
identical, since weak and strong dominance coincide. 
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Figure 7. Influence of a) preference size and b) preference depth on skyline size 
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Figure 8. a) Zipf skew and b) Gaussian distribution effect on skyline size 

4.4 

4.5 

4.6 

Influence of Skewed data distribution 

For our next set of experiments, we changed the distribution of our data collection. 
Using a Zipf distribution, we varied skews from uniform (skew parameter -1.0) to highly 
skewed (0.0). In the latter case, the most preferred attribute values in each preference is 
already assumed by 14% of all database objects. As we can see in Figure 8a, with 
growing skew the different skyline types coincide more and more. With so many objects 
having top attribute values, the chance for incomparability gets lower, and a set of rather 
similar top objects is bound to dominate the whole rest of the database. Similar effects 
can be observed when shifting the head of the Zipf distribution to the least preferred 
objects, thus creating a multitude of overall bad objects. In both cases, the restricted of 
skyline is computed an order of magnitude faster than the Pareto skyline. 

Influence of Gaussian data distribution 

Finally, we investigated the influence of Gaussian data distribution on skylines. Varying 
the standard deviation, we measured sizes and runtimes. This distribution encourages the 
creation of objects with medium preferred attribute values in all preferences. As 
Figure 8b shows, the restricted skyline size constantly stays about two orders of 
magnitude lower than in the Pareto and SV semantics case, independently of the 
standard deviation. Also here, the restricted skyline is computed about a magnitude 
faster than Pareto and SV skylines. 

Coverage of Pareto by Restricted Skyline 

To investigate how good the Pareto skyline is covered by the restricted skyline, i.e., how 
representative our selection from the original skyline set is, we performed a separate 
evaluation. We compared the coverage of the restricted skyline over the full Pareto 
skyline with the coverage of a random sample of the Pareto skyline. As measure for 
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Figure 9. Average minimum distance 

coverage, we use the average minimum distance of all Pareto skyline points to the 
objects in the restricted skyline. Small average minimum distances show a good 
approximation of the original set. To calculate this measure, we select for each object in 
the Pareto skyline the nearest object of the restricted skyline, and compute their 
Euclidean distance. As we have no natural numeric distances, we use again the level 
order to translate preference differences to numeric difference: for each preference P, the 
object value v is replaced with the numeric value v’ = levelP(v) / maxlevelP. The same 
measure is used to compute the coverage of an equally large random sample of the 
Pareto skyline. Such a random sample can bee seen as optimal regarding 
representativeness, with respect to its size. As shown in Figure 9, the restricted skyline 
exhibits nearly the same coverage as the random sample. This shows that the restricted 
skyline does not bias toward a specific area of the Pareto skyline. 

4.7 Occurrence of False Positives 

In all described settings, besides computing the restricted skyline according to 
Algorithm 3, we also computed it by exhaustive comparison of all database objects, to 
identify false positives. Even with our small edge ratio of 1.2, we did not encounter a 
single false positive. A closer look shows that it is indeed highly improbable to create 
preference graphs with long isolated branches, while at the same time having a database 
instance where the values at dominating positions are not occupied by some object. 

5. Summary and Conclusions 

Although skylines on partial order domains gain importance in practical applications due 
to their intuitive query capabilities, their evaluation times and especially their large result 
set sizes are still hampering their usefulness in typical interactive tasks, such as query 
refinement or for providing relevance feedback. Therefore the concept of weak Pareto 
dominance has recently been introduced, allowing to derive the restricted skyline. 
Restricted skylines generally allow to retrieve only the best matching objects with 



respect to the user’s preferences. Moreover, the relaxed semantics of restricted skylines 
usually lead to intuitive results.  

For fast query processing, we designed an efficient evaluation algorithm to approximate 
restricted skylines. It iterates over object lists for each preference, topologically sorted 
according to the level order of the respective preference. Hence, our algorithm allows for 
the pruning of possibly large irrelevant chunks of the database with proven correctness. 
While the complete restricted skyline is retrieved, some false positives can theoretically 
occur in the approximation. However, our evaluation indicates that these cases are very 
rare, and the amount of false positives is negligible in practice.  

To quantify the practical impact of our approach, we performed extensive experiments. 
Varying preference characteristics and data distributions, our experiments show that 
restricted skylines are efficient to compute, as well as lean in size. Restricted skylines 
can be computed generally up to two orders of magnitude less expensive than Pareto 
skylines and stay lean even in the face of growing database sizes. They are also 
significantly less prone to the curse of dimensionality in face of larger numbers of user-
provided preferences. Moreover, compared to similar-sized, representative random 
samples of the original Pareto skyline, restricted skylines do not exhibit a significant 
bias. 

In summary, restricted skylines together with the proposed evaluation algorithm do 
indeed provide useful ‘prime cuts’ of the original Pareto skyline to the user: efficient to 
compute, suitable for higher dimensions, and representative.  

Our future work will focus on reconciling skyline computations with utility-based 
ranking schemes, at least up to a certain point. In that respect, our level-ordering and 
sorted object lists can be seen as a first step towards mappings from purely qualitative 
rankings to approximate utilities for characteristic attribute combinations. 
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