
Getting Serious about Parsing Plans:

a Grammatical Analysis of Plan Recognition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Marc Vilain
The MITRE Corporation

Burlington Road, Bedford, MA 01730

Internet: mbv@linus.mitre.org

Abstract
This paper is concerned with making precise the notion that

recognizing plans is much like parsing text. To this end, it
establishes a correspondence between Kautz’ plan recogni-

tion formalism and existing grammatical frameworks. This

mapping helps isolate subsets of Kautz’ formalism in which
plan recognition can be efficiently performed by parsing.

In recent years, plan recognition has emerged as one

of the best-understood frameworks for analyzing goal-

directed behavior. Interest in plan recognition has led to

the development of diverse recognition strategies.l One

approach suggested several times is that of parsing plan

descriptions (Sidner (1985), Ross & Lewis (1987)). A

plan is typically described as a sequence of steps, so

interpreting some observations in terms of a plan can

naturally be seen as a parsing task wherein observations

are lexical tokens and plan libraries are grammars.

My aim in this paper is to explore this parsing view

of plan recognition by establishing a formal correspon-

dence between an existing plan formalism and context-

free grammars. By working through the details of this

correspondence, the paper explores parsing algorithms

for plan recognition, and delineates classes of problems

for which these algorithms are applicable and tractable.

Underlying this work is the plan recognition

formalism of Henry Kautz (Kautz & Allen, 1986; Kautz,

1987). His approach is of particular interest because it

is formal and well understood. It is also among the

broadest of current formalisms, especially in the

expressive richness of its plan representation. Finally,

since general plan recognition in Kautz’ framework is

intractable, there is intrinsic interest in identifying those

aspects of his approach that cause this intractability,

and those that avoid it.

Kautz’ Framework
In his dissertation work, Kautz defines a circumscrip-

tive framework for plan recognition. He starts with a

simple frame-like hierarchy of plans which is inter-

pretable by first-order meaning postulates. Through a

sequence of circumscriptive minimizations, Kautz

“closes” the interpretation of the hierarchy, and thereby zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

‘E.g., Schmidt, Sridharan & Goodson (1978), Allen & Perrault (1980),

Carberry (1983), Allen (1983), Litman (1986), Pollack (1986), Kautz

(1987), Konolige & Pollack (1989), Goodman & Litman (1990).

190 AUTOMATEDREASONING

introduces an additional set of first-order axioms. This

expanded set of axioms enables some of the normally

abductive aspects of plan recognition to be performed

through a now deductive process.

The Kautz plan representation
The principal component of the Kautz representation

is a hierarchy of event (or plan) types. Plans are

hierarchically organized according to two relations,

abstraction and decomposition. The former is a subtype

(or IS-A) relation; for example, in Kautz’ cooking

domain, the MAKE-MEAL plan abstracts the MAKE-

PASTA-DISH plan. The second relation, decomposition,

is borrowed from the non-linear planning literature

(Sacerdoti, 1977; Wilkins, 1984, among many others),

and identifies the steps making up a plan. For instance,

MAKE-PASTA-DISH decomposes into a first step which

is a MAKE-NOODLES plan, and a second, a MAKE-

SAUCE plan. Each step is given a designator, so the

MAKE-NOODLES step of MAKE-PASTA-DISH might be

designated Sl, and the MAKE-SAUCE step S2. For more

examples, see Figure 1.

A plan hierarchy so defined is axiomatized with two

meaning postulates, one per relation. For abstraction,

let 91 and m be plans such that cpl abstracts m. This is

interpreted as

If x M0 1 v2(x)

For decomposition, let p be a plan with steps

designated ~1 . . . on, each of which is restricted to being

a plan of type ~1.. . vn. This is interpreted as

v x tix) 2 ~l(~l(x)) *---* Vn(on(X))

Finally, Kautz distinguishes an abstract plan class,

END, encompassing those plans that are meaningful

ends in and of themselves. MAKE-MEAL is abstracted

by END, and is taken to be an independently meaningful

plan. In contrast, MAKE-NOODLES is not abstracted by

END, and is not considered independently meaningful
- it only has meaning as a step of some other plan.

Minimal plan models
The bulk of Kautz’ work formalizes the notion that

plan hierarchies such as these can be treated as a

complete encoding of a system’s knowledge of plans.

Kautz shows that a sequence of circumscriptive minimi-

zations enforces a closed world assumption of sorts for

plan hierarchies, with the effect that the hierarchies can

From: AAAI-90 Proceedings. Copyright ©1990, AAAI (www.aaai.org). All rights reserved.

Figure 1: A plan hierarchy

abstraction

decomposition

be used to guide plan recognition. Briefly, the closure

of a hierarchy proceeds by selecting among models of

the hierarchy those models that minimize (1) the

extensions of all non-leaf plan types (the hierarchy’s

inner nodes); (2) the extensions of all plan types but

ANY, the hierarchy’s root; and (3) the extensions of all

non-END plan types.

In effect, the first two minimizations enforce the

assumption that no abstraction relations hold over the

hierarchy which aren’t explicitly mentioned or derivable

by transitive closure. The last minimization corresponds

to assuming that non-END plans can only occur as com-

ponents of some other plan. Kautz calls the resulting

closed world models of a hierarchy its covering models.

Recognizing Kautz’ plans
Since they provide a closed world encoding of the

hierarchy, covering models form the foundation of the

plan recognition process. The recognition problem

intuitively consists of finding the most parsimonious

interpretation of some observed actions, given the

closed world of the hierarchy.

To formalize this notion, let H be a hierarchy

described by A and D, the conjunctions of H’s

abstraction and decomposition axioms respectively, and

let cc) be a sentence describing some observations.

From among the covering models of A AD AU, Kautz

designates those models that explain w parsimoniously

as those that minimize the cardinality of END. This

selects those closed world models that postulate the

minimum number of end events from H that can

possibly account for the observations. To extend Kautz’

terminology, I will refer to these models as the minimal

covering models of w with respect to H.

Operationally, a plan recognizer doesn’t manipulate

models so much as plan descriptions. So in Kautz’

framework, one should think of the plan recognizer’s

task as the mapping of an observation sentence CI) to a

plan sentence it that is the strongest description of the

plans underlying w, and is valid in all minimal covering

models of w with respect to the plan hierarchy.

lan Hierarchies as Grammars
There is much similarity between Kautz’ plan

recognition assumptions and the assumptions underlying

parsing. A parser interprets a grammar, in some sense,

as a closed world; constituents can’t be derived unless

they’re on the left hand side of a parse rule;

constituents that don’t derive the start symbol directly

must appear in the derivation of some other constituent;

etc. As noted above, several authors have observed that

plan hierarchies can be seen as defining a grammar of

plans that could be used to “parse” a string of actions.

This observation is attractive: parsing is a well-

understood problem with efficient solutions, so a parsing

approach to plan recognition might be expected to yield

recognition strategies with better computational

characteristics than those developed by Kautz. For

certain classes of recognition problems, this is in fact

true. With appropriate restrictions on the nature of the

plan hierarchies, observations, or expected solutions, a

broad class of plan recognition problems becomes

tractable in a parsing framework.

Initial Plan Grammar Considerations
These tractability results are shown by constructing a

mapping from Kautz’ plan hierarchies to context-free

grammars. Note that context-free grammatical power is

not strictly necessary to encode plan hierarchies in

Kautz’ representation, since he nominally restricts them

to being acyclic. An acyclic hierarchy does not contain

any recursive plan definitions, and could in fact be

encoded as a regular (finite-state) grammar. The

broader context-free class is chosen here in part to allow

for the possibility of recursive definitions.

Further, since a major aspect of plan recognition is

recovering the plan structure underlying one’s observa-

tions, the natural grammatical implementation of plan

recognition is as a chart-based parser (Kay, 1980;

Thompson, 1983). In particular, one can extend Earley’s

context-free recognition algorithm (Earley, 1970) with a

chart, thus enabling it to return the structure of its

VILAIN 191

MAKE-MARINARA/

Figure 2: A very simplified hierarchy.

parses. Given such an algorithm, there is little

motivation to restrict oneself to a finite-state encoding

of plans. This is especially true with Earley’s algorithm,

since its polynomial bound on context-free recognition

time reduces to a linear bound for finite-state grammars.

The complete mapping from plans into grammars is

fairly involved, however. So for the sake of clarity, it is

presented here as a sequence of simpler mappings into

ever more expressive grammatical formalisms. As an

overall simplifying assumption, I’ll start by only

considering solutions that neither share nor interleave

steps. In other words, if more than one plan must be hy-

pothesized to account for some observations, each plan

must be fully completed before the next one can begin.

The Decomposition Grammar
The process of converting a plan hierarchy H into an

equivalent grammar G starts with an encoding of the

decomposition axioms. Assume for now that the des-

cription of the hierarchy contains no abstraction axioms

(we can safely ignore the fact that all plan types are

actually abstracted by ANY, the hierarchy’s root). The

hierarchy is thus entirely described by axioms of form

bf X ($Xx) 1 Wl(~l(X)) A.-.* Vn(% (X))

where (p is a plan, 01 . . . on are its steps, and I/Q.. . t/Yn are

the type restrictions of these steps. In general, these

steps may only be partially ordered, and may even

overlap if actions are modeled as having non-zero

temporal extent. However, as another temporary simpli-

fication, assume that the steps of a decomposition are

non-overlapping, and totally ordered according to their

order in the decomposition axiom.

With these simplifications, decomposition axioms of

the form shown above are mapped to parse rules of form

(P + Vl ..a Wn

Note that the parse rule strips the names of steps

from the decomposition. In addition, the following parse

rule is necessary to produce the top of the parse tree,

where S is the start symbol of the plan grammar.

S+END 1 ENDS

This rule introduces enough right-branching structure to

account for all END plans appearing in the observations.

For example, say the cooking hierarchy in Figure 1

is simplified so as to contain only one END plan, that

Let !2 = 631 A... A O, be an observation sentence where Oi has

fOrIll PLAN-TYPEi(ACTi).

Let Chart[O..n x O..n] be an initially empty array of derived

constituents.

Let Stutes[O..n] be an initially empty array of intermediate
parse states (dotted rules).

(1) Initialize Chart[i-I ,i] with each PLAN-TYPEi in Q.

(2) Add s(O) --> o END and S(O) --> o END s to States[O].

(3) For i t 0 to n do

(4) Predict: If a~) -> -*SO P-B- is a dotted rule in Stutes[i],

then add to States[i] a dotted rule BQ) -> 0 y .. for each

rule deriving p in the grammar.

(5) Scan: If a~) -> ---a /.3 y-e is in States[i] and p is a termi-

nal, then if Chart[i,i+l] contains p, add a dotted rule of

form a(i) -> s--p 0 y-a. to States[i+l].

(6) Complete: If a~) -> a.. p e is a complete dotted rule in

States[i], then

(7) Add a to Chart[j,i], using the AND-OR coding scheme.

(8) For each y(h) -> ...o a &.. in Stutes[j], add to

States[i] a dotted rule of form 6(i) -> . x.-e for each

rule deriving 6 in the grammar.

Figure 3: Earley’s algorithm.

for making fettuccine marinara. This new hierarchy

(see Figure 2) would produce the following grammar.

S+END 1 ENDS

END + MAKE-PASTA-DISH

MAKE-PASTA-DISH + BOIL-WATER

MAKE-FETTUCCINE

MAKE-MARINARA

Parsing the Decomposition Grammar

As noted earlier, decomposition grammars can be

applied to plan recognition with a chart-based version of

Earley’s algorithm. Briefly, the algorithm operates by

maintaining a chart, a two-dimensional table thr)t

records the constituents spanning any two positions in

the input stream. 2 If a constituent may be derived in

more than one way between the same two positions, the

multiple derivations are recorded as alternatives in an

OR node (each derivation is itself an AND node).

Earley records partial derivations by instantiating

“dotted” versions of rules. For example, A --> B C, when

first applied, has a dot to the left of B (A(i) -> o B C).

After deriving B, a new instance of the rule is created,

with the dot advanced past B (A(i) --> B 0 C). The

subscripted index in this notation indicates the start

position of the leftmost terminal derived by the rule.

The algorithm indexes dotted rules in a set of states:

if a dotted rule seeks to derive a constituent starting in

some position k, the rule is added to the kth state set.

When the dot is finally moved past the end of a rule, a

derivation has been completed, and the derived

2 For a sentence of length n, the chart runs from 0 to n, with each terminal

spanning [i, i+l], for some i.

192 AUTOMATEDREASONING

S co)-+ .END
S

s(o)+ OEND s

END (,,)+ .MAKEGP-DISH I Y\

MAKE-PASTA-DISH toj--+ eBOIL-WATER MAKFrFFITUCCINE . . .
S

J I I

I
I
I

BOIL-WATER . . . MAKE-PASTA-DISH MAKE-PASTA-DISH ’

0 1 2

/

’ \ ’ \

7

I \ I \
I . I \

\ / \
MAKE-PASTA-DISH to)-+ BOIL-WATER o MAKEMZTTUCCINE . . . BOIL-WATER BOIL-WATER

Figure 4a: States of the parser Figure 4b: Corresponding parse trees

constituent is added to cell [i, j] of the chart, where i is

the start index of the leftmost terminal derived by the

rule, and j is the end index of the rightmost one.

The algorithm is sketched in Figure 3, with details in

Earley (1970). With respect to applying the algorithm

to plan recognition, three points need to be made.

First, observations are entered into the chart in a

straightforward way. To be precise, say we have

observed the sentence Q = ~1 A.. . A mn, where each Ui

has form PLAN-TYPEi(ACTi). Assuming observations

are ordered and non-overlapping in time, Q is entered

into the chart by placing the terminal constituent

corresponding to each PLAN-TYPEi in chart cell [i-l, i].

The next point to note is that Earley’s algorithm

proceeds left-to-right through the input stream. Each

step in the traversal computes all partial derivations that

account for the input up to that point. This can be

exploited to allow for incremental observations in the

manner of Kautz’ Incremental and Sticky Algorithms.

That is, every time a new event is observed, it is added

to the chart, and the main loop of the algorithm is

simply restarted on the chart index for that event.

Most important, Earley is a predictive top-down

parser. Thus, whenever a terminal symbol is scanned by

the parser, the incomplete parse tree that ultimately

derives the terminal from the start symbol is implicit in

the state sets of the parser. This parse tree can be

recovered from the dotted rules making up these sets.

For example, say the parser had been given the

simplified cooking grammar corresponding to Figure 2,

and say we had observed a BOIL-WATER action, B 1.

The state of the parser and its chart would then be as

shown in Figure 4a. The parser’s state can be

interpreted as identifying two distinct incomplete parse

trees for the BOIL-WATER observation (see Figure 4b).

The first derives a single END plan to account for the

observation. The second tree postulates a second END

plan following the first (a third would be postulated in

the parser’s prediction phase if the parser attempted to

derive the second END plan, and so forth).

These parse trees can be interpreted as first-order

sentences. For terminals, the sentential form is the

observation associated with the terminal (a proposition

of form PLAN-TYPE(ACT)). For non-terminals, we

begin by creating for each non-terminal node an

existentially quantified plan instance (ignoring the start

node). The links from a node to its children in turn

correspond to steps named in the decomposition axiom

for the rule that derived the node. The sentential form

of a parse tree t, with children tl . . . t, is then the

sentential forms of its children conjoined with

3 5. K(5) * q(5) = 51 A---* ql(5) = 5n

where 5, &,..., tn are the variables for nodes t, tl,. . . , t,

respectively (or constants if the nodes are terminals), K

is the constituent associated with t, and the Gi are the

step names associated with the derivation of t. Multiple

derivations of a constituent simply introduce into the

sentential form the disjunction of their respective parses.

Under this mapping, the first parse in Figure 4b can

be interpreted as:

3 x,y END(x) A SO(x) = y A

MAKE-PASTA-DISH(y) A S l(y) = B 1 A

BOIL-WATER(B 1)

This interpretation scheme for parse trees is akin to

that used by Kautz to interpret his algorithms’ E-graphs.

Correctness and complexity

To prove the correctness of the plan parser, it is

necessary to show that for a given hierarchy H and

observation W, the parser computes the minimal

covering models of w with respect to H. This can be

accomplished in two steps.

First, the algorithm can be shown to compute the

covering models of H by relying on a result from Kautz

(1987). Kautz shows that the covering models of plan

hierarchies with no abstraction are exactly those that

satisfy all instantiations of his component/use axiom

schema. The (slightly modified) schema is given by:

tr’ x q(x) I> END(x) v

3 Yl Vl(Yl) A WYl) = x) v-.-v

3 Yn Wn(Yn) * @l(Yn) = Jo

where cp is a plan type, and ~1.. . vn are those plan types

that respectively restrict steps ~1.. . on to be of type p

VILAIN 193

Extending this schema to parse trees is straight-

forward. In light of the sentential interpretation of parse

trees, the schema can be rephrased in terms of

t, t1 , . . . ,tn, variables ranging over parse tree nodes:

v t (p(t) z) END(t) v

3 t1...tn l/q(t1) A (t1 * t) A...A

vnw * & I =j 0

where cp is the constituent corresponding to a plan type,

and WI,..., vn are all those constituents that derive CJJ in

the grammar. The notation q(t) indicates that node t has

constituent type q, and the notation t * t’ indicates that

node t derives node t’ in the parse tree. For the purpose

of this schema, the start node S, which is only used to

introduce END nodes, is once again ignored.

It is easy to see that in this form, the component/use

schema is fully instantiated by Earley’s algorithm. The

ti are introduced into the parse tree by the prediction

step, and the derivations are recorded by the completion

step. By fully instantiating the schema, the algorithm

thus computes the covering models of an observation

with respect to a hierarchy.

To obtain the minimal covering models, note that

each alternative parse tree attached to the start symbol

S will postulate the existence of some number of END

plans. These END plans can be enumerated simply by

traversing the topmost right-branching structure of the

tree introduced by the rule S + END S. The minimal

models are those that apply this derivation a minimal

number of times. This, along with the preceding

discussion, informally shows the following proposition.

Proposition 1: Under the sentential interpretation of

parse trees, Earley’s algorithm computes the minimal

covering models of an observation m with respect to

H, a decomposition hierarchy with ordered unshared

steps.

Earley (1970) shows that the run time of his

recognizer for a sentence of length n is bounded by a

factor of O(n3). Barton, Berwick, and Ristad (1987)

note that this bound can be refined to O(G O 2 n3), where

Go is the total number of possible dotted rules afforded

by the grammar G.

The addition of a chart, as is done in the algorithm of

Figure 3, extends Earley’s recognizer into a parser, but

can introduce performance degradation. Tomita (1986),

for example, describes some pathological combinations

of grammars and input strings that can require of his

chart-based parser O(n5) space utilization, and a

corresponding degradation in parse time. However,

Billot and Lang (1989) suggest that by using structure

sharing to implement the chart’s AND-OR graphs, the

space requirements for storing the chart are bounded by

O(n3), while the parse times also remain cubic.

The Uses of Abstraction
The preceding results are of some interest in

establishing the tractability of plan recognition for one

class of plan hierarchies, those expressible without

abstraction. However, the resulting formal apparatus is

so impoverished as to be useless in practice.

Beyond allowing for the identification of significant

abstract constructs of a domain, abstraction is used in

Kautz’ framework to encode three different phenomena:

the multiple expansions of a plan; the isolation of

substeps common to all expansions of a plan (which are

then shared through inheritance); and, indeterminate

observations.

Adding Abstraction to the Grammar
It is easy to extend the mapping from plan

hierarchies to grammars so as to allow for abstraction in

the descriptions of plan types. Abstract observations,

however, impose additional considerations, which I will

return to later. Assume for now that observations are

given in terms of base plan types (the leaves of the plan

hierarchy), and again restrict plan steps to be fully

ordered and unsharable. The mapping from a hierarchy

H to a grammar G proceeds from the top of the

hierarchy to its leaves, distinguishing two cases:

Case I : Say q is a plan type decomposing into steps

01.. . on, and say 9 has children xl.. .xm. Then, for each

xi, copy each Oj (and its type restriction vj) to the

decomposition of Xi, unless Xi happens to further restrict

Oj. Then for each xi, add a rule to the grammar of form

P + Xi

Case 2: Say q is a childless plan type that decom-

poses into (possibly inherited) steps CJ~. . . on, with step

restrictions vi.. . Wn. Then add to the grammar a

decomposition rule of form

V+ Yfl ... Wn

Again, the root of the hierarchy (ANY) is ignored,

and again, the grammar is completed by adding the

initial parse rule

S+END 1 ENDS

Note that this scheme eliminates from a hierarchy

the explicit decompositions of abstract actions,

enforcing them implicitly by inheritance instead. Thus,

returning to the plan hierarchy in Figure 1, the sub-

hierarchy rooted at MAKE-PASTA-DISH would be

encoded as

MAKE-PASTA-DISH

+ MAKE-FETTUCCINE-MARINARA

MAKE-FETTUCCINE-MARINARA

+ BOIL-WATER

MAKE-FETTUCCINE

MAKE-MARINARA

The grammatical treatment of abstraction introduces

additional complexity to the sentential interpretation of

parse trees. Indeed, one must now distinguish nodes

that were introduced by abstraction parse rules from

those that were introduced by decomposition parse rules.

As before, say t is a node with children tl... tn, and say t

was introduced by a decomposition rule produced in

194 AUTOMATEDREASONING

Case 2 of the grammatical mapping. Then the

sentential form of t is that of its children conjoined with

3 5. K(6) * 01(C) = 51 *---A on(c) = cn

For abstraction, say (p + W is a parse rule introduced

to encode an abstraction axiom in Case 1 of the

grammatical mapping. Let t be a node in a parse tree

that derives a node t’ by this rule. Then the sentential

interpretation of the tree rooted at t is that of t’

conjoined with the expression q(5), where 5 is the plan

variable associated with the interpretation of t’.

Properties of Abstraction Grammars
The correctness and complexity properties of Earley’s

algorithm for decomposition grammars are easy to verify

for abstraction grammars. For correctness, one must

once again show that the algorithm computes the

minimal covering models of some observation W with

respect to H, a hierarchy with abstraction. To begin

with, Kautz (1987) showed that the covering models of

a hierarchy with abstraction are precisely those that

fully instantiate three axiom schemata, one of which

(component/use) appeared above in a simplified form.

Disjunction: let q be a plan type that directly

abstracts types ~1,. . ., vn. Then:

If X NX) 3 Vi(X) v-**v &l(X)

Exclusion: let ~1 and (92 be incompatible plan types,

i.e., ones for that there exists no 413 which is abstracted

(directly or indirectly) by both ql and w. Then:

‘d x +pl(X) v +?200

Component/use: let q be a plan type, and let ~1.. . t//n

be all those plan types that restrict some step crl. . . on to

be (p or a plan type compatible with q. Then:

\d x (P(X) II END(x) v

3 Yl W(Y1) * (Ol(Y1) = Jo v...v

3 Yn Wn(Yn) * (%(Yn) = X)

Under the sentential interpretation of parse trees, the

disjunction schema can be recast in terms of t and t’,

variables ranging over nodes in the parse tree:

v t q(t) 3 3 t ’ (t 3 t ’) A (vl(t ’) V...V l& ,(t)))

Assuming that @ mentions only base level

observations, this schema is verified by noting that a

parse node corresponding to an abstract plan type cp is

only introduced into the chart (during the completion

step of the algorithm) if one of ~1,. . . , vn was previously

introduced into the chart.

A similar argument can be used to show that,

assuming base level observations, the parser fully

instantiates the exclusion schema. The argument can

also be used to extend the proof of Proposition 1 in order

to show that the parser fully instantiates the extended

version of the component/use schema. This informally

demonstrates that the algorithm computes the covering

models of @ with respect to H. The minimal covering

models can be obtained as before from those parses

introducing fewest END nodes under S, thus showing:

Proposition 2: Under the sentential interpretation of

parse trees, Earley’s algorithm computes the minimal

covering models of a base-level observation cr) with

respect to H, a hierarchy with ordered unshared steps.

As before, the time complexity of parsing an

observation “sentence” is O(G O 2 n3). The G O term is

related to the original hierarchy description in the

following way. There is exactly one dotted rule for each

abstraction axiom, and the latter’s number is bounded by

P, the size of the set of plan types in the hierarchy. The

original decomposition axioms are also bounded in

number by P, and it is easy to verify that after step

inheritance, the number of corresponding dotted

decomposition rules is bounded by Pd, where d is the

number of steps mentioned in the longest decomposition

axiom. The overall size of G O is thus O(Pd).

Abstract Observations
The preceding discussion crucially relies on observed

actions’ not being abstract. This is a severe limitation,

since abstract plan types simplify the expression of

indeterminate observations. For example, in Kautz’

cooking world, one might like to encode uncertainty on

whether an agent is making fettuccine or spaghetti with

an abstract MAKE-NOODLES observation. In gram-

matical terms, this amounts to allowing non-terminal

categories to appear directly in the input stream.

For the plan parser to interpret these observations

correctly is tricky. The problem is that to ensure that

the minimal covering models are computed, the parser

must expand the abstract observation into its possible

specializations, and hypothesize that each may have

occured. It would be appealing if this expansion could

be effectuated by compiling additional parse rules out of

the plan hierarchy. Unfortunately, though various naive

strategies for doing so are conceivable, they all seem to

have unacceptable problems.

For instance, one could allow for abstract

observations to be specialized down the abstraction

hierarchy with “reverse” abstraction rules (e.g., MAKE-

PASTA-DISH -+ MAKE-MEAL). However, this leads

directly to violations of the disjunction schema. An

alternative (and equally naive) approach would produce

additional decomposition rules introducing the possible

abstractions of a base action, e.g.:

MAKE-FETTUCCINE-MARINARA-+ MAKE-NOODLES

MAKE-SAUCE

However, the number of such rules is bounded by

O(dpJ, leading to an exponential increase in the size of

the grammar and an exponential increase in parse times.

A more practical alternative is to leave the grammar

unchanged, and treat an abstract observation q,(e)

disjunctively as Vi vi(e), where the I//i are those plan

types that maximally specialize cp (i.e., that specialize

(p and have no specializations in turn). This strategy

can be seen as explicitly enforcing the disjunction

axiom schema on abstract observations.

VILAIN 195

At the grammatical level, this strategy has a natural

analogue in lexical ambiguity, the ambiguity

encountered when a terminal (e.g. the English word can)

is derivable by more than one pre-terminal (e.g. V, N, or

AUX). In linguistic parsers the terminals in a string are

usually replaced with the corresponding pre-terminals,

so lexical ambiguity can be simply dealt with by adding

each ambiguous pre-terminal directly into the same cell

of the chart. Similarly, the plan parsing algorithm in

Figure 3 can be amended to enter any abstract

observation q(e) into its chart cell as the set of I+Vi that it

abstracts. A MAKE-NOODLES observation, for example,

would be entered in the chart as a set of two terminals:

{MAKE-SPAGHETTI MAKE-FETTUCCINE} .

This approach to abstract observations preserves the

correctness of the plan parser. As noted above, it

directly enforces the disjunction schema. That the

exclusion schema is enforced can be seen by noting that

no two ambiguous terminal entries appear in the same

parse. Consequently, under the sentential interpretation

of parse trees, no two ambiguous but incompatible types

can hold true of the same plan variable or plan constant.

Finally, for each distinct parse, it is easy to verify that

the algorithm will fully instantiate the component/use

schema.

The disjunctive treatment of abstraction also

maintains the polynomial tractability of the plan parser.

This can be seen by noting that the O(G O 2 n3) time

bound on parsing an observation string of length n is

obtained from a O(G O 2 n2) bound on each step of the

main loop of the parser (which is iterated n times).

Informally, one can think of an ambiguous observation q

in position [i-l, i] as temporarily “augmenting” the

grammar for iteration step i. The augmentation consists

of introducing a new category OBSERVED-9 and new

rules of form OBSERVED-9 + vi, for each I+Yi maxi-

mally specializing (p. The abstract observation is then

encoded as a token of OBSERVED-q. This has a net

effect of temporarily adding no more than P rules to the

grammar at each step of the parser’s main iteration, and

so G O remains bounded at each step by O(Pd). This

leaves the overall time complexity of parsing

unaffected.

The following proposition summarizes the discussion

of the past few pages.

Proposition 3: There is a O(n3)-time plan recognition

algorithm for hierarchies with ordered, unshared

steps, and for disjunctive or abstract observations.

Further Extensions
This result is of significant value, as it delineates a

subset of Kautz’ plan formalism for which plan recog-

nition is tractable. The parsing approach underlying this

result can in fact be extended to cover further aspects of

Kautz’ formalism, but unfortunately not without also

sacrificing recognition tractability.

Partial Step Order
A number of recent linguistic formalisms refine the

traditional phrase structure rules into two sets of rules:

(1) indirect dominance (ID) rules, which specify which

subconstituents may be derived by a constituent, and

(2) linear precedence (LP) rules, which determine the

left-to-right order of these subconstituents. This ID/LP

strategy can be applied to plan hierarchies to allow for a

compact encoding of partial step ordering. For

example, the following two sketchy rules specify that

the BOIL-WATER step of the MAKE-PASTA-DISH plan

must be ordered before the MAKE-NOODLES step, but

leaves all other step relations unordered.

PASTA --=+ BOIL NOODLES SAUCE (ID rule)

BOIL < NOODLES (LP rule)

In effect, an ID rule of length n stands for an

equivalent n! ordered context-free rules, some of which

are then eliminated if they fail to satisfy the LP rules.

In principle, one could thus parse an ID/LP grammar

with Earley’s algorithm by first compiling it into the

corresponding context-free rules. However, as the

number of such rules is combinatorially explosive, the

size of the resulting grammar would be correspondingly

large, and parse times correspondingly lengthy. To

alleviate this problem, Shieber (1983) produced a

simple extension to Earley’s algorithm that allows for

direct parsing of ID/LP grammars, thus circumventing

the combinatorial explosion produced by compilation.

Unfortunately, Shieber’s parser does not escape

intractability. Barton et al. (1987) show that ID/LP

parsing is NP-complete under certain conditions. The

argument is complex, but for the purposes of this paper

it suffices to note that a sufficient condition for NP-

completeness is the kind of lexical ambiguity used

above to encode abstract observations. In fact, this NP-

completeness result can easily be extended to show the

following proposition (offered here without proof).

Proposition 4: Recognizing plans with abstraction and

partial step order is NP-complete, regardless of

recognition tactic.

This pessimistic result must be taken in perspective.

Shieber’s algorithm performs well in practice, and truly

extreme derivational ambiguity is required to lead it to

exponential performance. In fact, Barton et al. suggest

that tractability may actually be regained by ensuring

that the unordered steps of an ID decomposition are

derivationally distinct. This is the case, for example,

with the ID rule decomposing MAKE-PASTA-DISH, each

of whose steps derives a set of constituents distinct from

those derived by the others. However, a general plan

distinguishability criterion has yet to be formulated.

Action Parameters
Kautz allows plans to have parameters, such as an

agent. As with other aspects of plan recognition, action

196 AUTOMATEDREASONING

parameters have a grammatical analogue, in this case

with unification grammars (another extension of the

context-free class). Without going into details, it is

straightforward to show that plan parameters and

constraints on these parameters can be encoded in the

unification formalism. However, parsing unification

grammars is again NP-complete in the presence of

derivational ambiguity (Barton et al. (1987)).

Plan Parsing in Perspective
There are additional aspects of Kautz’ approach that

may not be convincingly treated with a parsing strategy.

Shared and interleaved steps are a particularly salient

example of this. It is admittedly possible to formulate

some kind of type 0 or perhaps context-sensitive phrase

structure rules to encode the sharing or interleaving of

steps. However, it is not at all clear how to do so

without endowing the plan formalism with enough

machinery to make plan recognition intractable or even

undecidable (type 0 grammars being Turing-equivalent).

Nevertheless, the main thrust of this work is not to

show that all of Kautz’ approach can be reformulated as

parsing, as much as it is to find those aspects of his

approach that become tractable when so reformulated.

Beyond the immediate gains of tractability, the parsing

approach does provide an operational advantage over

Kautz’ algorithms. Namely, it focuses recognition by

predicting the existence of only those END plans

sanctioned by all the observations taken together.

Kautz’ algorithms perform the prediction on each

individual observation, independent of the others, and

then combine the resulting predictions. This is

computationally much more onerous, but may turn out

to be unavoidable if one wants to allow for sharing and

interleaving of steps.

Finally, I should note that there are many similarities

between the parsing strategies described here and the

plan recognition strategies in MITRE’S King Kong

interface (Burger & Sider, 1990). As part of our current

research, my colleagues and I are investigating further

extensions to King Kong that rely on parsing strategies.

Acknowledgements
This work has benefitted from discussions over the

years with James Allen and Henry Kautz. Special

thanks to Ellen Hays for her untiring editorial attention.

References
Allen, J. (1983). Recognizing intentions from natural

language utterances. In Brady, M. & Berwick, R. (eds)

Computational Models of Discourse. Cambridge, MA:

The MIT Press.

Allen, J. & Perrault, R. (1980). Analyzing intention in

dialogue. Artificial Intelligence 23(2), 832-843.

Barton, 6. E., Berwick, R. & Ristad, E. (1987).

Computational Complexity and Natural Language.

Cambridge, MA: The MIT Press.

Billot, S. & Lang, B. (1989). The structure of shared

forests in ambiguous parsing. In Proceedings of ACL 89,

143-151.

Burger, J. & Sider, J. (1990). Discourse Understanding

in Expert System Interfaces. In preparation.

Carberry, S. (1983). Tracking goals in an information

seeking environment. In Proceedings of AAAI 83, 59-63.

Earley, J. (1970). An efficient context-free parsing

mechanism. Communications of the ACM 13(2), 94-102.

Reprinted in Grosz et al. (1986).

Goodman, B. & Litman, D. (1990). Plan recognition for

intelligent interfaces. In Proceedings of the IEEE

Conference on Artificial Intelligence AppZications 1990.

Grosz, B., Sparck Jones, K., Webber, B. L. (1986).

Readings in Natural Language Processing. San Mateo,

CA: Morgan Kaufmann.

Kay, M. (1980). Algorithm Schemata and Data

Structures in Syntactic Processing. Tech Report CSL-

80-12, Xerox PARC. Reprinted in Grosz et al. (1986).

Kautz, H. (1987). A Formal Theory of Plan Recognition.

PhD dissertation, Dept. of Computer Science, University

of Rochester. Available as Tech. Report 215.

Kautz, H. & Allen A. (1986). Generalized plan

recognition. In Proceedings of AAAI 86, 32-37.

Konolige, K. & Pollack, M. (1989). Ascribing plans to

agents - preliminary report. In Proceedings of IJCAI

89,924-930.

Litman, D. (1986). Linguistic coherence: A plan-based

alternative. In Proceedings of ACL 86, 215223.

Pollack, M. (1986). A model of plan processing which

distinguishes between the beliefs of actors and

observers. In Proceedings of ACL 86, 207-214.

Sacerdoti, E. (1977). A Structure for Plans and Behavior.

New York: North-Holland.

Schmidt, C. , Sridharan, N., & Goodson J. (1978). The

plan recognition problem: An intersection of artificial

intelligence and psychology. Artificial Intelligence,

ll(l), 45-83.

Shieber, S. (1983). Direct parsing of ID/LP grammars.

Linguistics and Philosophy 7(2), 135- 154.

Sidner, C. (1985). Plan parsing for intended response

recognition in discourse. Computational Intelligence,

I(l), l-10.

Thompson, H. (1983). MCHART: A flexible, modular

chart parsing system. In Proceedings of AAAZ 83, 408-

410.

Tomita, M. (1986). Efficient Parsing for Natural

Language. Boston: Kluwer Academic Publishers.

Wilkins, D. (1984). Domain-independent planning:

representation and generation. Artificial Intelligence 22,

269-301.

VILAIN 197

