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Abstract 
This paper is concerned with making precise the notion that 

recognizing plans is much like parsing text. To this end, it 
establishes a correspondence between Kautz’ plan recogni- 

tion formalism and existing grammatical frameworks. This 

mapping helps isolate subsets of Kautz’ formalism in which 
plan recognition can be efficiently performed by parsing. 

In recent years, plan recognition has emerged as one 

of the best-understood frameworks for analyzing goal- 

directed behavior. Interest in plan recognition has led to 

the development of diverse recognition strategies.l One 

approach suggested several times is that of parsing plan 

descriptions (Sidner (1985), Ross & Lewis (1987)). A 

plan is typically described as a sequence of steps, so 

interpreting some observations in terms of a plan can 

naturally be seen as a parsing task wherein observations 

are lexical tokens and plan libraries are grammars. 

My aim in this paper is to explore this parsing view 

of plan recognition by establishing a formal correspon- 

dence between an existing plan formalism and context- 

free grammars. By working through the details of this 

correspondence, the paper explores parsing algorithms 

for plan recognition, and delineates classes of problems 

for which these algorithms are applicable and tractable. 

Underlying this work is the plan recognition 

formalism of Henry Kautz (Kautz & Allen, 1986; Kautz, 

1987). His approach is of particular interest because it 

is formal and well understood. It is also among the 

broadest of current formalisms, especially in the 

expressive richness of its plan representation. Finally, 

since general plan recognition in Kautz’ framework is 

intractable, there is intrinsic interest in identifying those 

aspects of his approach that cause this intractability, 

and those that avoid it. 

Kautz’ Framework 
In his dissertation work, Kautz defines a circumscrip- 

tive framework for plan recognition. He starts with a 

simple frame-like hierarchy of plans which is inter- 

pretable by first-order meaning postulates. Through a 

sequence of circumscriptive minimizations, Kautz 

“closes”  the interpretation of the hierarchy, and thereby zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

‘E.g., Schmidt, Sridharan & Goodson (1978), Allen & Perrault (1980), 

Carberry (1983), Allen (1983), Litman (1986), Pollack (1986), Kautz 

(1987), Konolige & Pollack (1989), Goodman & Litman (1990). 
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introduces an additional set of first-order axioms. This 

expanded set of axioms enables some of the normally 

abductive aspects of plan recognition to be performed 

through a now deductive process. 

The Kautz plan representation 
The principal component of the Kautz representation 

is a hierarchy of event (or plan) types. Plans are 

hierarchically organized according to two relations, 

abstraction and decomposition. The former is a subtype 

(or IS-A) relation; for example, in Kautz’ cooking 

domain, the MAKE-MEAL plan abstracts the MAKE- 

PASTA-DISH plan. The second relation, decomposition, 

is borrowed from the non-linear planning literature 

(Sacerdoti, 1977; Wilkins, 1984, among many others), 

and identifies the steps making up a plan. For instance, 

MAKE-PASTA-DISH decomposes into a first step which 

is a MAKE-NOODLES plan, and a second, a MAKE- 

SAUCE plan. Each step is given a designator, so the 

MAKE-NOODLES step of MAKE-PASTA-DISH might be 

designated Sl, and the MAKE-SAUCE step S2. For more 

examples, see Figure 1. 

A plan hierarchy so defined is axiomatized with two 

meaning postulates, one per relation. For abstraction, 

let 91 and m be plans such that cpl abstracts m. This is 

interpreted as 

If x M0 1 v2(x) 

For decomposition, let p be a plan with steps 

designated ~1 . . . on, each of which is restricted to being 

a plan of type ~1.. . vn. This is interpreted as 

v x tix) 2 ~l(~l(x)) *---* Vn(on(X)) 

Finally, Kautz distinguishes an abstract plan class, 

END, encompassing those plans that are meaningful 

ends in and of themselves. MAKE-MEAL is abstracted 

by END, and is taken to be an independently meaningful 

plan. In contrast, MAKE-NOODLES is not abstracted by 

END, and is not considered independently meaningful 
- it only has meaning as a step of some other plan. 

Minimal plan models 
The bulk of Kautz’ work formalizes the notion that 

plan hierarchies such as these can be treated as a 

complete encoding of a system’s knowledge of plans. 

Kautz shows that a sequence of circumscriptive minimi- 

zations enforces a closed world assumption of sorts for 

plan hierarchies, with the effect that the hierarchies can 
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Figure 1: A plan hierarchy 

abstraction 

decomposition 

be used to guide plan recognition. Briefly, the closure 

of a hierarchy proceeds by selecting among models of 

the hierarchy those models that minimize (1) the 

extensions of all non-leaf plan types (the hierarchy’s 

inner nodes); (2) the extensions of all plan types but 

ANY, the hierarchy’s root; and (3) the extensions of all 

non-END plan types. 

In effect, the first two minimizations enforce the 

assumption that no abstraction relations hold over the 

hierarchy which aren’t explicitly mentioned or derivable 

by transitive closure. The last minimization corresponds 

to assuming that non-END plans can only occur as com- 

ponents of some other plan. Kautz calls the resulting 

closed world models of a hierarchy its covering models. 

Recognizing Kautz’ plans 
Since they provide a closed world encoding of the 

hierarchy, covering models form the foundation of the 

plan recognition process. The recognition problem 

intuitively consists of finding the most parsimonious 

interpretation of some observed actions, given the 

closed world of the hierarchy. 

To formalize this notion, let H be a hierarchy 

described by A and D, the conjunctions of H’s 

abstraction and decomposition axioms respectively, and 

let cc) be a sentence describing some observations. 

From among the covering models of A AD AU, Kautz 

designates those models that explain w parsimoniously 

as those that minimize the cardinality of END. This 

selects those closed world models that postulate the 

minimum number of end events from H that can 

possibly account for the observations. To extend Kautz’ 

terminology, I will refer to these models as the minimal 

covering models of w with respect to H. 

Operationally, a plan recognizer doesn’t manipulate 

models so much as plan descriptions. So in Kautz’ 

framework, one should think of the plan recognizer’s 

task as the mapping of an observation sentence CI) to a 

plan sentence it that is the strongest description of the 

plans underlying w, and is valid in all minimal covering 

models of w with respect to the plan hierarchy. 

lan Hierarchies as Grammars 
There is much similarity between Kautz’ plan 

recognition assumptions and the assumptions underlying 

parsing. A parser interprets a grammar, in some sense, 

as a closed world; constituents can’t be derived unless 

they’re on the left hand side of a parse rule; 

constituents that don’t derive the start symbol directly 

must appear in the derivation of some other constituent; 

etc. As noted above, several authors have observed that 

plan hierarchies can be seen as defining a grammar of 

plans that could be used to “parse” a string of actions. 

This observation is attractive: parsing is a well- 

understood problem with efficient solutions, so a parsing 

approach to plan recognition might be expected to yield 

recognition strategies with better computational 

characteristics than those developed by Kautz. For 

certain classes of recognition problems, this is in fact 

true. With appropriate restrictions on the nature of the 

plan hierarchies, observations, or expected solutions, a 

broad class of plan recognition problems becomes 

tractable in a parsing framework. 

Initial Plan Grammar Considerations 
These tractability results are shown by constructing a 

mapping from Kautz’ plan hierarchies to context-free 

grammars. Note that context-free grammatical power is 

not strictly necessary to encode plan hierarchies in 

Kautz’ representation, since he nominally restricts them 

to being acyclic. An acyclic hierarchy does not contain 

any recursive plan definitions, and could in fact be 

encoded as a regular (finite-state) grammar. The 

broader context-free class is chosen here in part to allow 

for the possibility of recursive definitions. 

Further, since a major aspect of plan recognition is 

recovering the plan structure underlying one’s observa- 

tions, the natural grammatical implementation of plan 

recognition is as a chart-based parser (Kay, 1980; 

Thompson, 1983). In particular, one can extend Earley’s 

context-free recognition algorithm (Earley, 1970) with a 

chart, thus enabling it to return the structure of its 

VILAIN 191 



MAKE-MARINARA/ 

Figure 2: A very simplified hierarchy. 

parses. Given such an algorithm, there is little 

motivation to restrict oneself to a finite-state encoding 

of plans. This is especially true with Earley’s algorithm, 

since its polynomial bound on context-free recognition 

time reduces to a linear bound for finite-state grammars. 

The complete mapping from plans into grammars is 

fairly involved, however. So for the sake of clarity, it is 

presented here as a sequence of simpler mappings into 

ever more expressive grammatical formalisms. As an 

overall simplifying assumption, I’ll start by only 

considering solutions that neither share nor interleave 

steps. In other words, if more than one plan must be hy- 

pothesized to account for some observations, each plan 

must be fully completed before the next one can begin. 

The Decomposition Grammar 
The process of converting a plan hierarchy H into an 

equivalent grammar G starts with an encoding of the 

decomposition axioms. Assume for now that the des- 

cription of the hierarchy contains no abstraction axioms 

(we can safely ignore the fact that all plan types are 

actually abstracted by ANY, the hierarchy’s root). The 

hierarchy is thus entirely described by axioms of form 

bf X ($Xx) 1 Wl(~l(X)) A.-.* Vn(% (X)) 

where (p is a plan, 01 . . . on are its steps, and I/Q.. . t/Yn are 

the type restrictions of these steps. In general, these 

steps may only be partially ordered, and may even 

overlap if actions are modeled as having non-zero 

temporal extent. However, as another temporary simpli- 

fication, assume that the steps of a decomposition are 

non-overlapping, and totally ordered according to their 

order in the decomposition axiom. 

With these simplifications, decomposition axioms of 

the form shown above are mapped to parse rules of form 

(P + Vl ..a Wn 

Note that the parse rule strips the names of steps 

from the decomposition. In addition, the following parse 

rule is necessary to produce the top of the parse tree, 

where S is the start symbol of the plan grammar. 

S+END 1 ENDS 

This rule introduces enough right-branching structure to 

account for all END plans appearing in the observations. 

For example, say the cooking hierarchy in Figure 1 

is simplified so as to contain only one END plan, that 

Let !2 = 631 A... A O, be an observation sentence where Oi has 

fOrIll PLAN-TYPEi(ACTi). 

Let Chart[O..n x O..n] be an initially empty array of derived 

constituents. 

Let Stutes[O..n] be an initially empty array of intermediate 
parse states (dotted rules). 

(1) Initialize Chart[i-I ,i] with each PLAN-TYPEi in Q. 

(2) Add s(O) --> o END and S(O) --> o END s to States[O]. 

(3) For i t 0 to n do 

(4) Predict: If a~) -> -*SO P-B- is a dotted rule in Stutes[i], 

then add to States[i] a dotted rule BQ) -> 0 y .. for each 

rule deriving p in the grammar. 

(5) Scan: If a~) -> ---a /.3 y-e is in States[i] and p is a termi- 

nal, then if Chart[i,i+l] contains p, add a dotted rule of 

form a(i) -> s--p 0 y-a. to States[i+l]. 

(6) Complete: If a~) -> a.. p e is a complete dotted rule in 

States[i], then 

(7) Add a to Chart[j,i], using the AND-OR coding scheme. 

(8) For each y(h) -> ...o a &.. in Stutes[j], add to 

States[i] a dotted rule of form 6(i) -> . x.-e for each 

rule deriving 6 in the grammar. 

Figure 3: Earley’s algorithm. 

for making fettuccine marinara. This new hierarchy 

(see Figure 2) would produce the following grammar. 

S+END 1 ENDS 

END + MAKE-PASTA-DISH 

MAKE-PASTA-DISH + BOIL-WATER 

MAKE-FETTUCCINE 

MAKE-MARINARA 

Parsing the Decomposition Grammar 

As noted earlier, decomposition grammars can be 

applied to plan recognition with a chart-based version of 

Earley’s algorithm. Briefly, the algorithm operates by 

maintaining a chart, a two-dimensional table thr)t 

records the constituents spanning any two positions in 

the input stream. 2 If a constituent may be derived in 

more than one way between the same two positions, the 

multiple derivations are recorded as alternatives in an 

OR node (each derivation is itself an AND node). 

Earley records partial derivations by instantiating 

“dotted” versions of rules. For example, A --> B C, when 

first applied, has a dot to the left of B (A(i) -> o B C). 

After deriving B, a new instance of the rule is created, 

with the dot advanced past B (A(i) --> B 0 C). The 

subscripted index in this notation indicates the start 

position of the leftmost terminal derived by the rule. 

The algorithm indexes dotted rules in a set of states: 

if a dotted rule seeks to derive a constituent starting in 

some position k, the rule is added to the kth state set. 

When the dot is finally moved past the end of a rule, a 

derivation has been completed, and the derived 

2 For a sentence of length n, the chart runs from 0 to n, with each terminal 

spanning [i, i+l], for some i. 
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Figure 4a: States of the parser Figure 4b: Corresponding parse trees 

constituent is added to cell [i, j] of the chart, where i is 

the start index of the leftmost terminal derived by the 

rule, and j is the end index of the rightmost one. 

The algorithm is sketched in Figure 3, with details in 

Earley (1970). With respect to applying the algorithm 

to plan recognition, three points need to be made. 

First, observations are entered into the chart in a 

straightforward way. To be precise, say we have 

observed the sentence Q = ~1 A.. . A mn, where each Ui 

has form PLAN-TYPEi(ACTi). Assuming observations 

are ordered and non-overlapping in time, Q is entered 

into the chart by placing the terminal constituent 

corresponding to each PLAN-TYPEi in chart cell [i-l, i]. 

The next point to note is that Earley’s algorithm 

proceeds left-to-right through the input stream. Each 

step in the traversal computes all partial derivations that 

account for the input up to that point. This can be 

exploited to allow for incremental observations in the 

manner of Kautz’ Incremental and Sticky Algorithms. 

That is, every time a new event is observed, it is added 

to the chart, and the main loop of the algorithm is 

simply restarted on the chart index for that event. 

Most important, Earley is a predictive top-down 

parser. Thus, whenever a terminal symbol is scanned by 

the parser, the incomplete parse tree that ultimately 

derives the terminal from the start symbol is implicit in 

the state sets of the parser. This parse tree can be 

recovered from the dotted rules making up these sets. 

For example, say the parser had been given the 

simplified cooking grammar corresponding to Figure 2, 

and say we had observed a BOIL-WATER action, B 1. 

The state of the parser and its chart would then be as 

shown in Figure 4a. The parser’s state can be 

interpreted as identifying two distinct incomplete parse 

trees for the BOIL-WATER observation (see Figure 4b). 

The first derives a single END plan to account for the 

observation. The second tree postulates a second END 

plan following the first (a third would be postulated in 

the parser’s prediction phase if the parser attempted to 

derive the second END plan, and so forth). 

These parse trees can be interpreted as first-order 

sentences. For terminals, the sentential form is the 

observation associated with the terminal (a proposition 

of form PLAN-TYPE(ACT)). For non-terminals, we 

begin by creating for each non-terminal node an 

existentially quantified plan instance (ignoring the start 

node). The links from a node to its children in turn 

correspond to steps named in the decomposition axiom 

for the rule that derived the node. The sentential form 

of a parse tree t, with children tl . . . t, is then the 

sentential forms of its children conjoined with 

3 5. K(5) * q(5) = 51 A---* ql(5) = 5n 

where 5, &,..., tn are the variables for nodes t, tl,. . . , t, 

respectively (or constants if the nodes are terminals), K 

is the constituent associated with t, and the Gi are the 

step names associated with the derivation of t. Multiple 

derivations of a constituent simply introduce into the 

sentential form the disjunction of their respective parses. 

Under this mapping, the first parse in Figure 4b can 

be interpreted as: 

3 x,y END(x) A SO(x) = y A 

MAKE-PASTA-DISH(y) A S l(y) = B 1 A 

BOIL-WATER(B 1) 

This interpretation scheme for parse trees is akin to 

that used by Kautz to interpret his algorithms’ E-graphs. 

Correctness and complexity 

To prove the correctness of the plan parser, it is 

necessary to show that for a given hierarchy H and 

observation W, the parser computes the minimal 

covering models of w with respect to H. This can be 

accomplished in two steps. 

First, the algorithm can be shown to compute the 

covering models of H by relying on a result from Kautz 

(1987). Kautz shows that the covering models of plan 

hierarchies with no abstraction are exactly those that 

satisfy all instantiations of his component/use axiom 

schema. The (slightly modified) schema is given by: 

tr’ x q(x) I> END(x) v 

3 Yl Vl(Yl) A WYl) = x) v-.-v 

3 Yn Wn(Yn) * @l(Yn) = Jo 

where cp is a plan type, and ~1.. . vn are those plan types 

that respectively restrict steps ~1.. . on to be of type p 
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Extending this schema to parse trees is straight- 

forward. In light of the sentential interpretation of parse 

trees, the schema can be rephrased in terms of 

t, t1 , . . . ,tn, variables ranging over parse tree nodes: 

v t (p(t) z) END(t) v 

3 t1...tn l/q(t1) A (t1 *  t ) A...A 

vnw  *  & I =j 0 

where cp is the constituent corresponding to a plan type, 

and WI,..., vn are all those constituents that derive CJJ in 

the grammar. The notation q(t) indicates that node t has 

constituent type q, and the notation t * t’ indicates that 

node t derives node t’ in the parse tree. For the purpose 

of this schema, the start node S, which is only used to 

introduce END nodes, is once again ignored. 

It is easy to see that in this form, the component/use 

schema is fully instantiated by Earley’s algorithm. The 

ti are introduced into the parse tree by the prediction 

step, and the derivations are recorded by the completion 

step. By fully instantiating the schema, the algorithm 

thus computes the covering models of an observation 

with respect to a hierarchy. 

To obtain the minimal covering models, note that 

each alternative parse tree attached to the start symbol 

S will postulate the existence of some number of END 

plans. These END plans can be enumerated simply by 

traversing the topmost right-branching structure of the 

tree introduced by the rule S + END S. The minimal 

models are those that apply this derivation a minimal 

number of times. This, along with the preceding 

discussion, informally shows the following proposition. 

Proposition 1: Under the sentential interpretation of 

parse trees, Earley’s algorithm computes the minimal 

covering models of an observation m with respect to 

H, a decomposition hierarchy with ordered unshared 

steps. 

Earley (1970) shows that the run time of his 

recognizer for a sentence of length n is bounded by a 

factor of O(n3). Barton, Berwick, and Ristad (1987) 

note that this bound can be refined to O(G O 2 n3), where 

Go is the total number of possible dotted rules afforded 

by the grammar G. 

The addition of a chart, as is done in the algorithm of 

Figure 3, extends Earley’s recognizer into a parser, but 

can introduce performance degradation. Tomita (1986), 

for example, describes some pathological combinations 

of grammars and input strings that can require of his 

chart-based parser O(n5) space utilization, and a 

corresponding degradation in parse time. However, 

Billot and Lang (1989) suggest that by using structure 

sharing to implement the chart’s AND-OR graphs, the 

space requirements for storing the chart are bounded by 

O(n3), while the parse times also remain cubic. 

The Uses of Abstraction 
The preceding results are of some interest in 

establishing the tractability of plan recognition for one 

class of plan hierarchies, those expressible without 

abstraction. However, the resulting formal apparatus is 

so impoverished as to be useless in practice. 

Beyond allowing for the identification of significant 

abstract constructs of a domain, abstraction is used in 

Kautz’ framework to encode three different phenomena: 

the multiple expansions of a plan; the isolation of 

substeps common to all expansions of a plan (which are 

then shared through inheritance); and, indeterminate 

observations. 

Adding Abstraction to the Grammar 
It is easy to extend the mapping from plan 

hierarchies to grammars so as to allow for abstraction in 

the descriptions of plan types. Abstract observations, 

however, impose additional considerations, which I will 

return to later. Assume for now that observations are 

given in terms of base plan types (the leaves of the plan 

hierarchy), and again restrict plan steps to be fully 

ordered and unsharable. The mapping from a hierarchy 

H to a grammar G proceeds from the top of the 

hierarchy to its leaves, distinguishing two cases: 

Case I : Say q is a plan type decomposing into steps 

01.. . on, and say 9 has children xl.. .xm. Then, for each 

xi, copy each Oj (and its type restriction vj) to the 

decomposition of Xi, unless Xi happens to further restrict 

Oj. Then for each xi, add a rule to the grammar of form 

P + Xi 

Case 2: Say q is a childless plan type that decom- 

poses into (possibly inherited) steps CJ~. . . on, with step 

restrictions vi.. . Wn. Then add to the grammar a 

decomposition rule of form 

V+ Yfl ... Wn 

Again, the root of the hierarchy (ANY) is ignored, 

and again, the grammar is completed by adding the 

initial parse rule 

S+END 1 ENDS 

Note that this scheme eliminates from a hierarchy 

the explicit decompositions of abstract actions, 

enforcing them implicitly by inheritance instead. Thus, 

returning to the plan hierarchy in Figure 1, the sub- 

hierarchy rooted at MAKE-PASTA-DISH would be 

encoded as 

MAKE-PASTA-DISH 

+ MAKE-FETTUCCINE-MARINARA 

MAKE-FETTUCCINE-MARINARA 

+ BOIL-WATER 

MAKE-FETTUCCINE 

MAKE-MARINARA 

The grammatical treatment of abstraction introduces 

additional complexity to the sentential interpretation of 

parse trees. Indeed, one must now distinguish nodes 

that were introduced by abstraction parse rules from 

those that were introduced by decomposition parse rules. 

As before, say t is a node with children tl... tn, and say t 

was introduced by a decomposition rule produced in 
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Case 2 of the grammatical mapping. Then the 

sentential form of t is that of its children conjoined with 

3 5. K(6) * 01(C) = 51 *---A on(c) = cn 

For abstraction, say (p + W is a parse rule introduced 

to encode an abstraction axiom in Case 1 of the 

grammatical mapping. Let t be a node in a parse tree 

that derives a node t’ by this rule. Then the sentential 

interpretation of the tree rooted at t is that of t’ 

conjoined with the expression q(5), where 5 is the plan 

variable associated with the interpretation of t’. 

Properties of Abstraction Grammars 
The correctness and complexity properties of Earley’s 

algorithm for decomposition grammars are easy to verify 

for abstraction grammars. For correctness, one must 

once again show that the algorithm computes the 

minimal covering models of some observation W with 

respect to H, a hierarchy with abstraction. To begin 

with, Kautz (1987) showed that the covering models of 

a hierarchy with abstraction are precisely those that 

fully instantiate three axiom schemata, one of which 

(component/use) appeared above in a simplified form. 

Disjunction: let q be a plan type that directly 

abstracts types ~1,. . ., vn. Then: 

If X NX) 3 Vi(X) v-**v &l(X) 

Exclusion: let ~1 and (92 be incompatible plan types, 

i.e., ones for that there exists no 413 which is abstracted 

(directly or indirectly) by both ql and w. Then: 

‘d x +pl(X) v +?200 

Component/use: let q be a plan type, and let ~1.. . t//n 

be all those plan types that restrict some step crl. . . on to 

be (p or a plan type compatible with q. Then: 

\d x (P(X) II END(x) v 

3 Yl W(Y1) * (Ol(Y1) = Jo v...v 

3 Yn Wn(Yn) * (%(Yn) = X) 

Under the sentential interpretation of parse trees, the 

disjunction schema can be recast in terms of t and t’, 

variables ranging over nodes in the parse tree: 

v t  q(t) 3 3 t ’ (t  3 t ’) A (vl(t ’) V...V l& ,(t))) 

Assuming that @ mentions only base level 

observations, this schema is verified by noting that a 

parse node corresponding to an abstract plan type cp is 

only introduced into the chart (during the completion 

step of the algorithm) if one of ~1,. . . , vn was previously 

introduced into the chart. 

A similar argument can be used to show that, 

assuming base level observations, the parser fully 

instantiates the exclusion schema. The argument can 

also be used to extend the proof of Proposition 1 in order 

to show that the parser fully instantiates the extended 

version of the component/use schema. This informally 

demonstrates that the algorithm computes the covering 

models of @ with respect to H. The minimal covering 

models can be obtained as before from those parses 

introducing fewest END nodes under S, thus showing: 

Proposition 2: Under the sentential interpretation of 

parse trees, Earley’s algorithm computes the minimal 

covering models of a base-level observation cr) with 

respect to H, a hierarchy with ordered unshared steps. 

As before, the time complexity of parsing an 

observation “sentence”  is O(G O 2 n3). The G O term is 

related to the original hierarchy description in the 

following way. There is exactly one dotted rule for each 

abstraction axiom, and the latter’s number is bounded by 

P, the size of the set of plan types in the hierarchy. The 

original decomposition axioms are also bounded in 

number by P, and it is easy to verify that after step 

inheritance, the number of corresponding dotted 

decomposition rules is bounded by Pd, where d is the 

number of steps mentioned in the longest decomposition 

axiom. The overall size of G O is thus O(Pd). 

Abstract Observations 
The preceding discussion crucially relies on observed 

actions’ not being abstract. This is a severe limitation, 

since abstract plan types simplify the expression of 

indeterminate observations. For example, in Kautz’ 

cooking world, one might like to encode uncertainty on 

whether an agent is making fettuccine or spaghetti with 

an abstract MAKE-NOODLES observation. In gram- 

matical terms, this amounts to allowing non-terminal 

categories to appear directly in the input stream. 

For the plan parser to interpret these observations 

correctly is tricky. The problem is that to ensure that 

the minimal covering models are computed, the parser 

must expand the abstract observation into its possible 

specializations, and hypothesize that each may have 

occured. It would be appealing if this expansion could 

be effectuated by compiling additional parse rules out of 

the plan hierarchy. Unfortunately, though various naive 

strategies for doing so are conceivable, they all seem to 

have unacceptable problems. 

For instance, one could allow for abstract 

observations to be specialized down the abstraction 

hierarchy with “reverse”  abstraction rules (e.g., MAKE- 

PASTA-DISH -+ MAKE-MEAL). However, this leads 

directly to violations of the disjunction schema. An 

alternative (and equally naive) approach would produce 

additional decomposition rules introducing the possible 

abstractions of a base action, e.g.: 

MAKE-FETTUCCINE-MARINARA-+ MAKE-NOODLES 

MAKE-SAUCE 

However, the number of such rules is bounded by 

O(dpJ, leading to an exponential increase in the size of 

the grammar and an exponential increase in parse times. 

A more practical alternative is to leave the grammar 

unchanged, and treat an abstract observation q,(e) 

disjunctively as Vi vi(e), where the I//i are those plan 

types that maximally specialize cp (i.e., that specialize 

(p and have no specializations in turn). This strategy 

can be seen as explicitly enforcing the disjunction 

axiom schema on abstract observations. 
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At the grammatical level, this strategy has a natural 

analogue in lexical ambiguity, the ambiguity 

encountered when a terminal (e.g. the English word can) 

is derivable by more than one pre-terminal (e.g. V, N, or 

AUX). In linguistic parsers the terminals in a string are 

usually replaced with the corresponding pre-terminals, 

so lexical ambiguity can be simply dealt with by adding 

each ambiguous pre-terminal directly into the same cell 

of the chart. Similarly, the plan parsing algorithm in 

Figure 3 can be amended to enter any abstract 

observation q(e) into its chart cell as the set of I+Vi that it 

abstracts. A MAKE-NOODLES observation, for example, 

would be entered in the chart as a set of two terminals: 

{MAKE-SPAGHETTI MAKE-FETTUCCINE} . 

This approach to abstract observations preserves the 

correctness of the plan parser. As noted above, it 

directly enforces the disjunction schema. That the 

exclusion schema is enforced can be seen by noting that 

no two ambiguous terminal entries appear in the same 

parse. Consequently, under the sentential interpretation 

of parse trees, no two ambiguous but incompatible types 

can hold true of the same plan variable or plan constant. 

Finally, for each distinct parse, it is easy to verify that 

the algorithm will fully instantiate the component/use 

schema. 

The disjunctive treatment of abstraction also 

maintains the polynomial tractability of the plan parser. 

This can be seen by noting that the O(G O 2 n3) time 

bound on parsing an observation string of length n is 

obtained from a O(G O 2 n2) bound on each step of the 

main loop of the parser (which is iterated n times). 

Informally, one can think of an ambiguous observation q 

in position [i-l, i] as temporarily “augmenting”  the 

grammar for iteration step i. The augmentation consists 

of introducing a new category OBSERVED-9 and new 

rules of form OBSERVED-9 + vi, for each I+Yi maxi- 

mally specializing (p. The abstract observation is then 

encoded as a token of OBSERVED-q. This has a net 

effect of temporarily adding no more than P rules to the 

grammar at each step of the parser’s main iteration, and 

so G O remains bounded at each step by O(Pd). This 

leaves the overall time complexity of parsing 

unaffected. 

The following proposition summarizes the discussion 

of the past few pages. 

Proposition 3: There is a O(n3)-time plan recognition 

algorithm for hierarchies with ordered, unshared 

steps, and for disjunctive or abstract observations. 

Further Extensions 
This result is of significant value, as it delineates a 

subset of Kautz’ plan formalism for which plan recog- 

nition is tractable. The parsing approach underlying this 

result can in fact be extended to cover further aspects of 

Kautz’ formalism, but unfortunately not without also 

sacrificing recognition tractability. 

Partial Step Order 
A number of recent linguistic formalisms refine the 

traditional phrase structure rules into two sets of rules: 

(1) indirect dominance (ID) rules, which specify which 

subconstituents may be derived by a constituent, and 

(2) linear precedence (LP) rules, which determine the 

left-to-right order of these subconstituents. This ID/LP 

strategy can be applied to plan hierarchies to allow for a 

compact encoding of partial step ordering. For 

example, the following two sketchy rules specify that 

the BOIL-WATER step of the MAKE-PASTA-DISH plan 

must be ordered before the MAKE-NOODLES step, but 

leaves all other step relations unordered. 

PASTA --=+ BOIL NOODLES SAUCE (ID rule) 

BOIL < NOODLES (LP rule) 

In effect, an ID rule of length n stands for an 

equivalent n! ordered context-free rules, some of which 

are then eliminated if they fail to satisfy the LP rules. 

In principle, one could thus parse an ID/LP grammar 

with Earley’s algorithm by first compiling it into the 

corresponding context-free rules. However, as the 

number of such rules is combinatorially explosive, the 

size of the resulting grammar would be correspondingly 

large, and parse times correspondingly lengthy. To 

alleviate this problem, Shieber (1983) produced a 

simple extension to Earley’s algorithm that allows for 

direct parsing of ID/LP grammars, thus circumventing 

the combinatorial explosion produced by compilation. 

Unfortunately, Shieber’s parser does not escape 

intractability. Barton et al. (1987) show that ID/LP 

parsing is NP-complete under certain conditions. The 

argument is complex, but for the purposes of this paper 

it suffices to note that a sufficient condition for NP- 

completeness is the kind of lexical ambiguity used 

above to encode abstract observations. In fact, this NP- 

completeness result can easily be extended to show the 

following proposition (offered here without proof). 

Proposition 4: Recognizing plans with abstraction and 

partial step order is NP-complete, regardless of 

recognition tactic. 

This pessimistic result must be taken in perspective. 

Shieber’s algorithm performs well in practice, and truly 

extreme derivational ambiguity is required to lead it to 

exponential performance. In fact, Barton et al. suggest 

that tractability may actually be regained by ensuring 

that the unordered steps of an ID decomposition are 

derivationally distinct. This is the case, for example, 

with the ID rule decomposing MAKE-PASTA-DISH, each 

of whose steps derives a set of constituents distinct from 

those derived by the others. However, a general plan 

distinguishability criterion has yet to be formulated. 

Action Parameters 
Kautz allows plans to have parameters, such as an 

agent. As with other aspects of plan recognition, action 
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parameters have a grammatical analogue, in this case 

with unification grammars (another extension of the 

context-free class). Without going into details, it is 

straightforward to show that plan parameters and 

constraints on these parameters can be encoded in the 

unification formalism. However, parsing unification 

grammars is again NP-complete in the presence of 

derivational ambiguity (Barton et al. (1987)). 

Plan Parsing in Perspective 
There are additional aspects of Kautz’ approach that 

may not be convincingly treated with a parsing strategy. 

Shared and interleaved steps are a particularly salient 

example of this. It is admittedly possible to formulate 

some kind of type 0 or perhaps context-sensitive phrase 

structure rules to encode the sharing or interleaving of 

steps. However, it is not at all clear how to do so 

without endowing the plan formalism with enough 

machinery to make plan recognition intractable or even 

undecidable (type 0 grammars being Turing-equivalent). 

Nevertheless, the main thrust of this work is not to 

show that all of Kautz’ approach can be reformulated as 

parsing, as much as it is to find those aspects of his 

approach that become tractable when so reformulated. 

Beyond the immediate gains of tractability, the parsing 

approach does provide an operational advantage over 

Kautz’ algorithms. Namely, it focuses recognition by 

predicting the existence of only those END plans 

sanctioned by all the observations taken together. 

Kautz’ algorithms perform the prediction on each 

individual observation, independent of the others, and 

then combine the resulting predictions. This is 

computationally much more onerous, but may turn out 

to be unavoidable if one wants to allow for sharing and 

interleaving of steps. 

Finally, I should note that there are many similarities 

between the parsing strategies described here and the 

plan recognition strategies in MITRE’S King Kong 

interface (Burger & Sider, 1990). As part of our current 

research, my colleagues and I are investigating further 

extensions to King Kong that rely on parsing strategies. 
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