
Message from ISCB

Getting Started in Gene Expression Microarray Analysis
Donna K. Slonim1,2*, Itai Yanai3*

1 Department of Computer Science, Tufts University, Medford, Massachusetts, United States of America, 2 Department of Pathology, Tufts University School of Medicine,

Boston, Massachusetts, United States of America, 3 Department of Biology, Technion–Israel Institute of Technology, Technion City, Haifa, Israel

Gene expression microarrays provide a

snapshot of all the transcriptional activity

in a biological sample. Unlike most

traditional molecular biology tools, which

generally allow the study of a single gene

or a small set of genes, microarrays

facilitate the discovery of totally novel

and unexpected functional roles of genes.

The power of these tools has been applied

to a range of applications, including

discovering novel disease subtypes, devel-

oping new diagnostic tools, and identifying

underlying mechanisms of disease or drug

response. However, this technology neces-

sarily produces a large amount of data,

challenging us to interpret it by exploiting

modern computational and statistical

tools. In this brief review, we aim to

indicate the major issues involved in

microarray analysis and provide a useful

starting point for new microarray users.

Figure 1 outlines the steps in a typical

expression microarray experiment and

maps them to the different sections of this

review.

Experimental Design

Careful experimental design is crucial

for a successful microarray experiment

[1,2], yet this important step is often

shortchanged. Design issues depend in

part on the exact array technology used,

and indeed, choosing an array technology

is often the first design choice. The main

distinction is whether essentially full-length

transcripts are printed onto slides (cDNA

microarrays) or the desired—typically

shorter—oligonucleotides are synthesized

in situ (oligonucleotide arrays). While the

former may be less expensive because they

can be manufactured in the lab or at

institutional core facilities, the latter may

outperform the former in terms of number

of spots per array and the spots’ homoge-

neity [3,4].

Slightly different oligonucleotide array

platforms are manufactured by companies

such as Affymetrix, Agilent, and Nimble-

Gen (see Text S1 and Table S1 for further

discussion).

A major design question is whether to

measure the expression levels from each

sample on a different microarray (using

single-color, or single-channel, arrays), or

instead to compare relative expression

levels between a pair of samples on each

microarray (two-color or two-channel

arrays). There are tradeoffs between the

two approaches. Single-color arrays allow

for more flexibility in analysis, while two-

color arrays can control for some technical

issues by allowing a direct comparison in a

single hybridization [5]. A recent compar-

ison of single- and two-color methods on

the same platforms found good overall

agreement in the data produced by the

two methods [6]. cDNA arrays typically

involve two channels. Agilent and Nim-

bleGen arrays can be run using either one

or two channels. Affymetrix arrays are

inherently single-channel, though some

associated analysis tools facilitate pair-wise

comparisons.

Design issues for two-color arrays are

more complex [7]. Challenges include

ensuring that all samples can be compared

to the appropriate controls and avoiding

any biases introduced by the different

labeling. ‘‘Dye-swap’’ experiments, in

which the same pairs of samples are

compared twice with the labeling colors

swapped, can permit the computational

removal of such bias. Dye swapping

imposes additional costs in both the

number of arrays and the types of data

analyses possible. However, clever design

can somewhat reduce the required num-

ber of arrays [1].

As attractive as it might seem financially

to run just one microarray for each ‘‘class’’

of samples (of the same phenotype, time-

point, or tissue type) under consideration,

replicates are essential for providing

meaningful results [2]. Without replicates,

no statistical analysis of the significance

and reliability of the observed changes is

possible; the typical result is an increased

number of both false-positive and false-

negative errors in detecting differentially

expressed genes [8]. However, we distin-

guish between technological and biological

replicates. Technological replication—the

same biological material hybridized inde-

pendent times—is generally no longer

Citation: Slonim DK, Yanai I (2009) Getting Started in Gene Expression Microarray Analysis. PLoS Comput
Biol 5(10): e1000543. doi:10.1371/journal.pcbi.1000543

Editor: Olga G. Troyanskaya, Princeton University, United States of America

Published October 30, 2009

Copyright: � 2009 Slonim, Yanai. This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Funding: DKS is supported in part by NIH grants LM009411 and HD058880. IY is a Horev Fellow, supported by
the Taub Foundations. The funders had no role in the preparation of the article.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Donna.Slonim@tufts.edu (DKS); yanai@technion.ac.il (IY)

Figure 1. Overview of steps in a typical
gene expression microarray experiment.
Topics in blue boxes with solid borders are
addressed in the Experimental Design section,
those in green boxes with dashed borders are
covered in the section on data preparation,
and those in purple boxes with dash-dotted
borders are discussed in the Data Analysis
section of this review.
doi:10.1371/journal.pcbi.1000543.g001
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performed, as analyses have shown that

the results will be relatively consistent

overall [4], although they may include

consistent sources of bias [2]. Instead,

different patients or animals from the same

class can serve as biological replicates. To

improve the ability to detect outliers and

their effects, we do not recommend

pooling samples unless necessary to obtain

sufficient amounts of material for hybrid-

ization, and even then, replicates measur-

ing different pools with the same pheno-

types must be performed [7].

During the experimental design stage, it

is important to identify all the variables to

be compared and to ensure that the

proposed design allows their measure-

ment. Be aware of other variables, such

as patient age or date of sample collection,

that might confound the distinction be-

tween the compared classes. One option is

to randomize confounding variables relat-

ed to experimental conditions under your

control.

Preparing Microarray Data for
Analysis

The task of analyzing microarray data is

often at least as much an art as a science,

and it typically consumes considerably

more time than the laboratory protocols

required to generate the data. Part of the

challenge is assessing the quality of the

data and ensuring that all samples are

comparable for further analysis.

Normalization of the raw data, which

controls for technical variation between

arrays within a study, is essential [7]. The

challenge of normalization is to remove as

much of the technical variation as possible

while leaving the biological variation

untouched. This is a big challenge, and

here we only touch upon the main issues.

First, visualization of the raw data is an

essential part of assessing data quality,

choosing a normalization method, and

estimating the effectiveness of the normal-

ization. Many methods for visualization,

quality assessment, and data normaliza-

tion have been developed (see [9] for a

review, Text S1, and Figure S1). Related

issues of background adjustment and data

‘‘summarization’’ (reducing multiple

probes representing a single transcript to

a single measurement of expression) for

Affymetrix arrays are well introduced in

chapter 2 of [10].

Clustering is a way of finding and

visualizing patterns in the data. Many

papers and indeed books have been

written on this topic (see e.g., [11–13]

and Text S1). Different methods highlight

different patterns, so trying more than one

method can be worthwhile. Note that

while clustering finds predominant pat-

terns in the data, those patterns may not

correspond to the phenotypic distinction

of interest in the experiment. To identify

gene expression patterns related to this

distinction, more directed methods are

appropriate.

Data Analysis

There are many commercial packages

for microarray analyses, and we have by

no means evaluated all of them. However,

commercial tools can be expensive, and

we find many that we have tried to have

limited flexibility. Fortunately, in the past

few years a number of Web-based tools

and open-source software packages for

microarray data analysis have become

available (see below and Text S1), and

we recommend taking advantage of them.

One common strategy is to create a

custom data analysis pipeline using statis-

tical analysis software packages such as

Matlab or R. Both allow great flexibility,

customized analysis, and access to many

specialized packages designed for analyz-

ing gene expression data. Not only is R

freely available, but it also allows the use of

BioConductor [14], a collection of R tools

including many powerful current gene

expression analysis methods written and

tested by experts from the growing micro-

array community.

The fundamental goal of most micro-

array experiments is to identify biological

processes or pathways that consistently

display differential expression between

groups of samples. While the exact

approach depends in part on the design

of the experiment, there are two broad

approaches to detecting differential ex-

pression. The first examines each gene or

transcript individually to find genes that,

by themselves, have statistically significant

differences in expression between samples

with different phenotypes or characteris-

tics. The set of genes thus identified is then

examined for over-representation of spe-

cific functions or pathways [15]. A pow-

erful alternative is to identify groups of

functionally related genes ahead of time

and to test whether these gene sets—as a

group—show differential expression

[16–18]. Both of these approaches can

be effective, and sometimes the combina-

tion of the two is stronger than either

alone [19].

One crucial issue for all microarray

analysis methods is adjusting for multiple

testing [20]. Each statistical test reports the

probability of seeing the observed test

score by chance under the null hypothesis

that there is no difference in expression

related to the phenotype being studied.

Even if this reported ‘‘p-value’’ is low, say

0.001, one might expect to see 20 of these

one-in-a-thousand events when perform-

ing 20,000 independent tests (a reasonable

number of genes on a microarray). A

range of methods to adjust for multiple

testing are available (see [21] for an

overview). The preferred approach for

microarray analysis is to control the

‘‘false-discovery rate’’ (FDR): the proba-

bility that any particular significant finding

is a false positive [22].

Once a list of differentially expressed

genes has been assembled, some functional

analysis is essential for interpreting the

results. There are many tools available to

identify pathways or biological functions

that are over-represented in a given gene

list. Again, adjustment for multiple testing

may be desirable, although complex

dependencies between pathways make

finding an appropriate adjustment method

controversial [23]. A good review of the

earlier tools that discusses many of the

statistical issues is [15].

An alternative to the individual-gene

analysis workflow is to consider entire gene

sets or pathways together when looking for

differential expression. There are many

approaches that do this (e.g., [16,24–26]),

but a fundamental and widely used version

is the Gene Set Enrichment Analysis

(GSEA) software from the Broad Institute

[17]. Gene set analysis can be advanta-

geous because it can detect subtle changes

in gene expression that individual gene

analyses can miss, and because it combines

identification of differential expression and

functional interpretation into a single step.

The disadvantage of this method is that

appropriate gene sets need to be known

ahead of time. When studying a biological

process that is still poorly understood, an

individual gene method may be more

appropriate, as it allows for the opportu-

nity of implicating hitherto unexpected

genes and gene sets. Given that gene set

analysis is more sensitive and therefore

potentially more powerful, a greater effort

in defining the pathways needed to

support this approach is warranted. To-

ward this end, GSEA’s gene set database

incorporates some computationally de-

rived gene sets, including expression

neighbors of known cancer genes [17]

and network modules mined from a large

collection of expression data [27]. Related

work has used conserved coexpression

[28] or differential coexpression [29] to

discover new functional modules.

Much has also been written about

sample classification using microarray data
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(see review [13]) but, with a few exceptions

[30,31], microarrays themselves have not

been embraced as diagnostic tools. Rather,

they have been used to identify smaller sets

of predictive genes or pathways that

might, when assessed by other technolo-

gies, aid in diagnosis or stratification of

samples. A huge range of machine learn-

ing methods [11,12] can be applied to the

related classification problems. Most peo-

ple intent on doing this write their own

code (but see Text S1 for an alternative).

We note that simpler classification tools

often perform as well as, and generalize

better than, more complex ones [32].

Outlook

It has been our goal in this brief review

to demonstrate that it is currently feasible

for researchers with no previous experi-

ence to incorporate microarray analyses in

their studies. The field is now reasonably

mature, with available software and tools

to make data analysis manageable by

nonexperts. That said, newcomers to the

field should be aware that the data analysis

will require a dedicated commitment of

time and effort that generally substantially

exceeds that of data generation. We

strongly recommend that researchers do

the work to familiarize themselves with the

relevant analytical literature before begin-

ning, or even designing, the experiment.

It has been speculated that microarray

technology will soon be superseded by

next-generation sequencing, in which the

transcripts are directly sequenced by low-

cost, high-throughput sequencing technol-

ogies [33]. However, currently, next-

generation whole-transcriptome sequenc-

ing is still quite expensive and in its relative

infancy. Its cost scales proportionally with

its ability to assess low-abundance tran-

scripts, as sufficient depth of sequencing

must be performed. Further, analytic tools

specific to this data source have not yet

been developed for mass consumption.

Recent studies have shown that the two

transcriptomics technologies are expected

to give very similar results [34,35], al-

though for rare transcripts there is consid-

erably less correlation between the meth-

ods [35]. Thus, until sequencing-based

methods have become cost-effective and

easily used, microarrays will remain a

desirable alternative for many practition-

ers. We expect that, as RNA sequencing

methods mature, many microarray analy-

sis methods will come to be viewed as

general analysis tools that can be applied

or modified to fit any forthcoming tran-

scriptomics technologies [36].

Supporting Information

Figure S1 Three common normaliza-

tion methods. The left plots show pairs of

distributions of microarray intensities to be

normalized (right plots). A) If the distribu-

tions are of the same overall shape, they

can simply be scaled to the same mean. B)

Quantile normalization imposes the same

distribution on all samples. C) A known

quantity of RNA is spiked-in to each

sample (vertical line) and is then used as a

scaling factor.

Found at: doi:10.1371/journal.pcbi.

1000543.s001 (1.57 MB EPS)

Text S1 In this section we further discuss

some of the issues raised in the main text.

Found at: doi:10.1371/journal.pcbi.

1000543.s002 (0.23 MB RTF)

Table S1 Comparison of commercial

microarray manufacturers.

Found at: doi:10.1371/journal.pcbi.

1000543.s003 (0.05 MB RTF)
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