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Abstract. Cascade chaining is a very efficient and popular mode of
operation for building various kinds of cryptographic hash functions. In
particular, it is the basis of the most heavily utilized SHA function family.
Recently, many researchers pointed out various practical and theoretical
deficiencies of this mode, which resulted in a renewed interest in building
specialized modes of operations and new hash functions with better se-
curity. Unfortunately, it appears unlikely that a new hash function (say,
based on a new mode of operation) would be widely adopted before being
standardized, which is not expected to happen in the foreseeable future.

Instead, it seems likely that practitioners would continue to use the
cascade chaining, and the SHA family in particular, and try to work
around the deficiencies mentioned above. In this paper we provide a
thorough treatment of how to soundly design a secure hash function H ′

from a given cascade-based hash function H for various cryptographic ap-
plications, such as collision-resistance, one-wayness, pseudorandomness,
etc. We require each proposed construction of H ′ to satisfy the following
“axioms”.
1. The construction consists of one or two “black-box” calls to H .
2. In particular, one is not allowed to know/use anything about the

internals of H , such as modifying the initialization vector or affecting
the value of the chaining variable.

3. The construction should support variable-length inputs.
4. Compared to a single evaluation of H(M), the evaluation of H ′(M)

should make at most a fixed (small constant) number of extra calls
to the underlying compression function of H . In other words, the
efficiency of H ′ is negligibly close to that of H .

We discuss several popular modes of operation satisfying the above
axioms. For each such mode and for each given desired security require-
ment, we discuss the weakest requirement on the compression function
of H which would make this mode secure. We also give the implica-
tions of these results for using existing hash functions SHA-x, where
x ∈ {1, 224, 256, 384, 512}.

1 Introduction

The Cascade construction is a very elegant way to build a hash function H
on arbitrary-length inputs from a given compression function h on fixed-length
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Fig. 1. The plain Merkle-Damg̊ard Mode

inputs. Recall that for a given h : {0, 1}κ × {0, 1}n → {0, 1}n, one can define
a hash function H , parametrized by an initialization vector IV ∈ {0, 1}n, as
follows (where input M = m1 ‖ . . . ‖ m� and mi ∈ {0, 1}κ for i = 1 . . . �):

H(m1 ‖ . . . ‖ m�) = h(m�, h(. . . , h(m1, IV ) . . .))

We will refer to this mode, depicted in Figure 1, as the MD mode or the plain
MD mode (after Merkle-Damg̊ard).

The most abundant use of the MD mode in practice comes in the design of
the industry-standard hash family SHA (which consists of several specific hash
functions SHA-x, where x ∈ {1, 224, 256, 384, 512}). Unfortunately, despite its
elegance and simplicity, the plain MD mode has several deficiencies. For in-
stance, it does not guarantee that a “global” collision of H implies a “local”
collision of the compression function h, unless one preprocesses the input into
a suffix-free form before applying H [10] (the particular suffix-free encoding of
appending the message length is called MD strengthening, and is actually used in
the SHA family for this reason). More seriously, it was shown by Coron et al. [9]
that even MD strengthening falls prey to the “extension attack” 1 which makes
it insufficient for domain extension of random oracle. Moreover, this deficiency
disqualifies the natural use of “plain MD” in the design of “pseudorandom func-
tions” [3]. Other problems also arise when the MD mode is used in applications
such as key derivation [11] and target collision-resistance (or UOWHFs 2) [5,25].

Apart from the issues mentioned above, several other deficiencies of the MD
mode against exponential-time attacks have been discovered [15,17]. All these
deficiencies, coupled with the improved brute-force attacks on the popular SHA-
1 hash function proposed recently [26,27], suggest that it is time to design a
better, more “secure” mode of operation for building a variable-length input
hash function. With this purpose, NIST has been organizing several workshops
dedicated to coming up with the next generation hash functions [22]. However,
this process will take some time, and it does not appear that such hash functions
would be standardized and widely accepted in any foreseeable future. Therefore,
practitioners are “stuck” with the prospect of using existing hash functions,
despite all their deficiencies. Hence, there is a pressing need to design immediate
“fixes” to the MD paradigm, without changing it drastically.
1 i.e., given H(x) and any extension y, one can compute H(x ‖ y) without knowing x.
2 Which stands for Universal One-Way Hash Functions.
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There are two aims in coming up with such “fixes” to the MD mode. The first,
and so far the most popular, aim is to design a slight variant of the MD mode
that provably preserves a given security property of the compression function,
and to do so in the most aesthetic and efficient manner. We mention only a
few of the many examples of this approach. For collision-resistance, we already
mentioned the well known technique of MD strengthening. For another example,
by viewing the initialization vector as the key and applying a prefix-free encoding
to the message, one can obtain a variable-length input pseudorandom function
from a fixed-length input pseudorandom compression function [3]. In the case
of target collision-resistance, Shoup [25] designed an elegant mode for building
target collision-resistant (TCR) hash functions (or UOWHFs [23]) from a TCR
compression function by cleverly XORing certain masks to the internal chaining
variables in the MD construction. The common feature in all these results is that
one assumes exactly the same property from the compression function h as the
desired property from the hash function H . In many cases, such as the PRF and
TCR examples, this means that a “secure” mode must be sufficiently different
from the plain MD so that its implementation requires a non-trivial modification
to the SHA implementation. Concretely, the SHA family uses a fixed public IV
(as opposed to arbitrary secret IV needed for PRFs), while in the TCR case one
cannot XOR the corresponding masks without modifying the internals of SHA.

Of course, we are not saying that the required modifications are too “com-
plicated” to be correctly implemented by a serious programmer. In fact, they
are not. Our point is that, irrespective of simplicity and conceptual similarity
to the existing implementations, they require one to tinker with the internals of
such standard implementations. And this is not only error-prone and requiring
low-level programming (which could result in less optimized implementations
than those done by the experts), but goes against the whole philosophy of mod-
ular design. We do not want our security engineers to know all the low-level
cryptographic details. Instead, they should understand the higher-level picture
of the protocols they are trying to build, and never need to worry about existing
low-level libraries.

This brings us to the second approach, where one explicitly aims to design
a “secure” mode that uses only black-box calls to the plain MD mode.3 For
instance, MD strengthening satisfies this property. Other important examples
include the HMAC mode for pseudorandom functions [3] and the results for do-
main extension of random oracle in [9]. The attractive feature of these results is
that they result in a hash function with the desired property without tinkering
with the internals of SHA, and can use any off-the-shelf implementation. More-
over, all these examples also satisfy the property-preserving property described
above, and do so without any noticeable efficiency penalties as compared to the
solutions following the first approach. Concretely, at the price of one or two (or
sometimes zero!) extra calls to the compression function h — which is negligible
for all practical purposes —, one manages to achieve the desired goal without
tinkering with the internals of the existing hash functions.

3 In practice, with MD strengthening, but we ignore this aspect for now.



Getting the Best Out of Existing Hash Functions 159

Our Goal. Not surprisingly, we will emphasize the latter approach in coming
up with “fixes” for existing hash functions. That is, we consider the question of
building a hash function H ′ achieving a given security property P using a black-
box MD-based hash function H (with an unknown compression function h). We
require that the proposed construction H ′ satisfies the following “axioms”:

1. The construction should consist of one or two “black-box” calls to H . In
particular, the construction is not allowed to use any knowledge of or tinker
with the internals of the hash function H .

2. The construction must support variable-length inputs.
3. Compared to a single evaluation of H(M), the evaluation of H ′(M) should

make at most a fixed (small constant) number of extra calls to the underlying
compression function of H . In other words, the efficiency of H ′ is negligibly
close to that of H .

The motivation behind requiring the construction H ′ to satisfy these axioms is
from the viewpoint of a practitioner who understands the properties of the hash
function that are needed for the security of his cryptosystem, but who wants to
use an off-the-shelf standardized hash function implementation without tinkering
with its internals. Such a practitioner would be willing to sacrifice the property-
preserving aspect of the “fix” in favor of a black-box implementation.

In fact, the above “axioms” leave very little freedom in choosing the modes
of operation for H ′. The resulting modes are essentially the most widely-utilized
constructions appearing in practical implementations:

1. Plain MD Construction: This captures the notion that the application uses
the hash function as it is. We will denote this mode of operation as H.

2. Encode-then-MD Construction: In this case, the user encodes the hash func-
tion input before applying the plain MD construction. Examples of popular
encoding schemes used are suffix-free encoding and prefix-free encoding. We
will refer to the corresponding constructions as the prefix-free MD construc-
tion Hpre and the suffix-free MD construction Hsuf .

3. MD-then-Chop Construction: Here the user applies the plain MD mode and
only uses part of the output while discarding the remaining bits. In partic-
ular, existing hash functions SHA-224 and SHA-384 are obtained this way
from SHA-256 and SHA-512, respectively. We denote the MD-then-chop con-
struction that chops s bits of the output as Hchops .

4. NMAC/HMAC Construction: The version of the NMAC construction that
we consider simply composes two applications of the plain MD mode with
possibly different initialization vectors IV1 and IV2. While not obeying the
first axiom, the NMAC construction serves as a nice abstraction for the
HMAC construction which does satisfy all our axioms (but is slightly harder
to formally analyze in some cases). Concretely, the HMAC construction
uses the NMAC construction with IV1 = h(IV, α1) = H(α1) and IV2 =
h(IV, α2) = H(α2), where each αi is either the null string ⊥ (in which case
we let h(IV, ⊥) = IV ) or a single κ-bit block. We denote the NMAC con-
struction as Hnmac and the HMAC construction as Hhmac.
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Now we can finally rephrase our goal as follows. Given a particular desired
security property P (such as collision-resistance or pseudorandomness) and one
of the 4 modes of operation above (which all satisfy our axioms), find the weakest
security assumption(s) P ′ on the compression function h which would make the
corresponding mode satisfy P (or determine that the construction is insecure for
any h). Ideally, this security property P ′ for h would be P itself (which would
result in a property-preserving mode of operation). However, unlike most previous
work, property preservation is not our primary concern. In particular, we will not
declare a mode of operation to be “insecure” for a property P simply because
it is not property-preserving for P . Instead, we will find the weakest security
property P ′ of the compression function that makes the resulting construction
secure. This will allow the practitioners to decide whether or not it is reasonable
to assume that the compression function of existing hash functions, such as SHA,
satisfy the property P ′, even if P ′ is (slightly) stronger than P .

Our Results. We achieve our main goal for a very wide variety of security
properties including collision-resistance (CR), pseudorandomness (PR), indif-
ferentiability from random oracle (RO), message authentication (MAC), target
collision-resistance (TCR), second preimage-resistance (SPR), randomness ex-
traction (RE) and one-wayness (OW). In each case, and for each of the four
popular modes above, we will identify the needed property P ′ on h. In some
cases, the needed P ′ easily follows from some existing work (for instance, from
[9] in the case of domain extension of random oracle). In other cases, it required
some minor, but important modifications to the existing results in order to sat-
isfy our axioms. For example, by assuming that “h(IV, random) = random” in
addition to h being a PRF when keyed with the first n bits of its input, we could
build a variable length PRF using the encode-then-MD mode and adjusting the
proof of [3]. More interestingly, by making extra assumptions on h, in some cases
we can prove security of the modes which were previously believed “insecure”
because they were not property-preserving. Finally, in some cases the proof will
involve careful and non-trivial modification of previous results. For example, this
is the case when analyzing the one-wayness of the Hsuf construction.

In addition to giving an exhaustive “mode × property” guide (see figure 2) for
achieving a given security property with a given popular mode, in each section
we also mention the practical implication of our results when using existing hash
functions SHA-x, where x ∈ {1, 224, 256, 384, 512}.

Related Work. We have already cited many of the relevant papers. In partic-
ular, the variants of the MD mode that are useful in the property-preservation of
collision-resistance [10], pseudorandomness [3,4], message-authentication [1,21],
random oracles [9] and randomness extraction [11]. We also mention the works of
[7,8] concerned with multiple property-preservation; namely, designing a single
mode of operation which simultaneously preserves several properties. Unfortu-
nately, the modes of [7,8] do not satisfy our axioms. Finally, we mention the
work of Halevi and Krawczyk [14], which concentrated on building TCR hash
functions, and is the closest in spirit to our motivation (indeed, we will use
their results when discussing the TCR property). The authors built TCR hash
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Assumptions on compression function:

(8)=computed SPR (cSPR)
(7)=enhanced SPR (eSPR)

(1)=Collision Resistance (CR)
(2)=Output Regular
(3)=standard PRF (sPRF)
(4)=dual PRF (dPRF)
(5)=FIL-RO
(6)=MAC with κ-bit key

(9)=Fixed-point at random IV

(10)=Family of random functions
(11)=One-way function

(7’)=eSPR after Chop
(8’)=cSPR after Chop

(3’)=sPRF after Chop
(2’)=h(Un, ·) is output regular
(1’)=CR after Chop

Misc.
SF=Suffix-free
PF=Prefix-free
MDS=MD Strengtheining
??=not known to be secure

Key ⊕ Blks =XOR key to
each block

RExt=Randomness Extrn.

CRHF

RO

PRF
Append key +

Pre-Free+(1)+(2)
(1) + (2) (1’) + (2)

(1)+(2)+(4)

Not Secure
Suf-Free not secure

Pre-Free+(5)

(5) NMAC/HMAC+(5)

IV1 �= IV2 ; α1 �= α2

MAC

Suf-Free+(1)

(prepend)

(append)

PF+(2’)+(3)

SF+(1)+(4)

(append)

Prepend key +

worse security

(1)+(2)+(6’)

(2’)+(3’)

Append key +

Any IV s/αs

TCR

SPR

RExt

OWF

Append key + N/H+(1)+(2)+(6)

SF+(7) (key ⊕ blks)key ⊕ blks key ⊕ blks

Any IV s/αs

α1 �=⊥

(1)+(2)+(6)

(7) + (9) PF+(7)+(9) (7’) + (9)

N/H+(7)+(9)

(8) + (9)
SF+(9)

PF+(8)+(9)
(8’) + (9)

Any IV s/αs

N/H+(8)+(9)

H∞(M) ∧ H∞(m�)

(10)

H∞(M) ∧ H∞(m�)

(10)

H∞(M) HMAC??

NMAC + (10)

(SF/PF??)

MDS + (10)

(2)+(11)
MDS+(2)+(11)

(2’)+(11)
NMAC+(2)+(11)

HMAC??

(SF/PF??)

SF+(1)+(6)

PF+(1)+(2)+(6)(app.)

N/HMAC+(1)+(2)

(key ⊕ blks)

Any IV s/αs

N/H+(3)+(4)

(append)

(prepend)

Plain MD Encode-then-MD MD-then-Chop NMAC/HMAC

Fig. 2. Table for comparing Security Property vs. Mode of operation

functions using the encode-then-MD mode, and showed a simple coding scheme
that yields a secure TCR hash function under an appropriately strong assump-
tion on the underlying compression function h (still weaker than CR, but stronger
than TCR).

Location of the key in keyed constructions. We note that for keyed
constructions, such as constructions of pseudorandom and TCR functions, there
are more than one possibilities for each hash function mode of operation. In
particular, any construction for these primitives must specify the location of the
key. In keeping with the black-box nature of the modes of operation, we prevent
popular keying methods such as setting the key to be the IV or XORing the key
into the chaining variables since this violates our basic axioms.

Moreover, we also do not consider the dedicated-key setting [1,8], where there
is separate space for the key in each application of the compression function.
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This is because existing hash functions do not support such dedicated keys.
Even though we may consider the key to be part of the message block bits,
we do not analyze this method since it yields constructions with poor input
bandwidth (thus violating our last axiom). Hence, we will only consider modes
of operation which incur an additive constant overhead compared to the plain
MD mode.

Are We Asking Too Much? In our motivation, we advocated the fact that
the security officers should not know (or worry about) the low-level details of the
hash function implementations. In particular, we do not want them to manually
modify the internals of SHA. On the other hand, to use our result they have to
be “smart enough” to understand the purpose of their application of the hash
function, so they can use our black-box workarounds. For example, they need
to know if H ′ is used for collision-resistance, key derivation, one-wayness, etc.
Aren’t we asking too much? Should not the security engineer just believe that
the existing hash function will be “magically applicable” for whatever intuitive
use (s)he has in mind (therefore making this paper “useless”)?

We give two answers. First, we personally believe that a person designing a
cryptographic protocol using a hash function should know what security prop-
erties this hash function should satisfy. (And this does not contradict our desire
to protect them from low-level details!) Second, in order for the security engi-
neer to use a hash function in the “magical” way above, the function should
not have the weaknesses of the SHA family we mentioned earlier. Thus, until a
new, “magic” hash function is built and standardized, we simply cannot achieve
a positive answer to our question, even if we want our engineers to be “dumb”
and not understanding what they is doing (which we personally disagree with)!
Until then, we believe that the results of this paper are meaningful and useful.

2 Security of MD Modes

We will analyze each of the security properties that actual hash functions are
often required to satisfy, and find the minimal assumptions on the compression
function that are necessary to prove the security of each of the black-box modes
of operation for this security notion. As we discussed, we will not restrict our-
selves to the case of property-preservation and in some cases, we will need to
make slightly stronger assumptions on the compression function than the secu-
rity notion desired.

Since the focus of our paper is mostly qualitative, in terms of when (i.e.
for which applications) does it make more sense to use some particular mode
of operation, so we will keep the discussion “slightly informal” by using more
asymptotic definitions for the security notions. We assume basic familiarity with
these notions, but provide the formal definitions in the full version of this paper
[12]. Due to space constraints, we only give the security of the modes of operation
for collision-resistance, pseudorandomness and one-wayness in the main body.
The discussion for other security notions can be found in the full version of this
paper [12].
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2.1 Collision Resistance

We will analyze each of the four modes for minimal assumptions required on
the compression function h : {0, 1}κ × {0, 1}n → {0, 1}n needed in order to
prove its collision resistance. A construction will be called ε collision resistant
if the maximum advantage of an efficient attacker in finding a collision is ε. As
we discussed, in some cases, the security property needed for the compression
function h may be stronger than collision resistance.

Plain MD construction. It is a well-known fact that simply assuming col-
lision resistance of the compression function does not suffice to prove collision
resistance of the plain MD construction. Indeed, if the compression function h
has a fixed-point such that there is some x ∈ {0, 1}κ such that: h(x, IV ) = IV .
Then the output of the plain MD construction H collides for the inputs x and
x ‖ m, for any m. Thus we, at least, need the compression function to satisfy
the following property.

Assumption 1 (No Fixed-Points) A function h : {0, 1}κ×{0, 1}n → {0, 1}n

is a ε secure against fixed points if for a randomly chosen IV ∈ {0, 1}n no
efficient machine A has success probability more than ε of finding a sequence of
κ-bit blocks x1 . . . xi such that,

h(xi, h(. . . , h(x1, IV ) . . .)) = IV

If the compression function is such that no efficient attacker can find such fixed
points (along with being collision resistant), then the plain MD construction
can be proven to be collision resistant. The proof of the following obsevration is
immediate from [10].

Observation 1 The plain MD construction can be proven to be collision re-
sistant if the compression function is collision resistant and is secure against
fixed-points.

The no fixed-points assumption allows us to prove collision resistance of the plain
MD construction, but it is a non-standard assumption and it is not intuitively
clear as to which compression functions satisfy this property. But since we are
already assuming the compression function to be collision-resistant, perhaps we
can prove this result by making a weaker and cleaner additional assumption
on the compression function. Fortunately we show that simply assuming output
regularity suffices in this case.

Assumption 2 (Regularity of outputs) A function h : {0, 1}m → {0, 1}n

is a ε output regular function if for any efficient machine A that gives a 1 bit
output:

|Pr [A(x) = 1 |x ← h(Um) ] − Pr [A(x) = 1 |x ← Un ]| ≤ ε

Here Um and Un denote the uniform distributions on {0, 1}m and {0, 1}n,
respectively.
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We show that if the compression function is output regular (i.e. for a random
input, the output is well distributed over the range) in addition to being collision-
resistant, then it is secure against fixed points and thus a CRHF using the
observation above.

Lemma 1. The compression function h : {0, 1}κ × {0, 1}n → {0, 1}n is (εcol +
εreg + 2−n)-secure against fixed points if it satisfies the following properties:

– h is εcol collision resistant.
– h is an εreg output regular function.

Proof: To the contrary, say there is an efficient attacker that finds a fixed point
x1 . . . xi with non-negligible probability ε, then we can show that it either breaks
the collision resistance or the output regularity assumption for the compression
function. In order to show this, choose the initialization vector IV as IV ← h(x)
(for x ← Uκ × Un), instead of IV ← Un. If the success probability of A changes
by a non-negligible amount then we can break the output regularity assumption.
Thus, ε′ ≥ εreg + Pr[A succeeds in new game].

To estimate the success probability of the attacker A in the new game, say it
finds a sequence of κ-bit blocks x1 . . . xi such that h(xi, h(. . . , h(x1, IV ) . . .)) =
IV with probability ε′. Let y = (xi, h(. . . , h(x1, IV ) . . .)). Then it is the case
that h(x) = h(y) (where x was used to select the IV ). Thus, we can deduce
that,

ε′ = Pr[(A succeeds) ∧ (x = y)] + Pr[(A succeeds) ∧ (x �= y)]
⇒ ε′ ≤ Pr[(x = y)] + εcol

⇒ ε′ ≤ εcol +
∑

IV ∈{0,1}n

#{x s.t. h(x) = IV }
2n+κ

· 1
#{x s.t. h(x) = IV }

≤ εcol + 2−n

Thus we get that the maximum success probability of an efficient fixed-point
finding attacker is εreg + εcol + 2−n.

Corollary 1. The plain MD construction H using a compression function h :
{0, 1}κ×{0, 1}n → {0, 1}n is a (εreg+εcol+2−n) collision resistant hash function
if h satisfies the following properties:

– h is εcol collision resistant.
– h is an εreg output regular function.

Encode-then-MD construction. It makes sense to only consider determin-
istic input coding schemes, since the resulting construction must behave like a
function. We analyze two of the most popular such coding schemes, i.e. prefix-free
encoding and suffix-free encoding.

We first note that using a prefix-free encoding on the input does not enable us
to get rid of any security properties in lemma 1. Hence we can essentially restate
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the same result for the prefix-free MD construction Hpre as well. On the other
hand, if we use a suffix-free encoding (such as Merkle-Damg̊ard strengthening)
then the resulting suffix-free MD construction Hsuf can be shown to be collision
resistant by simply assuming the collision-resistance of the compression function
h [10,19].

MD-then-Chop construction. Note that simply assuming collision resis-
tance of the compression function is not useful for this construction, since we
truncate s bits of the output. For instance, consider the case when h is collision
resistant on these s bits, and is the constant function for all other bits (noted
by Kelsey [16]). However, in our setting this only means that we need to make
a stronger assumption on the compression function h. In particular, we will in-
stead assume that h is collision resistant even if we remove these s bits from its
output.

Lemma 2. The MD-then-chop construction Hchops , using a compression func-
tion h : {0, 1}κ × {0, 1}n → {0, 1}n, is a (εreg + ε′col + 2n−s) collision resistant
hash function if the following holds:

– The functionh′ : {0, 1}κ×{0, 1}n → {0, 1}n−s defined ash′(x, y)=h(x, y)|n−s

(i.e. chopping the last s bits from the output of h) is a ε′col collision resistant
function.

– h is a εreg output regular function.

The proof of this lemma is essentially the same as for corollary 1.

NMAC/HMAC construction. We note that using the NMAC construction
Hnmac does not help in improving upon the collision resistance of the plain MD
construction H. This is essentially because any collision in the first application of
the plain MD construction of Hnmac (using initialization vector IV1) essentially
implies a collision for the entire construction. Hence, at best, we can restate
lemma 1 for this construction as well.

Since the HMAC construction Hhmac is simply a black-box instantiation of
the NMAC construction, this does not help in improving collision resistance.
However, we note that it has the best exact security if α1 �=⊥.

2.2 Pseudorandomness

An issue in the pseudorandomness analysis of the MD modes of operation is the
location of the PRF key. As discussed above, we need to specify the location of
the key such that the resulting construction is still a black-box variant of plain
MD. For our analysis, we will assume the key length to be the length of a single
block (i.e. κ bits for the compression function h : {0, 1}κ × {0, 1}n → {0, 1}n),
and we will denote the key as K. We will analyze two approaches for keying each
MD mode of operation:

1. Prepend the key to input: The PRF construction H outputs H(K ‖ X) on
input X .

2. Append the key to input: The PRF construction H outputs H(X ‖ K) on
input X .
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Moreover, we will need two versions of pseudorandomness definitions for the
compression function, one where the key occupies the last n bits and other
where it occupies the first κ bits. We get the following two assumptions on the
compression function in this manner.

– Standard PRF (sPRF) security: Here we require that for a uniformly chosen
K ∈ {0, 1}n, the function h(·, K) must be indistinguishable from a truly
random function.

– Dual PRF (dPRF) security: Here we require that for a uniformly chosen
K ∈ {0, 1}κ, the function h(K, ·) must be indistinguishable from a truly
random function.

Depending on the maximum distinguishing advantage ε of an efficient attacker
in each case, we call the compression function h ε-sPRF or ε-dPRF.

Plain MD construction. In this case if we prepend the PRF key to the hash
function input, then the resulting construction is not a PRF. This is because an
attacker can use the extension attack to find H(K ‖ X ‖ Y ) by simply knowing
the output H(K ‖ X) and computing the compression function on the remaining
blocks itself (where it does not need to know the key K). On the other hand, if
we append the PRF key to the input, then we can show that if the plain MD
construction using h is collision-resistant and satisfies the dual PRF security,
then the plain MD construction H(· ‖ K) is a variable-length input PRF.

Lemma 3. The plain MD construction H is a O(� · (εcol + εreg) + εdprf) PRF 4

(with PRF key appended to the function input) if the following conditions hold:

– h is εcol collision resistant.
– h is a εreg output regular function.
– h is a εdprf dual pseudorandom function.

The proof of this lemma is rather straightforward. Here, output regularity and
collision resistance of the compression function together imply the collision resis-
tance of the plain MD construction. Thus, in the last round, the n-bit chaining
variable is different for two different inputs. Hence a distinguisher for the plain
MD construction can be used directly by the dual-PRF distinguisher for the
compression function.

Encode-then-MD construction. Once again, we will discuss two deter-
ministic coding schemes here, prefix-free encoding and suffix-free encoding. Let
us first analyze the suffix-free MD construction Hsuf . If we prepend the key to
the (encoded) input, the resulting construction is still insecure since the exten-
sion attack works in this case as well. On the other hand, if we append the key
to the (encoded) input then the resulting construction is a PRF if the suffix-
free MD construction Hsuf using the compression function h is a dual PRF and
collision resistant (for which we only need collision resistance of h in this case).

4 � denotes the maximum number of κ-bit blocks in a hash function input, throughout
this paper
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For the prefix-free MD construction Hpre, if we append the key to the (en-
coded) input then we get no advantage as compared to the plain MD construction
and we can only restate lemma 3 in this case. On the other hand, if we prepend
the PRF key to the (encoded) input then the resulting construction is not vul-
nerable to the extension attack in this case. Indeed, it was shown by Bellare et
al. in [3] that the prefix-free MD construction with the PRF key in the IV is a
PRF only assuming that the compression function h satisfies the standard PRF
security. However, since we will need to prepend the key to the input (in order
to preserve the black-box property of the construction), we will need to impose
an extra condition on the compression function. In particular, we require that
the function defined as h(Un, ·) is an output regular function. That is, if the first
n bits of the compression function h are chosen at random then the resulting
function is output regular with high probability.

Lemma 4. The prefix-free MD construction Hpre is a O(ε′reg + � · εsprf ) secure
PRF (with PRF key prepended to the input) if the following conditions hold:

– h is a εsprf sPRF.
– h(Un, ·) is a ε′reg output regular function.

The proof of this lemma is similar to the result of [3].

MD-then-Chop construction. If the PRF key is appended to the input to
the MD-then-Chop construction Hchops , then a slight variant of lemma 3 can
be stated for this construction as well. Indeed, all we need is to specify the
dual PRF and collision-resistance properties for the compression function with
chopped output.

On the other hand, if we prepend the PRF key to the input to Hchops , then
the extension attack does not seem to go through as in the case of plain MD
construction. This is because the attacker does not learn the chopped s bits of the
chaining variable by observing the output of Hchops for the prefix of an input.
Indeed, this construction can be proven to be an arbitrary-length input PRF
by making a slightly non-standard assumption on the compression function. In
particular, we require the compression function to satisfy the following resilient
sPRF assumption:

Assumption 3 ((s, ε)-resilient sPRF) The function h : {0, 1}κ × {0, 1}n →
{0, 1}n is a (s, ε)-resilient sPRF if it is a ε-secure sPRF even if the attacker
learns s bits of the n bit key.

Lemma 5. The MD-then-Chop construction Hchops is a O(ε′reg+�·ε′sprf ) secure
PRF (with PRF key prepended to the input) if the following conditions hold:

– h is a (s, ε′sprf )-resilient sPRF.
– h(Un, ·) is a ε′reg output regular function.

NMAC/HMAC construction. The NMAC and HMAC constructions were
shown to be secure arbitrary-length input PRFs by Bellare [2]. In [2], it is shown
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that the HMAC construction with α1 = α2 =⊥ (i.e. with the same IV for both
invocations of the plain MD construction) is a secure arbitrary-length input PRF
if the underlying compression function satisfies both the standard and dual PRF
security definitions. This is done by simply prepending a different κ-bit key to
each invocation of the plain MD construction 5.

Lemma 6. The NMAC (resp. HMAC) construction Hnmac (resp. Hhmac) is a
O(q2� · εsprf + εdprf) PRF (with a different κ-bit key prepended to the input in
each call to the MD construction) for any IV1 and IV2 (resp. α1 and α2) if the
following conditions hold:

– h is a εsprf -secure sPRF.
– h is a εdprf -secure dPRF.

2.3 One-Wayness

One way functions are also often referred to as preimage resistant functions. A
construction is ε-secure OWF if no efficient attacker can find the input corre-
sponding to the output of the function (on a random input) with probability
more than ε. This security property is even weaker than second preimage resis-
tance.

Plain MD construction. In this case, we will need to assume that the
compression function h is a one way function. Moreover, we will also require
that h is output regular, so that its output is uniformly distributed for a random
input. This is essentially because we need the input to a one-way function to be
random in order to use the one-wayness property.

Lemma 7. The plain MD construction H is O(� · εreg + εowf)-secure OWF if
the following conditions hold:

– h is an εreg output regular function.
– h is a εowf -secure one-way function.

The proof of this lemma is based on the fact that an attacker cannot tell the
difference between the output of H on a random input or the compression func-
tion h on a random input, if h is output regular. Thus the one-wayness attacker
for h can use the one for H directly.

Encode-then-MD construction. If we use an arbitrary suffix-free encoding
with the MD construction, then we cannot say much about one-wayness of the
construction since the input distribution could be arbitrary. However, if we apply
Merkle-Damg̊ard strengthening to the input, then we can show that the resulting
construction is a one-way function under sufficient assumptions. The proof of
this fact is non-trivial though. In particular, we need to make an additional
assumption about the compression function.
5 If the same key is prepended in both invocations, then the construction is secure

under a slightly stronger assumption, called security against related-key attacks in
[3,2]. We ignore this setting here
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Assumption 4 ((p, ε) output consistent) The function h : {0, 1}κ × {0, 1}n

→ {0, 1}n is (p, ε) output consistent if for any κ-bit block x and uniformly dis-
tributed y ∈ {0, 1}n, with probability at least (1 − ε) the number of y′ ∈ {0, 1}n

such that h(x, y) = h(x, y′) is at most p.

Note that this property certainly holds for a random compression function (and,
thus, holds for most compression functions). By making this additional assump-
tion from the compression function, we can derive the following result.

Lemma 8. The suffix-free MD construction Hsuf that uses MD strengthening
for suffix-freeness is (pcons·(�·εreg+εowf)+εcons)-secure one-way function, where
� is the maximum length of an inverted input provided by the OWF attacker, if
the following conditions hold:

– h is an εreg output regular function.
– h is a εowf -secure one-way function.
– h is a (pcons, εcons) output consistent.

Proof: The proof for this lemma is essentially based on the proof of lemma 7.
We construct an one-wayness attacker A′ for the compression function using the
attacker A that has advantage ε in inverting Hsuf with MD strengthening. A′

gets its challenge output y and chooses a uniformly random i ∈ {1, . . . , �}n. It
then gives z = h(〈i〉, y) as a challenge to A.

Now A′ succeeds only if the inverse z outputted by A is i-bit long. If so, then
A′ can proceed similar to the case on the plain MD construction in lemma 7 if
the chaining variable for z in the last round, with 〈i〉 in the message block, is the
challenge y. However, from our assumptions, with probability at most εcons there
are more than pcons n-bit strings y′ such that h(〈i〉, y′) = h(〈i〉, y). Thus, we get
that the success probability of A is at most (pcons · (� · εreg + εowf) + εcons).

As for prefix-free encoding, once againwe cannot say anything general (for the same
reason as above), but when prepending the message length we are essentially back
to the setting of plain MD discussed above, except we need to assume that the out-
put of the compression function on a random IV and a fixed message block is ran-
dom. In particular, we note that encoding the input in any way does not help as
far as one-wayness of the construction is concerned. In fact, we only need more as-
sumptions to prove this property, as compared to the plain MD construction.

MD-then-Chop construction. In order to prove the one-wayness of the
MD-then-Chop construction, we need to make a stronger assumption on the
compression function h. In particular, we assume that h is one-way with s bits
of the output chopped. Let the one-way security of the function h with truncated
output be ε′owf . Then we can show that Hchops is a O(� · εreg + ε′owf)-secure one-
way function (similar to lemma 7)

NMAC/HMAC construction. The NMAC construction is a one-way func-
tion under the same conditions on the underlying compression function h as
required in lemma 7. However, we require that random and independent initial-
ization vectors IV1 and IV2 are used in the NMAC construction. However, it



170 Y. Dodis and P. Puniya

turns out that translating these results to the setting of the HMAC construction
is not straightforward.

3 Implications for Hash Functions in Practice

We will now translate our results into suggestions for usage of actual “cascade con-
structionbased” hash functions, such as functions fromthe SHA family.Aswemen-
tioned earlier, we have tried to find the minimal assumptions needed to make each
of the four modes of operation secure (for each of the security properties). Thus, we
have left part of the “decision making” for the practitioner who uses our results. In
particular, the practitioner must consider the following questions:

1. What one needs to assume about the hash function in order for the cryp-
tosystem (that the hash function is being used for) to be provably secure?

2. What level of trust the practitioner is willing to place in the underlying
compression function?

The answer to the first question will help in deciding the security property to
look for in the hash function mode of operation. The answer to the second ques-
tion may not be as straightforward since the design of the compression functions
is quite complex and mostly based on heuristic. In this case, the practitioner
needs to weigh all the properties (s)he desires from the cryptosystem, in terms
of efficiency, security etc. Thus, while some may be willing to make a slightly
stronger assumption on the compression function to have a more efficient imple-
mentation, others may be willing to sacrifice some efficiency for better security.
Now we will give some basic recommendations for actual hash functions with
respect to the various security properties.

Collision Resistance. Each of the SHA functions are essentially based on
the suffix-free MD construction (using MD strengthening). Hence, collision resis-
tance for each of these hash functions is asymptotically same as finding collisions
on the compression function. It does not make much sense to use the “truncated”
versions, SHA-224 and SHA-384, since this only sacrifices the collision resistance
of the original “untruncated” version (i.e. SHA-256 and SHA-512, respectively).
Using the NMAC/HMAC construction does not help in this case.

Pseudorandomness. We note that using the full SHA-256 or SHA-512 hash
functions makes more sense for pseudorandomness than using the chopped ver-
sions (SHA-228 or SHA-384), which only have worse security. If any of the SHA
functions are used, as it is, for pseudorandomness, then we recommend append-
ing the PRF key to the input instead of prepending it. However, we recommend
using these functions in conjunction with a prefix-free encoding (such as prepend-
ing input length to the input) in which case the PRF key should be prepended
to the input. Another option would be to compose two calls to SHA-1, with
independent keys prepended in each call, to get security based on the sPRF and
dPRF security of the compression function.

Random Oracle. Note that none of the SHA functions should be used, as it
is, if the security of the cryptosystem requires the random oracle assumption for
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the hash function. This is because the plain MD construction (even with MD
strengthening) is vulnerable to simple attacks in the indifferentiability scenario.
One may think that both SHA-224 and SHA-384 that correspond to “chop”
versions of the functions SHA-256 and SHA-512 would be secure (since the MD-
then-Chop construction is secure). However, note that only 32 bits are chopped
in the case of SHA-224, which does not give sufficient security for almost all
applications. Hence, only SHA-384 (that chops 128 bits) may be suitable to be
used directly to instantiate the random oracle.

We recommend using the HMAC construction involving two black-box calls
to the SHA function (while prepending different α1 and α2 in each cal) for this
purpose. Using any of these hash functions in conjunction with a prefix-free
encoding will also work for this purpose.

Message Authentication. If the SHA functions are used as MACs directly,
then the MAC key should be appended to the input. In this case, security de-
pends on both the MAC security and collision resistance of the compression
function. Using the HMAC construction does not help in improving the secu-
rity either. Moreover, when the “chopped” functions SHA-224 or SHA-384 are
used as MACs, then their security is only worse than the unchopped versions
(SHA-256 and SHA-512).

If one is willing to assume pseudorandomness of the compression function, then
the techniques mentioned above for pseudorandomness can be used as well. An-
other approachwould be to assume the dedicated-key setting, by inserting the MAC
key in each application of the compression function (at the cost of some input band-
width) and then one could use one of the techniques suggested in [1,21].

Target Collision Resistance or UOWHFs. We recommend using the
technique suggested by Halevi and Krawczyk [14] if the SHA functions are used
as UOWHFs. In this case, one XORs the UOWHF key to each block of the input.
Since MD strengthening is already used in all these functions, the UOWHF
security of this construction is based only on the eSPR [14] (see above) of the
compression function.

Second Preimage Resistance. It makes sense to use the SHA hash func-
tions directly for the purpose of second preimage resistance without using any
additional techniques, since they do not lead to improved security (note that
these functions already incorporate MD strengthening).

Randomness Extraction. All the positive results for randomness extraction
have reasonable interpretation in practice, only if we are willing to assume that
the SHA compression function is close to being a family of random functions.
Even though it is theoretically impossible, since the SHA compression function
has a short description, it might still be a more reasonable assumption than
assuming the compression function to be a FIL-RO.

Under this assumption, we can deduce that the SHA functions are good random-
ness extractors for input distributions with high min entropy overall and in the last
block. On the other hand, as we saw above, it might be a good idea to use chopped
function SHA-384 for this purpose to get better extraction properties (SHA-224
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does not have sufficient number of chopped bits to give useful advantage). Using
the HMAC construction does not help in improving the extraction properties.

One-Wayness. In the case of “one-wayness”, the security of the chopped func-
tions, SHA-224 and SHA-384, seems to rely on stronger assumptions than the se-
curity of the corresponding “unchopped” versions (SHA-256 and SHA-384). This
is because the one-way security increases with the number of output bits. On
the other hand, it might be the case that SHA-224 still has higher security than
SHA-1, which seems intuitive given the bigger IV of SHA-224. Moreover, message
encoding or HMAC construction only negatively affects the one-wayness.

4 Conclusions

In this work we showed how to efficiently use existing hash functions based on
the MD mode (such as the functions in the SHA family) to build cryptographic
hash functions satisfying various security properties such as collision-resistance,
pseudorandomness, indifferentiability from random oracle, message authentica-
tion, target collision-resistance, second preimage-resistance, randomness extrac-
tion and one-wayness. Our constructions are black-box, support variable-length
inputs and provide the same efficiency as the plain MD construction, under the
minimal assumptions on the underlying compression function.
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A. (eds.) ICALP 2007. LNCS, vol. 4596, Springer, Heidelberg (2007)



Getting the Best Out of Existing Hash Functions 173

9. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damg̊ard Revisited: How
to Construct a Hash Function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

10. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

11. Dodis, Y., Gennaro, R., H̊astad, J., Krawczyk, H., Rabin, T.: Randomness Extrac-
tion and Key Derivation Using the CBC, Cascade and HMAC Modes. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, Springer, Heidelberg (2004)

12. Dodis, Y., Puniya, P.: Getting the Best Out of Existing Hash Functions
or What if We Are Stuck with SHA (ful version), http://people.csail.
mit.edu/dodis/ps/sha.ps

13. FIPS 180-1, Secure hash standard, Federal Information Processing Standards Pub-
lication 180-1, U.S. Department of Commerce/N.I.S.T., National Technical Infor-
mation Service, Springfield, Virginia, April 17 (1995) (supersedes FIPS PUB 180)

14. Halevi, S., Krawczyk, H.: Strengthening Digital Signatures Via Randomized Hash-
ing. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 41–59. Springer,
Heidelberg (2006)

15. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

16. Kelsey, J. In: CRYPTO 2005, Rump Session (2005)
17. Kelsey, J., Kohno, T.: Herding Hash Functions and the Nostradamus Attack. In:

Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer,
Heidelberg (2006)

18. RFC 1321, The MD5 message-digest algorithm, Internet Request for Comments
1321, R.L. Rivest (April 1992)

19. Merkle, R.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

20. Maurer, U., Renner, R., Holenstein, C.: Indifferentiability, Impossibility Results on
Reductions, and Applications to the Random Oracle Methodology. In: Naor, M.
(ed.) TCC 2004. LNCS, vol. 2951, pp. 21–39. Springer, Heidelberg (2004)

21. Maurer, U.M., Sjödin, J.: Single-Key AIL-MACs from Any FIL-MAC. In: Caires,
L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005.
LNCS, vol. 3580, pp. 472–484. Springer, Heidelberg (2005)

22. National Institute of Standards and Technology, NIST’s Plan for
New Cryptographic Hash Functions, http://www.csrc.nist.gov/pki/
HashWorkshop/index.html

23. Naor, M., Yung, M.: Universal One-Way Hash Functions and their Cryptographic
Applications. In: STOC 1989, pp. 33–43 (1989)

24. Simon, D.R.: Finding Collisions on a One-Way Street: Can Secure Hash Functions
Be Based on General Assumptions? In: Nyberg, K. (ed.) EUROCRYPT 1998.
LNCS, vol. 1403, pp. 334–345. Springer, Heidelberg (1998)

25. Shoup, V.: A Composition Theorem for Universal One-Way Hash Functions. In:
Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 445–452. Springer,
Heidelberg (2000)

26. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg
(2005)

27. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

http://people.csail.
mit.edu/dodis/ps/sha.ps
http://www.csrc.nist.gov/pki/
HashWorkshop/index.html

	Getting the Best Out of Existing Hash Functions; or What if We Are Stuck with SHA?
	Introduction
	Security of MD Modes
	Collision Resistance
	Pseudorandomness
	One-Wayness

	Implications for Hash Functions in Practice
	Conclusions


