
Deakin Research Online
Deakin University’s institutional research repository

DDeakin Research Online
Research Online
This is the published version (version of record) of:

Li, Ping, Zhou, Wanlei and Wang, Yini 2010, Getting the real-time precise
round-trip time for stepping stone detection, in NSS 2010 : Proceedings
of the 4th International Conference on Network and System Security,
IEEE, Piscataway, N.J., pp. 377-382.

Available from Deakin Research Online:

http://hdl.handle.net/10536/DRO/DU:30033641

©2010 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

Copyright : 2010, IEEE

Getting the Real-Time Precise Round-Trip Time for Stepping Stone Detection

Ping Li, Wanlei Zhou, Yini Wang

School Of Information Technology

Deakin University

Burwood, VIC, 3125, Australia

{Pingli, Wanlei.Zhou, Yiniwang}@deakin.edu.au

Abstract

Stepping stone attacks are often used by network

intruders to hide their identities. The Round Trip Times

(RTT) between the send packets and corresponding echo

packets for the connection chains of stepping stones are

critical for detecting such attacks. In this paper, we

propose a novel real-time RTT getting algorithm for

stepping stones which is based on the estimation of the

current RTT value. Our experiments show that it is far

more precise than the previous real-time RTT getting

algorithms. We also present the probability analysis

which shows that our algorithm has a high matching rate

and a high accurate rate.

1. Introduction

The Internet has become more crucial these days but

at the same time, the Internet attacks have increased

dramatically in size and in scale. Instead of attacking a

computer directly, most attackers launch their attacks

through intermediary hosts they have previously

compromised to hide themselves. These compromised

computers are called stepping stones [1]. In this

technique, attackers construct a chain of interactive

connections on stepping stones using protocols such as

Telnet or SSH. Attack commands or programs are sent

from an attacker’s machine, transferred by stepping

stones, and then to the target machine. The final victim

only sees traffic from the last hop in the chain of stepping

stones, making it difficult for the victim to learn any

information about the true origin of the attack.

The stepping stone detection approach is responsible

for identifying the interactive connections which are in

the chain of the stepping stones, which means stepping

stone attacks can be blocked or traced back. Since the

problem of detecting stepping stones was first discovered

by Staniford-Chen and Heberlein [1], many approaches

have been suggested in detecting stepping stones in

encrypted traffic. They can be classified into three types:

timing based, packet number based and Round Trip Time

(RTT) based. Unlike other types of approaches that only

use Send or Echo packets, RTT based approaches use

Send and Echo packets together in order to detect

stepping stones. As a result, RTT based approaches can

filter unsymmetrical Internet packets and chaff packets,

and can also be more resistant to network imperfections

and intruder evasion than any other type of approach.

Yung [2] was the first to propose a method to detect

stepping stones by using RTT. The basic idea is to

estimate the length of the downstream connection chain

by computing the ration between packet Ack-delay and

Echo delay (i.e. RTT). Yung [2] claims there is no reason

to access a host through a long chain instead of a direct

connection unless in some very special applications. In

Yung’s approach if the length of downstream connection

chain is more than a specified number, the connection

may be considered a stepping stone connection. However,

Yung’s estimating approach for connection chain length

can only give good results when network traffic is

relatively uniform. On the other hand, Yang and Huang

[3] proposed a “Step-Function” approach to detect

stepping stones using the RTT feature that RTT changes

small for normal connections, but this change,

proportionally increases with the number of stepping

stones in the chain. The number of steps for RTT changes

reflects the number of hosts in the connections. If the

number of steps for RTTs changes on an interactive

connection is more than a specified number, this

connection may be considered a stepping stone

connection. This approach can detect stepping stone

correctly if the RTTs can be obtained correctly.

However it is not easy to obtain the RTT with high

accuracy, as Echo packets do not have an obvious

characteristic to identify correlated Send packets. Yung

[2] used a statistical method to match TCP Send and

Echo packets. It resulted in a correct match only when

the Echo packet was received before the next Send

packet was sent. The other issue is that it cannot be used

in real-time. Yang and Huang [3] proposed Conservative

2010 Fourth International Conference on Network and System Security

978-0-7695-4159-4/10 $26.00 © 2010 IEEE

DOI 10.1109/NSS.2010.36

378

2010 Fourth International Conference on Network and System Security

978-0-7695-4159-4/10 $26.00 © 2010 IEEE

DOI 10.1109/NSS.2010.36

377

and Greedy algorithms to obtain RTT. But this proposal

is based on the assumption that every Send packet

exactly matches one Echo packet. Yang [4] proposed a

standard deviation-based clustering approach (SDBA)

which calculates time delay between all send packets and

echo packets, and finds the cluster with the smallest

standard deviation. Although it can achieve high

accuracy, it is inefficient and cannot be used in real-time.

So accurately obtaining RTTs in real-time remains a

challenge.

In this paper, we propose an Estimation-Based

Algorithm (EBA) to achieve RTT in real-time. The EBA

algorithm can be used together with the “Step-Function”

[3] stepping stone detection approach to detect a stepping

stone. It is different from previous real-time RTT getting

proposals in that it calculates RTT estimation (ERTT)

value to begin with, instead of finding a corresponding

echo packet directly. Our experiments show that our

algorithm is far more precise than other real-time RTT

getting algorithms. We also present the theory analysis

from the probability point, which shows that our

algorithm has a high matching rate and a high accurate

rate compared to the complicated non real-time SDBA [4]

approach.

The rest of the paper is organized as follows. The

detail of our Estimation-Based Algorithm is presented in

Section 2. Section 3 gives the probability analysis. Some

experimental application results are given in section 4,

and finally we summarize this paper in Section 5.

2. Estimation-Based Algorithm (EBA)

Before presenting the algorithm, we present some

definitions to begin with.

RTT: The packets sent in interactive connections

from attacker (client) to target (server) are called Send

packets; and the packets sent in the reverse direction are

called Echo packets. The time delay between the Send

packet and the corresponding Echo packet on a

connection is called Round-Trip Time (RTT) for this

interactive connection.

RTT sequence: A RTT sequence {RTT1, RTT2,…,

RTTn} is a series of real RTTs in chronological order

calculated by the time delay between the Send packet and

corresponding Echo packet on a interactive connection,

where RTTn is the RTT for the n
th
 Send packet.

ERTT: The estimation value for RTT.

ERTT sequence: A ERTT sequence {ERTT1,

ERTT2,…, ERTTn} is a series of ERTTs in chronological

order calculated by the EBA algorithm, where ERTTn is

the ERTT for the n
th
 Send packet.

∆RTT: the deviation that RTT from ERTT.

∆RTT sequence: A ∆RTT sequence {∆RTT1,

∆RTT2,…, ∆RTTn} is a series of ∆RTTs in chronological

order, ∆RTTi = RTTi – ERTTi.

FR (fluctuate range): The maximum value that RTTi

can deviate from ERTTi.

Our algorithm is composed of two modules: the

estimating module and the matching module. Next we

will present the detailed algorithm description for each

module and include some improvements.

2.1. The Estimating Module

The Estimating Module is responsible for calculating

the ERTT. We use the first-order linear recursive filter to

estimate the RTT, which is also used in the current TCP

RTT estimation mechanism. For the RTT sequence

{RTT1, RTT2,…, RTTn} and ERTT sequence {ERTT1,

ERTT2,…, ERTTn} on a interactive connection, ERTT

can be calculated by the last ERTT and RTT, as shown in

equations (1) and (2)

ERTTi = a * ERTTi-1 + (1-a) RTTi-1 (1)

ERTT1 = RTT1 (2)

In (1), a is the weighting factor used to adjust how

quickly the estimation value responds to the real value.

The weighting factor in the TCP RTT estimation

mechanism by current TCP/IP implementation is

normally set to 0.875, which has been used for many

years and has been seen as reasonable up to now over the

Internet [5]. We also tested parameter a by different

values in our algorithm, and found that we can achieve

the smallest standard deviations for ∆RTT, when a equals

0.875. The smaller the ∆RTT, the more precise the

estimation. Therefore, we set parameter a to 0.875 in our

algorithm.

To calculate ERTT, the key is how to find the first

real RTT (i.e. RTT1). From the previous analysis in this

section, we know that it is inevitable that there are some

time intervals between two consecutive Send packets

which are considerably larger than the RTT of the

network during an interactive terminal session. So it is

reasonable to start or resume our estimation from these

large time intervals. If two consecutive Send packets

have timestamp differences of more than TI (a predefined

time interval threshold), we will assume the existence of

a large gap and then achieve the RTT1.

Normally, we can consider the first Echo packet is

matched with the first Send packet after the large gap. So

we calculate RTT1 as the time delay T1 between the first

Echo packet and the first Send packet.

To evaluate the accuracy of our estimating algorithm,

we built a connection chain with 3 connections. We input

simple characters with big intervals so the Send packets

with Echo packets are one-to-one mapping and there is

no overlap of RTT. We do this in order to get the real

RTTs by one-to-one matching easily. And we found that

the RTT distribution is more-or-less a Poisson

379378

distribution with a relatively narrow range. At the same

time, we calculated ERTT by equation (1) and (2) with

the real RTT data we achieved. Then we compared the

ERTT with the real RTT, and obtained the ∆RTT

distribution which is near normal distribution, with more

than 97% of the |∆RTTs| smaller than 17 ms.

We also found that the standard deviation for the

∆RTT distribution is nearly the same as the standard

deviation for the ∆RTT distribution. Table 1 shows

standard deviation examples we experimented with in our

tests.
Table 1. Standard deviation compare for RTT and

∆RTT distribution.

Examples Standard
deviation for RTT

Standard deviation
for ∆RTT (ms)

1 1.735 1.771

2 2.841 2.827

3 3.663 3.722

4 5.312 5.538

5 6.469 6.651

6 9.016 9.043

2.2. The Matching Module

Because most of RTTi fluctuate around ERTTi with a

relatively narrow range, if the time delay between an

Echo packet and the Send packet is in the range of ERTTi

- FR and ERTTi + FR, we will consider this time delay as

the RTTi. This is the basic idea of the matching process.

We found that the ∆RTT distribution is near normal

distribution. So the maximum ∆RTT (i.e. FR) is infinite

in theory. But our destination is to get the real RTTs

which are used to detect stepping stones by the “Step-

Function” stepping stone detection approach [3]. The few

too small or too big real RTTs are of no benefit to us, so

we can filter these abnormal RTTs by selecting an

appropriate FR. When the value of FR becomes bigger,

more packets will be in the range of ERTTi - FR and

ERTTi + FR, then the probability to find matched packets

will be higher, but at the same time the incorrect

probability will be higher as well. So the value of FR is

critical for our algorithm. We will discuss the value of

FR further in Section 3.

In our algorithm, we have a queue called SendQ,

which stores the send packets in time order. When the

time Interval between two consecutive Send packets is

bigger than the TI, we will reset the SendQ. If we find

the corresponding Echo packet for one Send packet, or if

we are sure there is no corresponding Echo packet for

that Send packet, we will delete that send packet from the

SendQ queue.

By the estimating algorithm we can find the ERTT.

Now whenever we capture an echo packet, we will get

the first Send packet from SendQ and calculate the time

delay Tdelay between the Echo packet and the Send packet.

If the Tdelay is smaller than ERTT – FR, we consider there

is no Send packet to match this Echo packet; if the Tdelay

is in the range between (ERTT – FR) and (ERTT + FR),

we consider these to be matched with each other, and the

RTTi is Tdelay; If the Tdelay is larger than ERTT + FR, we

consider there is no Echo packet to match this Send

packet, and we will get the next Send packet to repeat the

above process. Figure 1 describes the matching process.

Figure 1. Matching module processing.

Through this matching process, we can achieve RTT,

and store every RTT. At the same time as we input the

RTT into the estimating process, we get the new ERTT

for the continuous processing. The stored RTTs can be

used to judge if the monitored host is a stepping stone by

the “Step-Function” stepping stone detection approach

[3].

3. Evaluation

It is impossible to know every real RTT in practical

application, so therefore, we can’t achieve the exact

matching rate nor the accurate rate. But we can still

evaluate them from the point of probability.

3.1. Matching Rate

Matching rate is defined as the ratio between the

number of matched packet pairs and the number of Send

packets having corresponding number of Echo packets.

According to our algorithm, only the RTT whose

difference with ERTT is smaller than FR can be matched.

So FR is critical for our algorithm. The bigger the FR, the

matching rate will also be higher; but the incorrect

probability will be higher as well. In addition, our

Capture the next packet P

Is P a Send

packet

Compute Time

Intervals TI since last

Send

E
S
T
I
M
A
T
I
N
G

M
O
D
U
L
E

Is P an Echo

packet

SendQ

No No

Yes

No

No

Yes

No

Yes

RTTi = Delay

Reset

SendQ

Put P in SendQ

Get first send packets

from SendQ and

compute time delay

Yes

Yes

RTTi

ERTTi

Delay > ERTTi + FR

Delay<ERTTi- FR

TI> Threshold

380379

intention is to achieve the real RTTs which are used to

detect stepping stones by using the “Step-Function”. The

few too small or too big real RTTs can not benefit us, so

our algorithm also has the filter’s function.

Assume Echo packet Pei is the corresponding Echo

packet to Send Packet Psi, the timestamps for Pei and Psi

are Tei and Tsi, respectively. If Pei is selected to match

Psi, the time delay between them is RTTi. And we

assume we also knew ERTTi. Then we can get

Tsi + ERTTi – FR <Tei < Tsi + ERTTi + FR

ERTTi -FR < Te i - Tsi < ERTTi + FR

ERTTi –FR < RTTi < ERTTi + FR

|RTTi - ERTTi| < FR

We assume ∆RTT has standard deviation δ , and u

=
FR

δ
. We evaluate the matching rate, which is the

probability that Psi has a corresponding packet to be

found, i.e., the probability that Pei is selected to match Psi

by using Chebyshev inequality as the following:

Matching rate = P (Psi has corresponding packet being

found) = P (|RTTi - ERTTi| < FR) > 2

1
1

u
−

So the matching rate is related to the value of u which

is the ratio between FR and standard deviation of ∆RTT.

In our experiments, FR was set to 30ms, which works

well. We calculate with the previous standard deviation

examples for ∆RTT we had achieved, and found the u

and matching rate as shown in Table 2. We know that

matching rates for all the standard deviation examples are

higher than 90% which is high enough to detect a

stepping stone.
Table 2. Matching rate examples for EBA.

Examples Standard deviation
for∆RTT (ms)

u Matching
Rate (%)

1 1.771 16.940 99.651

2 2.827 10.612 99.112

3 3.722 8.060 98.461

4 5.538 5.417 96.592

5 6.651 4.510 95.086

6 9.043 3.317 90.802

3.2. Accurate Rate

To begin with, we initially estimated the probability of

making an incorrect choice of Echo packet Pei for Send

packet Psi. There are two reasons that Pei is incorrectly

selected to match Psi:

� Pei should be the corresponding packet for

previous Send packets, but is not selected to match

previous Send packets because the real RTTi-1 is more

than ERTT + FR. In this case, the most probability is that

Pei is the corresponding packet for last Send packet Psi-1.

We assume the timestamps for Psi-1, Psi, Pei are Tsi-1, Tsi,

Tei, respectively, and the time delay between Tei and Tsi-

1 is RTTi-1. So we can get

Tei > Tsi + ERTTi – FR > Tsi-1 + ERTTi-1 + FR

Tsi-1 + RTTi-1 > Tsi + ERTTi – FR > Tsi-1 + ERTTi-1 +

FR

RTTi-1- ERTTi > Tsi – Tsi-1 – FR > ERTTi-1 - ERTTi +

FR

Since Pei is not selected to match Psi-1, ERTT is not

calculated again. So ERTTi is equal to ERTTi-1. Then

RTTi-1- ERTTi-1 > Tsi – Tsi-1 – FR > FR

In addition we assume Li-1 is the time interval between

these two consecutive Send packets, i.e. Tsi – Tsi-1 = Li-1.

And L is the smallest time interval between two

consecutive Send packets. Then

RTTi-1 – ERTTi-1 > Li-1 – FR and Li-1 > 2FR

RTTi-1 – ERTTi-1 > Li-1/2 (3)

� Pei should be the corresponding packet for Psi+1
-- the next Send packet of Psi, but it is matched with Psi.

Because the difference in timestamps of Psi and Pei is

closer to ERTTi than the difference of timestamps of Psi+1

and Pei, we assume the timestamps for Psi, Psi+1, Pei are

Tsi, Tsi+1, Tei, respectively, and the time delay between

Tei and Tsi+1 is RTTi. Then we can get

Tei – Tsi – ERTTi < ERTTi – (Tei – Tsi+1)

Tei – Tsi+1 + (Tsi+1 - Tsi) - ERTTi < ERTTi - (Tei –

Tsi+1)

(Tei – Tsi+1) – ERTTi < -(Tsi+1 - Tsi)/2

RTTi-1 – ERTTi-1 < -Li-1/2 (4)

So we have | RTTi – ERTTi| > Li/2 > L/2 from (3) and

(4). And we assume ∆RTT has the standard deviation δ ,

and v =
2

L

δ
achieves the probability that Pei is selected

incorrectly to match Psi by using Chebyshev inequality as

the following:

P (incorrect choice of Pei for Psi)

= P (|RTTi-1 – ERTTi-1|> L/2) < 2

1

v

Then the accurate rate, i.e. the probability to make a

correct selection of a packet RTT can be estimated by

using the following inequality:

Accurate rate= P (correct choice of Pei for Psi) > 1- 2

1

v

Yang claims that the accurate rate of his SDBA

algorithm [4] is higher than 1 –
2

1

q
 . Where q =

2

L

σ
, σ

is the standard deviation of RTT. We knew that the

standard deviation of RTT is close to the standard

deviation of ∆RTT, i.e.σ ≈ δ , then v ≈ q. So our

381380

algorithm has nearly the same accurate rate as SDBA.

Yang [4] claimed that the probability of the accurate rate

for his SDBA experiment examples was higher than 97%.

4. Application

As we had mentioned before, the EBA algorithm can

be used together with the “Step-Function” [3] stepping

stone detection approach to detect a stepping stone. The

“Step-Function” approach is responsible for monitoring

the steps of the RTT changes on interactive connections

which reflect the numbers of connections in its

downstream connections chain. When the RTTs change

with more than a specified number of steps, the

connection will be considered a stepping stone

connection. Further action can then be taken such as a

block or trace-back. Since the EBA algorithm is

responsible for getting a stepping stone RTTs in real-time,

we concentrated our experiment on the RTT values that

the RTT getting algorithm can achieve and the levels of

RTT changes. In here, we apply our EBA Algorithm in a

real environment. At the same time we implement other

real-time RTT getting algorithms -- the Greedy and

Conservative algorithms [3] in the same environment,

and present the comparable experimental results.

We estimate our experiments from two points of

views: if the RTT getting algorithms can get RTTs with

one level for a single connection and if the RTT getting

algorithms can get RTTs with the correct number of

levels during the establishment of a connection chain. In

addition, as we mentioned previously, the typing speed

and inputting commands can affect the ordering and

mapping of the Send and Echo packets. So we conducted

our experiments using two modes as well: slow typing

speed and simple inputting commands, quick typing

speed and complex inputting commands.

Firstly, we built a connection by SSH from host H1 to

host H2. We also captured the SSH packets and applied

Greedy, Conservative and EBA algorithms concurrently

at host H1 from the time that host H2 was initially

connected. We input simple commands by slow typing

speed and complex commands with quick speed

respectively at the connection terminal of H1. We

obtained the result by simple inputting commands and

slow typing speed as shown in Figure 2, and Figure 3

shows the result by complex inputting commands and

quick typing speed. The X-axis represents the Send

packet number and the Y-axis represents RTT values in

units of ms.

From Figure 2, we know that all three algorithms are

concentrated around 1 level if we can ignore the big

protuberances. But apparently the EBA algorithm is

better than the Greedy and Conservative algorithms as all

the resulted RTTs are closely around 47 ms.

In Figure 3, the RTTs obtained by the Greedy

algorithm are concentrated around 3 levels, and it will be

incorrectly considered as a connection chain with 3

connections by the “Step-Function” stepping stone

detection approach. For the Conservative algorithm, there

are only 38 RTTs obtained which are far less than the

217 RTTs for the Greedy algorithm and 207 RTTs for the

EBA algorithm. It will be hard for the “Step-Function”

approach to judge what kind of connection it is due to a

small number of RTTs. For the EBA algorithm, all the

RTTs it obtained are closely around 49 ms, so the “Step-

Function” approach can identify it is a single connection.

0 314 0 303 0 296
0

100

200

300

400

500

600

Send Packets

R
T
T
(m
ic
ro
s
e
c
o
n
d
)

Greedy Conservative

EBA

Figure 2. One connection with simple inputting

commands by slow typing speed.

0 217 0 38 0 207
0

100

200

300

400

500

600

700

800

900

1000

Send Packets

R
T
T
(m
ic
ro
s
e
c
o
n
d
)

Greedy

Conservative

EBA

Figure 3. One connection with complex inputting

commands by quick typing speed.

We then built a connection chain by SSH that passed

through host H1 to host H2, then to hosts H3, and then to

H4. We captured the SSH packets and applied the

Greedy, Conservative and EBA algorithms concurrently

at host H1 from the time that host H2 was initially

connected, to the time the whole connection chain was

built. We input simple commands using a slow typing

speed and complex commands by quick speed

respectively at the connection terminal of H1 during the

chain building. We obtained the result by the simple

inputting commands and slow typing speed as shown in

Figure 4 and the result of complex inputting commands

382381

and quick typing speed is shown in Figure 5, where the

X-axis represents the Send packet number, and the Y-

axis represents RTT values in units of

ms.

0 422 324 0 389
0

100

200

300

400

500

600

700

800

900

1000

Send Packets

R
T
T
(m
ic
ro
s
e
c
o
n
d
)

Greedy Conservative

EBA

Figure 4. One chain with simple inputting commands

by slow typing speed.

0 970 0 200 0 898
0

100

200

300

400

500

600

700

800

900

1000

Send Packets

R
T
T
(m
ic
ro
s
e
c
o
n
d
)

Greedy Conservative

EBA

Figure 5. One chain with complex inputting
commands by quick typing speed.

In Figure 4, the RTTs obtained by the Greedy and

Conservative algorithms are approximately clustered

around 3 levels. However both of them have too many

large protuberances that may affect the identification of

steps for the “Step-Function” approach.

From Figure 5 we know that the RTTs obtained by the

Greedy algorithm are clustered around many levels, and

the “Step-Function” approach will considered it as a

stepping stone connection when it is just a single

connection. For the Conservative algorithm, there are

only 200 RTTs obtained which are far less than the 970

and 898 RTTs for the Greedy algorithm and the EBA

algorithm, respectively.

In both Figure 4 and Figure 5, all the RTTs the EBA

algorithm obtained are closely around 3 levels: 47 ms,

102ms and 170 ms. So RTTs achieved by the EBA

algorithm can correctly reflect how many connections in

its downstream connection chain by any kind of typing

speed and inputting commands.

From all of our experimental results, we discovered

that the number of Send packets which are matched by an

EBA algorithm are all slightly smaller than those

achieved by the Greedy algorithm. We also discovered

the ratios of EBA and Greedy Send packet numbers for

the above figures, which are all higher than 90%. As the

Greedy algorithm matches all the Send packets even if

they have corresponding echo packets, the real number of

Send packets having corresponding echo packets should

be smaller than the Greedy number of send packets. So,

therefore, we are confident that the real matching rate for

the above figures should be higher than 90%.

In addition to this, we also achieved the standard

deviations of ∆RTTs for the above figures. These are

between 1.771ms and 9.043ms. Although we cannot get

the exact accurate rate from the above figure, our

algorithm can achieve enough precise RTTs to detect

stepping stones for a wide range of standard deviations of

∆RTTs.

5. Conclusion

In this paper, we have proposed a real-time simple

precise RTT getting algorithm for stepping stones. This

algorithm is different from previous real-time RTT

getting algorithms in that it attempts to estimate the RTT

initially instead of finding the corresponding echo packet

directly. We present the probability analysis in theory

which demonstrates that our algorithm has more than a

90% matching rate, and as high an accurate rate as the

non real-time complicated RTT getting algorithm, SDBA.

This indicates our experimental results using our

algorithm are much more precise than previous real-time

methods to detect stepping stones.

6. References

[1] Staniford-Chen, S. and Heberlein, L., "Holding Intruders

Accountable on the Internet", in Proceedings IEEE Symposium

on Security and Privacy, Oakland, CA, USA, 1995, pp. 39–49.

[2] Yung, K.H., “Detecting Long Connecting Chains of

Interactive Terminal Sessions”, in Proceedings International

Symposium on Recent Advance in Intrusion Detection, Zurich,

Switzerland, 2002, pp.1-16.

[3] Yang, J. and Huang, S., “Matching TCP/IP Packets to

Detect Stepping-Stone Intrusion”, International Journal of

Computer Science and Network Security, 2006, VOL.6 No 10.

[4] Yang, J. and Huang, S., “Probabilistic Analysis of an

Algorithm to Compute TCP Packet Round-Trip Time for

Intrusion Detection”, Journal of Computers and Security,

Elsevier Ltd., 2007, pp137-144, Vol. 26.

[5] Mills, D.L.: Internet Delay Experiments, IETF document,

http://www.ietf.org/rfc/rfc889.txt (1983)

383382

