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ABSTRACT 
Recommender systems have become valuable resources for 
users seeking intelligent ways to search through the 
enormous volume of information available to them. One 
crucial unsolved problem for recommender systems is how 
best to learn about a new user. In this paper we study six 
techniques that collaborative filtering recommender 
systems can use to learn about new users. These techniques 
select a sequence of items for the collaborative filtering 
system to present to each new user for rating. The 
techniques include the use of information theory to select 
the items that will give the most value to the recommender 
system, aggregate statistics to select the items the user is 
most likely to have an opinion about, balanced techniques 
that seek to maximize the expected number of bits learned 
per presented item, and personalized techniques that predict 
which items a user will have an opinion about. We study 
the techniques thru offline experiments with a large pre-
existing user data set, and thru a live experiment with over 
300 users. We show that the choice of learning technique 
significantly affects the user experience, in both the user 
effort and the accuracy of the resulting predictions. 

Keywords 
Recommender systems, collaborative filtering, information 
filtering, startup problem, entropy, user modeling. 

INTRODUCTION 
People make decisions every day. “Which movie should I 
see?” “What city should I visit?” “What book should I 
read?” “What web page has the information I need?” We 
have far too many choices and far too little time to explore 
them all. The exploding availability of information that the 
web provides makes this problem even tougher. 

Recommender systems help people make decisions in these 
complex information spaces. Recommenders suggest to the 
user items that she may value based on knowledge about 
her and the space of possible items. A news service, for 
example, might remember the articles a user has read. The 
next time she visits the site, the system can recommend 
new articles to her based on the ones she has read before. 
Collaborative filtering is one technique for producing 
recommendations. Given a domain of choices (items), users 
can express their opinions (ratings) of items they have tried 
before. The recommender can then compare the user’s 
ratings to those of other users, find the “most similar” users 
based on some criterion of similarity, and recommend 
items that similar users have liked in the past. 
When new users come along, however, the system knows 
nothing about them. This is called the new user problem for 
recommender systems [1, 2, 6]. The system must acquire 
some information about the new user in order to make 
personalized predictions. The most direct way to do this is 
to ask for ratings directly by presenting items to the user. 
However, the system must be careful to present useful 
items that garner information. A food recommender, for 
instance, probably should not ask whether a new user likes 
vanilla ice cream. Most people like vanilla ice cream, so 
knowing that a new user likes it tells you little about the 
user. At the same time, the recommender should ask about 
items the user is likely to have an opinion about. A travel 
recommender would probably not benefit by asking a new 
user if she liked Burkina Faso, for instance. The 
recommender system is likely to learn only that, like most 
people, she has not visited Burkina Faso, which is of little 
value in forming future travel recommendations. 
The choice of exactly what questions to ask a new user, 
then, is critical. An intelligent recommender interface will 
minimize a new user’s effort and get him to the fun part—
using the system and seeing recommendations—while still 
learning enough to make good recommendations. 
In this paper we explore approaches for choosing which 
items to present to new users for rating. We consider this 
problem in the general case of recommender systems, 
illustrating strategies and performing experiments using the 
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MovieLens movie recommender. We first survey related 
work in the areas of decision theory and recommender 
systems, then consider approaches for selecting movies to 
present to users. We test these approaches on historical data 
drawn from the 7.5 million-rating MovieLens dataset. We 
also test three of the most promising strategies on over 300 
new MovieLens users. We then discuss the results and 
suggest directions for future work. 

RELATED WORK 
We briefly mention related work in the field of decision 
theory and survey work that has been done on the new user 
problem in the area of recommender systems. 

Decision theory and entropy 
Decision theory has proved useful in determining models 
for re-ordering search results [4]. This application of utility 
functions has also been used in recommender systems [13, 
14]. 
Analysis of data for entropy—its theoretical information 
content—has been a standard technique used in information 
retrieval [10], medical diagnostic systems [9], and 
sequential classification problems [3] for many years. 
Lately, researchers have extended the use of entropy into 
areas such as probabilistic models for information retrieval 
[7] and value-of-information analysis [16]. 
We apply decision theory techniques to a new problem: 
choosing the items to first present to a new user of a 
recommender system. Our problem is in some ways the 
converse of the cited research; we are selecting items as 
questions to present to the user, rather than choosing which 
answers to present for a user’s question. 

Recommender systems and the new user problem 
There has been little work in solving the new user problem 
by analyzing ratings data to make smart decisions. Pennock 
and Horvitz proposed the use of a “value-of-information” 
calculation to discover the most valuable ratings 
information to next gather from a user [14]. To our 
knowledge, they have not published any implementations 
or evaluations of their calculations. 
Kohrs and Merialdo make use of entropy and variance in 
their ratings data in order to generate more accurate 
predictions for new users [12]. Our work expands their 
results by using a number of strategies that we consider as 
being more suitable than variance or entropy. We also have 
a much larger dataset for our offline experiments and verify 
our findings in a live experiment. 
Another approach to solving the new user problem creates 
pre-made user categories and quickly assigns new users to 
one of them. The partitioning can be accomplished by 
asking the user pre-determined questions that build a user 
preference structure. This helps jump-start the user into the 
system without requiring a substantial number of ratings [8, 
13]. This class of approaches addresses the question of 
what to present first by starting with a small set of 
preference models (e.g. demographic models, models based 

on attributes of items) and asking questions that help 
choose an appropriate model for a user. When these models 
are accurate they can be quite useful, but the premise of 
personalized recommender systems and collaborative 
filtering is that a person’s preferences are a better predictor 
of other preferences than other attributes. Category and 
demographic models are thus less general than the methods 
we present; they apply only to certain domains, and require 
domain-specific expertise. 
Filterbots are a technique to overcome the startup problem 
for new items in a collaborative filtering system by 
injecting ratings agents that rate every item in the system 
according to their algorithmic analysis of the content of the 
item [6]. Filterbots can make sure that every item in the 
system has many ratings to help users find the items they 
are most interested in. However, filterbots do not directly 
attack the new user problem. 
Others have integrated agents into a collaborative filtering 
environment to extract user preference information 
transparently [17]. This method has the advantage of 
collecting implicit information in addition to explicitly 
provided ratings, and should gather data for new users more 
rapidly. Using implicit data in addition to explicit data is a 
promising approach, and is complementary to our approach 
of carefully selecting which explicit data to collect. 

STRATEGIES FOR SELECTING ITEMS TO PRESENT 
There are trade-offs to be made when choosing a strategy 
for presenting items. As discussed in the introduction, 
requiring too much effort of the user will cause some users 
to give up, while not asking enough questions will result in 
poor recommendations. We identify four dimensions that a 
strategy might choose to support: (a) User effort: how hard 
was it to sign up? (b) User satisfaction: how well did the 
user like the signup process? (c) Recommendation 
accuracy: how well can the system make recommendations 
to the user? (d) System utility: how well will the system be 
able to serve all users, given what it learns from this one? 
We choose to focus on user effort and accuracy. We chose 
these two is because they are easy to measure and can be 
measured in both off-line and on-line experiments. User 
satisfaction studies are difficult to do off-line from 
historical data, and we believe that user satisfaction will 
rise as user effort falls. While we touch on a few issues 
related to system utility, such as the danger of introducing 
biases into a system’s ratings database when using certain 
strategies, we do not focus on it since our primary focus is 
on factors that directly influence the user’s experience.  
We consider several types of strategies for presenting 
items, ranging from random selection, through strategies 
that exploit aggregate properties of the system’s database 
such as choosing popular items, to strategies that tune 
themselves to individual users. 
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Random strategies 
Random strategies avoid bias in the presentation of items. 
We consider two variants. 
Random. Select items to present randomly with uniform 
probability over the universe of items. 
MovieLens Classique. For each page of movies presented, 
select one movie randomly from an ad hoc manual list of 
popular movies and the rest randomly from all movies.  
Discussion. Random strategies have the advantage of 
collecting user preference data over the entire universe of 
items. If the distribution of ratings is not uniform, however, 
users will likely not have seen many of the randomly 
selected movies. MovieLens Classique tries to boost the 
chance that users will have at least one success per page. 

Popularity 
In MovieLens, the number of movies with a given number 
of ratings decreases in an approximately exponential 
manner, deviating from this exponential form for the least- 
and most-rated movies. 
Popularity. Rank all items in descending order of number 
ratings. Present movies in descending popularity order. 
Discussion. This strategy is easy to calculate and should 
make it easy for users to rate movies. However, popular 
movies may be widely liked; if this is true, then their 
ratings carry little information. If everyone likes Titanic, 
and I say I like it too, what can the system learn from that? 
Another concern when using the popularity strategy is the 
possibility of exacerbating the prefix bias. Popular movies 
are easier for the system to recommend, because similar 
users are more likely to have seen them. Since users can 
rate any movie the system recommends, popular movies 
garner still more ratings. Unpopular movies suffer from the 
same problem in reverse: they are hard to recommend, so 
users see them and rate them less often than they otherwise 
might. This bias may explain the deviation from 
exponential form for the popularity distribution of movies. 

Pure entropy 
An alternative approach is to ask users about movies that 
will give us the most information for each rating. 
Informally, a movie that has some people who hate it and 
others who like it should tell us more than a movie where 
almost everyone liked it. Kohrs and Merialdo used both 
variance and entropy to get at this notion [12].  
Pure Entropy. For each movie, calculate its entropy using 
the relative frequency of each of the five possible ratings. 
Sort the movies in descending order of entropy. Present the 
movies with the highest entropy that the user has not seen. 
Discussion. There are several choices to make when using 
an entropy-based strategy. The first is how to handle 
missing ratings. We choose to ignore them in the 
calculation because the information content of a missing 
rating is hard to measure: a user may have chosen not to see 
it, never heard of it, or seen it but not thought to rate it. 

Another choice is whether to compute the entropy over 
each rating individually, or whether to convert ratings into 
a binary “like vs. dislike” model where ratings of 4 or 5 
indicate like while ratings of 1 to 3 indicate dislike. 
Finally, “most information” in the technical sense meant by 
entropy does not necessarily translate into information 
usable by the system. A movie with only two ratings, a 1 
and a 5, has high entropy but little value in finding similar 
users or making recommendations. Similarly, a 
recommender may present high entropy movies, but if the 
user has not seen any of them, the system will gain no 
information at all. We performed a pilot study for the on-
line experiment using a pure entropy strategy, and it turned 
out to be unusable. Two users had to view several hundred 
movies each before finding ten to rate. 

Balanced strategies 
Popularity-based strategies tend to get many ratings from 
users, but each rating may have low information-theoretic 
value to the recommender system. Conversely, entropy-
based techniques get a lot of value from each rating, but 
users may find relatively few items to rate. In this section 
we consider balanced techniques that attempt to obtain 
many ratings, each of which has a relatively high value. In 
a sense, these techniques are working to obtain as many 
expected bits of information as possible from each item 
presented for the user to possibly rate. 

 
Popularity*Entropy (Pop*Ent). Rank items by the product 
of popularity and entropy. Entropy is the number of bits of 
information if the user rates the item, and popularity is the 
probability that this user will rate this item. Using Bayes’ 
theorem in this way assumes that popularity and entropy 
are independent, which is unlikely to be strictly true, but 
the approach is likely to be a good approximation to 
expected number of bits. Further, our experience with 
MovieLens ratings suggests that popularity and entropy are 
not strongly correlated. Figure 1 plots the average entropy 
of movies with a given popularity ranking using a moving 
average over the 50 prior most popular movies. This figure 

Figure 1. Entropy vs. the popularity of a movie,
smoothed by using a moving average entropy of the
previous 50 most popular movies. 
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shows that there is little correlation between a movie’s 
popularity and entropy except for movies with few ratings. 
Log Popularity*Entropy (log Pop*Ent). As above, but take 
the log of the number of ratings before computing 
popularity. In studying Entropy and Popularity we observed 
that their distributions in our dataset were such that 
Popularity almost completely dominated Pop*Ent, with 
both strategies producing nearly the same sets of rankings. 
Taking the log of the ratings nearly linearized popularity, 
making it a better match for entropy.  
Discussion. Figure 1 suggests that entropy alone may not 
be an effective strategy, since entropy is nearly independent 
of popularity. Thus, entropy alone will sometimes choose 
items that users have low probability of having an opinion 
about. Balanced techniques directly combine entropy and 
popularity to increase both the odds that a user will be able 
to rate movies that the recommender presents and the 
expected value of that rating. 

Personalized 
The strategies above all use aggregate statistics. However, 
the overall popularity of an item is only a rough 
approximation for the chance that a particular user has seen 
it. Ideally, the movies presented to a user could be tailored 
to that user as soon as we have some information about that 
user. Once we know that a user has rated Ghostbusters, we 
might want to show other movies rated by people who have 
rated Ghostbusters. The goal is to hone in on movies that 
the user is likely to have seen in order to make the signup 
process easier and require less user effort. A simple 
personalized strategy uses item-item similarity. 
Item-Item personalized: Present movies using any strategy 
until the user has given at least one rating. Then use a 
recommender that computes similarity between items to 
select other items that the user is likely to have seen. 
Update the list of similar movies whenever the user submits 
more ratings, remembering movies that the user has already 
seen so that they are not presented again. For our 
experiments, we present the initial screen of movies as a 
random selection from the top 200 movies ranked by the 
log Pop*Ent strategy. 
Discussion. Personalizing the movies we present is similar 
to, but not the same as, recommending movies. When we 
recommend movies, we try to identify movies the user will 
like; when presenting movies, we only care whether he has 
seen a movie. The SUGGEST recommender, used as the 
item-item recommender in our experiments, was developed 
with e-commerce in mind and uses binary ratings (e.g. the 
user bought the item) [11]. It accepts a list of items the user 
has bought and returns a list of other items the user would 
be most likely to buy. This is exactly the task we face: 
given a list of movies the user has seen, what other movies 
is he most likely to have seen. 
One possible disadvantage for the item-based personalized 
strategy is that seeing a movie is probably correlated with 
liking a movie. The average rating in the MovieLens 

dataset, for example, is close to 4 on a 1 to 5 scale. This 
means that we may get mostly positive ratings for the new 
user, which is not as useful as knowing both some movies 
that the user likes and some that she dislikes. 

Other plausible strategies 
There are a number of other plausible strategies that we do 
not consider in this paper. The system might ask attribute-
based questions of the user, although as mentioned earlier 
such strategies are domain-dependent. The system might 
also ask for the names of items a user likes. CDnow.com 
does this, explicitly asking for album titles the user liked. A 
recommender system could also preferentially display new 
items, or items that have recently been added to its 
database. Finally, it could perform a more sophisticated 
analysis of entropy and personalization than we attempt in 
this paper and try to select items with high independent 
entropy. We focus on domain-independent strategies, and 
within these on the simplest ones; exploring more complex 
strategies would be fertile ground for future work. 

OFFLINE EXPERIMENTS 
We decided to first explore the strategies mentioned above 
by performing off-line experiments that use historical data 
to simulate the signup process for new MovieLens users. 
The benefit of these offline experiments is that we can 
quickly test a variety of strategies without bothering actual 
users with strategies that turn out in practice to work 
poorly. A disadvantage of these offline experiments, 
described in detail below, is that biases in our existing data 
may bias the results for or against particular approaches. 
We identify the biases as carefully as we can, and interpret 
our results in that context. Still, these experiments were 
invaluable to us in ruling out several algorithms that would 
have been painful for actual users. 

Experimental Design 
To build the dataset for the off-line experiments, we took a 
snapshot of the MovieLens ratings database and eliminated 
users who had fewer than 200 ratings. This left 7,335 users, 
4,117 movies and more than 2.7 million ratings. The cutoff 
of 200 is both high and somewhat arbitrary. However, we 
needed a large number of ratings for each user as in the 
historical data it is hard to know which movies the user 
might have seen other than through their ratings. We 
needed many ratings for each user so we had a good sample 
of movies they were able to rate. 
We tested the Pure Entropy, Random, Popularity, Pop*Ent, 
and Item-Item personalized strategies. We did not test the 
MovieLens Classique strategy because the historical data 
were gathered with the Classique strategy and we feared 
possible bias.  
To mimic the on-line sign-up process, we used each 
strategy to “present” a total of 30, 45, 60, or 90 movies to 
each user. We varied the number of movies presented so 
that we could see how the strategies performed as the 
system attempted to gather more information. When we 
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started a run, we withheld all of that user’s ratings from the 
system. As we presented the movies, users “rated” the 
movies they had “seen” (i.e. those for which we had ratings 
for in the database). 
 

 
Once we had presented the correct number of movies, we 
counted the number of movies the user was able to actually 
rate. More ratings implied that we did a better job of 
showing items the user could rate. This is good: it means 
that we wasted less of the user’s time looking at unratable 
items and that we can present fewer items to get the 
information the system needs, saving the user effort. After 
counting the rated movies, we used these as training data 
for that user and made predictions for all of the other 
movies the user had rated in the original dataset. We then 
calculated the Mean Absolute Error (MAE) for these 
predictions. MAE is the sum of the absolute differences 
between each prediction and corresponding rating divided 
by the number of ratings. We performed the entire 
procedure for each strategy for every user in the test set, 
and computed an average MAE across all users. Computing 
average MAE in this way counts all users equally, rather 
than biasing the results towards users with more ratings. 

Figure 3. Mean Absolute Error (MAE) vs. the number 
of movies presented by each strategy. 

 

Biases in the reduced dataset 
The reduced dataset inherits several biases from the full 
MovieLens dataset. In particular, it has the prefix bias, 
where popular movies are easier to recommend and are 
shown (and rated) more often. This might give strategies 
that incorporate popularity an advantage in the number of 
movies they allow a user to rate. Our decision to remove 
users with less than 200 ratings also introduces possible 
bias. One bias is that our results may be most meaningful 
for active users. It is also possible that removing users with 
fewer ratings might artificially impact prediction accuracy. 
Excluding these users also resulted in a denser data set. 

Results 
Figure 2 shows that the Item-Item personalized strategy did 
the best in picking movies users can rate, while Pure 
Entropy was the worst. 
Figure 3 shows the effect different strategies have on MAE. 
Pop*Ent performs best for a given number of presented 
movies, with Popularity close behind. Again, Pure Entropy 
is shockingly poor.  
The poor performance of Pure Entropy in both metrics is 
directly related.  Figure 1 shows a slight increase in entropy 
for less popular movies.  Since popularity directly relates to 
the chance that a new user has seen a movie, this strategy 
presents movies that users are less likely to have seen, 
resulting in poor performance in the movies-seen metric.  
Moreover, with fewer rated movies to base predictions on, 
the MAE for Pure Entropy also suffered.  
The Item-Item personalized strategy has the most 
interesting behavior. We expected it to win in the movies-
seen metric, and it in fact trounced the competition. This 
did not translate into better recommendations, however. It 
was hard to believe that the Random strategy could get an 
error rate with eight ratings as training data comparable to 
the item-item personalized strategy with 57 ratings. 
One possible reason is that the item-item strategy presented 
movies that it could otherwise have made accurate 
predictions for. Imagine that the system presents Star Trek 
23: the Bowels of Kirk to a Star Trek fan, who rates it. The 
system looks and finds that most people who have seen 
Bowels have also seen Star Trek N, 0<N<23, and presents 
those movies next. Someone who has seen all of the Star 
Trek movies has probably rated most of them highly. If the 
system had only presented one of them, it would have had a 
good shot of finding other Trekkies in that user’s 
neighborhood, and been able to make a number of accurate 
predictions, thus lowering MAE. 
The problem seems to be that the item-item personalized 
strategy does not do a good job of sampling the entire space 
of movies. Item-item methods tend to find loose clusters of 
similar items and hone in on those clusters. This may cause 
poor exploration of the universe of items: the recommender 
may become an expert on Star Trek movies at the expense 
of others. This also helps explain why the random strategy 

Figure 2. Number of movies seen versus number of 
movies presented to a user. 
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does well despite finding many fewer movies, as it samples 
from all genres and all levels of popularity. 
We will further discuss the merits of the strategies after we 
present the results of our online experiment. 

ONLINE EXPERIMENT 
We followed up our off-line experiment by deploying 
several strategies on the live MovieLens site. By using live 
users, we could verify the results of the off-line experiment 
while removing the bias induced by only considering users 
who had at least 200 ratings. We also wanted to compare 
these strategies to the MovieLens Classique strategy. 
We had planned to investigate all of the strategies in our 
online experiments. However, after our pilot study, we 
decided against the Random and Entropy strategies as the 
average number of movies a user would have to see before 
rating enough to get recommendations would be 
prohibitively high. Reading through hundreds of movie 
titles can be a frustrating process that would surely turn 
many users away. The pilot study also lead us to use the log 
Pop*Ent strategy instead of Pop*Ent, since Pop*Ent and 
Popularity alone chose almost the same set of movies. 

Experimental Design 
When a new user joins MovieLens, the system presents 
pages of ten movies until the user rates ten or more movies. 
We altered the signup process to ask users if they were 
willing to let the system use an experimental method for 
selecting movies for them to rate. Users who consented 
were assigned to one of three groups, which used the 
Popularity, log Pop*Ent, or Item-Item personalized strategy 
to present movies. Those who did not consent received the 
MovieLens Classique strategy. This self-selection 
introduces a bias, so we use the Classique strategy only as a 
baseline. 
MovieLens had a total of 351 new users during the ten-day 
experimental period. Table 1 shows the number of users in 
each experimental group. Some users gave up before 
completing the sign-up process. Our results below are 
based on the users who completed the signup process. 

Table 1. Population of the experimental groups. 
 

Strategy Total Users Dropouts Completed 
Popularity 91 10 81 
Item-item 92 10 82 
logPop*Ent 92 13 79 
Classique 76 16 60 
Total 351 49 302 

 

 
Our primary goal for the online experiment is to measure 
the effectiveness of the signup process: how many pages of 
movies must a user see before they have rated enough to 
get started? We believe this is a suitable proxy for the effort 
we require of the user, with fewer pages equaling less 

effort. We would like to measure prediction accuracy as 
well, but we do not have a good basis for computing MAE 
immediately after a user signs up. We could compute it on 
the movies they rated during the signup process 
(MovieLens logs predictions for these movies to support 
retrospective analysis). However, since the purpose of the 
signup process is to gather information, judging error 
during the signup process does not make much sense. 
User interaction is quite difficult to foresee let alone 
quantify. Some users have rated all the movies on the first 
page of a random sample, a highly unexpected event, while 
others have waded through dozens of pages with popular 
movies, seemingly not being able to rate a single one from 
them. We included all of these users without prejudice. 

Expectations 
Both the Popularity and the log Pop*Ent approaches are 
expected to show a slow decrease in the number of movies 
matched per page, up to the point where most of the users 
finish with the signup. This is a natural consequence of the 
fact that we pre-sorted the movies and presented them in 
descending order of the corresponding parameter. We also 
expected the Item-Item personalized strategy to perform no 
better than log Pop*Ent on the first page since it uses that 
strategy to select the initial set of movies. We did expect 
Item-Item to outstrip the other strategies on subsequent 
pages, showing that it was successfully finding movies that 
users had seen.  

 

Results 
Figure 4 shows the number of movies per page an average 
user was able to rate with each of the strategies. Popularity 
and log Pop*Ent exhibit the decay we expected, although 
they both rose slightly after three pages. When the Item-
Item recommender kicks in on the second page the users 
are able to rate more movies than with any other strategy, 
and more movies than they did on the first page. Classique 
was approximately constant across all pages.  

Figure 4. Number of movies users could rate per page 
using different movie presentation strategies. 
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From a user’s point of view, the ease of the signup process 
is probably best expressed as the number of pages of ten 
movies he must see before starting to get recommendations. 
The mean number of pages varied from around two for the 
Popularity (1.9) and Item-Item (2.3) strategies, then rising 
for the log Pop*Ent (4.0) and Classique (7.0) strategies. 
Figure 5, which plots the cumulative percentages of users 
ending their signup on the nth page, shows that these means 
hide long tails, especially in the case of the log Pop*Ent 
strategy. This figure shows that the Popularity and Item-
Item strategies are by far the most effective strategies with 
over 90% of users being able to sign up in five pages or 
less. The other two strategies fare much worse, with a 
number of users requiring more than five pages. Since we 
only consider users who completed the signup process, all 
four strategies eventually reach 100 percent; we truncated 
the graph at five pages because all of the strategies except 
for Popularity had outliers that viewed over 200 movies 
before they found ten movies to rate. 

Table 2. Evaluation of strategies over both experiments 
on user effort and accuracy metrics. 

Strategy User Effort Accuracy 
Random/Classique   
Popularity   
(log) Pop*Ent   
Item-Item   

DISCUSSION 
We consider both the on-line and the off-line results in this 
section. In evaluating the techniques we focus on two 
dimensions of the user experience: user effort and 
recommendation accuracy. The best strategy for eliciting 
information from users depends on the dimension along 
which you wish to optimize. Some algorithms do well at 
minimizing user effort, at the cost of accuracy, while other 
algorithms provide very good accuracy, at the cost of 
additional effort from the user. The best algorithms perform 
well by both measures. Popularity, Pop*Ent, and Item-Item 
personalized strategies all give reasonable performance on 

both metrics and provide the system designer an easy way 
to choose trade-offs. Popularity provides a good balance 
between effort and accuracy. Pop*Ent trades effort for 
more accuracy; Item-Item personalized trades accuracy for 
less effort. Item-Item does sacrifice more in accuracy than 
the other methods. 
The results of the off-line and on-line experiments support 
each other. Random, Entropy, and Classique performed 
poorly at helping users rate movies; Popularity performed 
well in both cases, and Item-Item successfully found 
movies for users to rate in both experiments. Table 2 
compares the overall performance of our algorithms on our 
two primary dimensions of minimizing user effort and 
making good predictions. Choosing an intelligent strategy 
for presenting items to rate can dramatically improve 
usability. The Classique strategy required over three times 
the effort of the best strategies, Popularity and Item-Item 
personalized, and based on the off-line results for the 
Random strategy, probably delivers worse 
recommendations. 
These results should generalize to any set of ratings where 
the popularity of an item decays exponentially and the 
relative entropy of most items is in a fairly narrow range. 
We expect that most real-world ratings data sets have these 
properties. 
An application’s requirements also matter. An e-commerce 
recommender might have to start making recommendations 
with no data at all about the current user [15]. In this case, 
we suggest recommending the most popular items rather 
than the highest-rated ones, and then using Item-Item 
strategies to personalize the recommendations as quickly as 
possible. 
We also have anecdotal evidence about another dimension 
of user experience: users in our research group much 
preferred using techniques that allowed them to rate several 
movies per page, especially compared to the techniques 
that required them to go many pages between ratings. The 
reaction was so strong that we modified our experimental 
design to include only one technique with very low ratings 
density (Classique). Exploiting intelligence about the user 
may lead to improved satisfaction. 
However, using methods that exploit intelligence about the 
user may induce biases in ratings distributions. The 
Popularity strategy might exacerbate the bias we described 
earlier, where more popular movies get more chances to be 
recommended and rated. Over time, the system might 
become a “winner takes all” recommender that only 
recommends generically popular items. 
The Item-Item strategy might create the opposite problem. 
Each user would see a set of items to rate that predicted to 
be of interest to him. Over time, users may become 
clustered in small groups with very little overlap, leading to 
the balkanization of the user population. 
Both of these potential long-term dangers can be combated 
in practice by including some randomness in the set of 

Figure 5. Cumulative percentage of users who 
finished signing up after a given number of pages. 
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items suggested for rating. Too much randomness leads to 
excessive user effort, but a small amount of randomness 
may help to extend the space over which the recommender 
understands the user’s interests and ensure that all items are 
occasionally presented to users. 

CONCLUSION AND FUTURE WORK 
We conclude that the proper strategy for eliciting 
information from users depends on the dimension of user 
experience along which you are trying to optimize. In 
general, strategies that make good guesses about what 
items a user is likely to be able to rate do well with both 
reducing user effort and producing acceptable 
recommendations. We believe these results will hold for 
many similar recommender systems. 
We studied the techniques we considered in three ways: 
through analysis, through simulation studies on previously 
collected user data, and through live user trials. We found 
the three methods complementary. The analysis helped 
suggest techniques that might be useful. The simulation 
studies enabled us to consider a very large number of users 
quickly, and to explore techniques that would have been 
frustrating for live users. The live study helped avoid the 
problems of data bias in our simulations, and increased our 
confidence in the applicability of the results to real systems. 
We believe that all three techniques are important in 
successfully developing intelligent user interfaces. 
In this paper we focused on minimizing user effort while 
still being able to make accurate predictions. It would be 
useful to perform a more thorough investigation of the 
system’s needs for diverse ratings across all items, and how 
to balance these needs with the user experience. More 
direct measurements of user satisfaction, such as longer-
term statistics on usage and surveying users, would 
complement our attempts to minimize user effort. 
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