
����������
�������

Citation: Gao, P.; Tian, T.; Zhao, T.; Li,

L.; Zhang, N.; Tian, J. GF-Detection:

Fusion with GAN of Infrared and

Visible Images for Vehicle Detection

at Nighttime. Remote Sens. 2022, 14,

2771. https://doi.org/10.3390/

rs14122771

Academic Editors: Angel D. Sappa

and Gemine Vivone

Received: 13 April 2022

Accepted: 3 June 2022

Published: 9 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

GF-Detection: Fusion with GAN of Infrared and Visible Images
for Vehicle Detection at Nighttime
Peng Gao , Tian Tian * , Tianming Zhao , Linfeng Li , Nan Zhang and Jinwen Tian

School of Artificial Intelligence and Automation, Huazhong University of Science and Technology,
Wuhan 430074, China; gaopengde@hust.edu.cn (P.G.); tming@hust.edu.cn (T.Z.); d201780635@hust.edu.cn (L.L.);
d202180998@hust.edu.cn (N.Z.); jwtian@mail.hust.edu.cn (J.T.)
* Correspondence: ttian@hust.edu.cn

Abstract: Vehicles are important targets in the remote sensing applications and nighttime vehicle
detection has been a hot study topic in recent years. Vehicles in the visible images at nighttime have
inadequate features for object detection. Infrared images retain the contours of vehicles while they
lose the color information. Thus, it is valuable to fuse infrared and visible images to improve the
vehicle detection performance at nighttime. However, it is still a challenge to design effective fusion
models due to the complexity of visible and infrared images. In order to improve vehicle detection
performance at nighttime, this paper proposes a fusion model of infrared and visible images with
Generative Adversarial Networks (GAN) for vehicle detection named GF-detection. GAN is utilized
in the image reconstruction and introduced in the image fusion recently. To be specific, to exploit
more features for the fusion, GAN is utilized to fuse the infrared and visible images via the image
reconstruction. The generator fuses the image features and detection features, and then generates the
reconstructed images for the discriminator to classify. Two branches, visible and infrared branches, are
designed in the GF-detection model. Different feature extraction strategies are conducted according
to the variance of the visible and infrared images. Detection features and self-attention mechanism
are added to the fusion model aiming to build a detection task-driven fusion model of infrared and
visible images. Extensive experiments based on nighttime images are conducted to demonstrate the
effectiveness of the proposed fusion model in night vehicle detection.

Keywords: vehicle detection; fusion of visible and infrared images; Generative Adversarial Networks

1. Introduction

Vehicles are important targets in remote sensing applications and nighttime vehicle de-
tection has been a hot topic in recent years. Vehicle detection tasks at nighttime could provide
valuable information such as the size, category and location distribution, which is utilized in
Smart Parking [1] and Battlefield Situational Awareness [2]. However, nighttime visible images
suffer from poor image quality due to the poor illumination. The contour and color information
are lost, which make the vehicle targets difficult to distinguish from the background. Infrared im-
ages reflect the thermal characters of targets and preserve significant contrast to the background.
In this way, infrared images could retain the complementary features of the visible images. Nev-
ertheless, the color features are absent in the infrared images which are exploited in the vehicle
classification and the discrimination of the targets and interference. Therefore, it is valuable to
fuse infrared and visible images to improve the nighttime vehicle detection performance.

A variety of visible and infrared vehicle datasets have recently been publicly released,
such as DLR 3K [3], VEDAI [4], VIVID [5] and NPU_CS_UAV_IR_DATA [6]. Some datasets
containing paired infrared and visible images for image fusion are proposed. However,
there is still a lack of annotated vehicle datasets with paired images of the infrared and
visible images, especially at nighttime.

Different images contain various illuminations at nighttime. Figure 1 shows that visible
images vary in color and context according to the different illumination conditions. Figure 2 shows
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that vehicles in the visible images and infrared images vary in color and context according to the
different illumination conditions. There is a large amount of interference to the vehicle targets in
the infrared images due to the lack of color information.

Figure 1. Some examples of paired infrared and visible images. The first row is the visible image and
the second row is the infrared image.

Figure 2. Some examples of paired vehicles and interferences. The first row is the vehicle in the
visible image, the second row is the interference in the visible image, the third row is the vehicle in
the infrared image and the fourth row is the interference in the infrared images.

There is a variance of visible and infrared images at nighttime. Figure 1 visualizes
some examples of paired infrared and visible images at nighttime. Figure 2 presents the
vehicle targets and inferences in the visible and infrared images. These images are collected
from Drone RGBT Crowding counting datasets [7]. Images in the visible and infrared
images vary in color, context and interference. Visible images are RGB images and contain
colorful vehicles. Vehicles in the visible images lose the color or contour information in low
illumination. Infrared images are gray images and contain limited color information of
vehicles. Vehicles in the infrared images retain the contour information in low illumination
while suffering more interference. The variances of the visible and infrared images raise
a possibility of image fusion for vehicle detection at nighttime. Many fusion works are
put forward for utilizing the complementary features of the visible and infrared images to
improve the detection performance.
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Traditional fusion models based on features for detection contain visible and infrared
branches. Each branch extracts features via the convolution layers and feeds them into the
fusion model. The fusion model fuses the two features and feeds them into the detection
branch. Detection-guided branch plays a vital role in the fusion model for vehicle detection.
A detection branch is placed behind the fusion models in the traditional fusion work.
However, the detection features and the detection model learned are not sufficient and it is
still necessary to add detection supervision to the infrared and visible branch, respectively.

The variance of the visible and infrared images should be exploited in the fusion works.
The existing fusion works try to extract the complementary features from the visible and
infrared images for vehicle detection. However, the complementary features are difficult
to distinguish from all features extracted by the convolution layers. Many decomposition
manners such as DRF [8], Decomposition [9] and TLF [10], try to analyze the variance
of the infrared and visible images and choose the valuable features for image fusion.
The valuable features refer to the target feature for object detection, such as illumination
priors, high-frequency features and attribute representation. All these works try to find the
interoperability of the fusion models and optimize the fusion mechanism. However, those
decompositions are evaluated in a small dataset and more evaluations should be tested in
the various images at nighttime to demonstrate the effectiveness of those decomposition
theories. Self-attention mechanisms [11] and feature pyramid networks [12] are added into
the fusion work to enhance the fusion performance. Performance improvements have been
achieved with those modules. However, the numerous modules are placed with numerous
convolution layers which add to the burden of the network.

Generative Adversarial Networks (GAN) [13] is a popular generation model used in the
image reconstruction. GAN contains a generator and a discriminator in order to generate
the similar images with the reference images. The generator consists of several convolution
layers with up-pooling operations to enlarge the size of the inputs. The discriminator is a
classification with convolution layers and down-pooling operations to discriminate the fake
reconstructed images from the true reference images. GAN is introduced into the fusion
work of infrared and visible images in recent years. Compared with the traditional fusion
models based on features, fusion models with GAN are able to integrate feature extraction,
feature fusion and image reconstruction in a single model and produce a promising fused
result. However, the reconstructed images by GAN are evaluated by human visual perception
which is not suitable for high vision tasks. Moreover, there are few fusion works with GAN
for vehicle detection at nighttime, and the variances of the visible and infrared images are
not considered in the existing fusion works. Furthermore, the fusion models are not guided
by the detection tasks directly and the convergence process is not guided by the detection
tasks. Many works succeed to introduce high-vision task driven branches into the Generative
Adversarial Networks, such as detection guided [14] and instance aware [15]. However,
the supervision manners do not optimize the image generation directly and receive small
improvement in the high-vision tasks.

Though many fusion works of the infrared and visible images have been put forward,
there is still a challenge for the fusion of infrared and visible images for vehicle detection.
First, the great feature complexity of visible and infrared images at nighttime is the bot-
tleneck of the fusion model. The detection performance at nighttime via the fusion of the
visible and infrared images is still unsatisfactory. Second, the fusion manners fusing the
visible and infrared branches together are limited which cannot distinguish the valuable
features from invaluable features for vehicle detection effectively. The detection supervision
could not guide the feature extraction in each visible and infrared branch directly. Third,
most of the existing fusion works are based on features extracted by the convolutions. The
feature pyramid network and self-attention module are introduced into the fusion work
to enhance the fusion performance. However, the fusion mechanism in the fusion work
are limited and poor improvement is achieved with complex structures. Lastly, numerous
detection branches increase the burden of the fusion models, which is not suitable for the
training process.
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In this paper, in order to improve the vehicle detection performance at nighttime, we
propose a fusion model (GF-detection) of visible and infrared image fusion with GAN for the
vehicle detection task. A detection task-driven fusion model with GAN is designed. GF-detection
contains the visible branch, infrared branch, self-attention fusion model and detection model.
Each branch contains a generator, a discriminator and a detection backbone utilized to extract
the detection features.The fusion operation is as follows: two tensors from visible images and
visible detection features are concatenated with convolution layers in the visible fusion model
in the visible branch. Two tensors from infrared images and infrared detection features are
concatenated with convolution layers in the infrared fusion model in the infrared branch. Two
tensors from sub-branches, such as the visible branch and infrared branch, are concatenated
in the self-attention fusion model and are sent to the detection model. Since visible images
contain more contours and color information while infrared images contain more targets in
the low illumination condition, visible images are suitable to extract the semantic features for
vehicle classification, and the infrared images are suitable to extract the salient features for vehicle
detection. In this way, different feature extraction strategies are conducted for the visible and
infrared images. Semantic features are extracted with deep convolution models in the visible
images for the vehicle classification, and salient features are extracted with swallow convolution
models in the infrared images for the vehicle detection. The self-attention fusion model contains
a channel attention and a spatial attention to fuse the two reconstructed images. There are
two fusion stages in our fusion model, the first one is the fusion in the GAN in each branch
of the images and detection features, and the second fusion is conducted in the self-attention
fusion mechanism.

All innovations are as follows:

• Aiming to fuse the visible and infrared images effectively besides the feature extraction
by convolutions, Generative Adversarial Networks (GAN) is introduced into the
fusion model for vehicle detection at nighttime. Image fusion is conducted via the
image reconstruction.
Visible and infrared branch are included, and each branch contains a GAN for image
fusion. Visible branch transfers the visible images to the infrared images via GAN and
infrared branch converts the infrared images to the visible images via GAN. Compared
with other fusion models without GAN, fusion models with GAN could exploit more
features for image fusion.

• In order to enhance the detection features in reconstructed images, detection features
are added to the GAN module. The detection features optimize the image generation
directly. Two detection features extracted from the visible and infrared images are added
into the generator of the GAN. Compared with the detection branches, the detection
features are more effective for vehicle detection without extra burden introduced.

• To extract features of the visible and infrared images with different characters, various
structures of the visible branch and infrared branch are designed in the subbranch.
Many convolution layers exist in the encoder, detection backbone and decoder in the
visible branch, while a few convolution layers exist in the encoder, detection backbone
and decoder in the infrared branch. The different feature extraction strategies are
suitable for the feature extraction of different source images.

• In order to improve the fusion performance with limited augment of complexity, a self-
attention fusion model is employed as the second fusion model. With the channel and
spatial attention map learned from the fusion features, more effective fusion features are
exploited for vehicle detection tasks. Self-attention fusion model behind the visible and
infrared branches could enhance the fusion performance with few parameters increased.

• A vehicle dataset containing paired infrared and visible images at nighttime are collected
and labeled as a vehicle dataset for the fusion study of infrared and visible images.

The Section 1 paper describes the background of our research and the highlights of
our work. The Section 2 briefly describes the work related to the fusion work of the visible
and infrared images for vehicle detection at nighttime. The Section 3 describes the structure
of the model in detail, explains the architecture and lists the loss functions. The Section 4
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is devoted to experiments and analysis, listing and discussing the results of quantitative
comparisons. The Section 5 presents our conclusions.

2. Related Works
2.1. Vehicle Datasets in Nighttime

Though a large amount of visible and infrared vehicle datasets are open, most of them
are not paired, which is not suitable for image fusion for vehicle detection. Some common
scenes with paired infrared and visible videos containing vehicles are released recently,
such as OSU Color-Thermal Database [16], VLIRVDIF [17] and VIFB [18]. These datasets
are employed for the fusion study of the infrared and visible images. However, most
of them contain few vehicles. Drone RGBT Crowding Counting [7] contains infrared
and visible images at nighttime containing pedestrians and vehicles for crowed people
counting. The vehicles in the Drone RGBT Crowd Counting are unannotated. Many works
collecting paired visible and infrared images should be conducted for the fusion study for
vehicle detection.

2.2. Vehicle Detection in Nighttime

Most of the recent fusion studies of infrared and visible images for vehicle detection are
based on features, such as MFDSSD [19], SKNet [20], multispectral ensemble detection [21],
FFECSE [22] and CS-RCNN [23]. The features extracted from the infrared branch and the
visible branch by convolution layers are added together with several convolution layers and
those fused features are sent to the detection task for vehicle detection. The self-attention
mechanism [11] is widely applied in each scale of the convolution layer in order to fuse
each scale of infrared and visible features. Feature pyramid networks [12] are employed
within several scale fusion layers to enhance the fusion performance. Prior knowledge
is also exploited in the fusion model, such as Illumination-aware, IAFR-CNN [24] and
IATDNN+IAMSS [25].

Though many works have been conducted on the structure of the fusion models,
they are similar, and these works increases the burden of the network without much
improvement received in the vehicle detection. The effectiveness of these models should
be evaluated in vehicle detection. Furthermore, most codes of those works are not open,
and the effectiveness is not validated.

2.3. GAN for Image Fusion of Infrared and Visible Images

The fusion of infrared and visible images with GAN is a study hotpot recently. Fusion-
GAN [26] is the pioneer to introduce GAN into infrared and visible image fusion. DRF [8]
divides the infrared or visible images into the scene representation and attribute representation
and fuses them together in the image generation. AttentionFGAN [27] introduces multiple
classification constraints to simultaneously estimate the two probability distributions of source
images. The GAN methods conduct feature extraction, feature fusion and image reconstruction
in an implicit manner, however, it is still unstable for the whole image reconstruction. The styles
the fused image learns are sensitive to the loss supervision in the image generation. The styles
of the fused images are not stable, and the convergence is unpredictable.

Fusion based on GAN is not an end-to-end model for vehicle detection. All features
extracted from the infrared and visible images are fused in the reconstructed images and are
then extracted from the reconstructed images by the detection model. The image generation
of GAN is evaluated by human visual perception and might not be suitable for high-vision
tasks, such as vehicle detection. Many detection supervision manners are introduced into
the image generation work to improve the generated images detection performance, such
as instance aware [28] and detection guide [14], are introduced into the GAN fusion to
enhance the detection features. STDFusionNet [28] combines a salient target mask into
the fusion of the infrared and visible images. DUNIT [14] tries to introduce detection
supervision into the image-to-image translation from night to day.
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The supervision manners introduced into the GAN fusion are effective, however,
the mechanism of how the extra supervision branch effects image generation is still not
clear, and the effects of the added supervision manners should be evaluated both in theory
and practice.

3. Method

The overall structure of GF-Detection is illustrated in Figure 3. The whole structure
of GF-detection contains the visible branch, infrared branch and self-attention fusion
model. Visible branch is aiming to reconstruct the visible images via the fusion of the
visible images and detection features. The infrared branch aims to reconstruct the infrared
images via the fusion of the infrared images and detection features. The trained detection
models extract the detection features from the visible and infrared images into the image
reconstruction. The self-attention fusion model fuses two fused features and sends them to
the detection model.

Figure 3. The overall structure of GF-Detection is illustrated in figure. The whole structure of GF-
detection contains the visible branch, infrared branch and self-attention fusion model. Visible branch
is aiming to reconstruct the visible images via the fusion of the visible images and detection features.
The infrared branch aims to reconstruct the infrared images via the fusion of the infrared images
and detection features. The trained detection models extract the detection features from the visible
and infrared images into the image reconstruction. The self-attention fusion model fuses two fused
features and sends them to the detection model.

GAN is employed in order to reconstruct the images with different source images and
detection features. For example, the visible images are reconstructed with visible images
and the detection features from the visible images and infrared images, then these images
are discriminated with the true visible images and the infrared images. The reconstructed
visible images combine the style features learned from the generative adversarial networks
and the detection features extracted by the trained detection models.

The trained detection models are employed to extract the detection features into the
image generation process in order to enhance the detection features. The self-attention
fusion model designs a fusion model of the visible and infrared branches with self-attention
mechanism in order to enhance the fusion features for vehicle detection.

Two stages of fusions are employed in the whole structure. The first stage of fusions is
carried out in the visible branch and infrared branch. The detection feature and style feature
are fused by the image reconstruction by GAN. The second stage fusion is conducted in the
self-attention fusion model, which fuses the visible and infrared features.
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The detailed parameters of GF-detection are listed in the Table 1.

Table 1. Parameters of the main module of GF-detection.

Module Submodule Parameters

generator

encoder

Conv(1,3,7,2,0)+maxpooling,

Conv(3,64,4,2,1)+BatchNorm2d,

Conv(64,128,4,2,1)+BatchNorm2d,

Conv(128,256,4,2,1)+BatchNorm2d,

Conv(256,512,4,2,1)+BatchNorm2d

decoder

Convtranspose(512,256,4,2,1)+BatchNorm2d,

Convtranspose(256,128,4,2,1)+BatchNorm2d,

Convtranspose(128,64,4,2,1)+BatchNorm2d,

Convtranspose(64,3,4,2,1)+BatchNorm2d,

uppooling

discriminator encoder

Conv(3,64,7,2,0)+maxpooling,

Conv(64,128,4,2,1)+BatchNorm2d+LeakyReLU,

Conv(128,256,4,2,1)+BatchNorm2d+LeakyReLU,

Conv(256,512,4,2,1)+BatchNorm2d+LeakyReLU,

FC(204800,4096)

fusion

encoder

Conv(3,64,7,2,0)+maxpooling,

Conv(64,256, 7,2,0)+BatchNorm2d+LeakyReLU,

Conv(256,512, 7,2,0)+BatchNorm2d+LeakyReLU,

Conv(512,1024, 7,2,0)+BatchNorm2d+LeakyReLU,

Conv(1024,2048,7,2,0)+BatchNorm2d+LeakyReLU

fusion

Conv(512,512, 3,1,1)+BatchNorm2d+LeakyReLU,

Conv(1024,1024,3,1,1)+BatchNorm2d+LeakyReLU,

Conv(2048,2048,3,1,1)+BatchNorm2d+LeakyReLU

decoder

Convtranspose(2048,1024,3,2,1)+BatchNorm2d+LeakyReLU,

Convtranspose(1024,512,4,2,1)+BatchNorm2d+LeakyReLU,

Convtranspose(512,256,4,2,1)+BatchNorm2d+LeakyReLU,

Convtranspose(256,64,4,2,1)+BatchNorm2d+LeakyReLU,

Convtranspose(64,3,4,2,1)+BatchNorm2d+LeakyReLU,

uppooling

Self-attention fusion model
channel attention model

AdaptiveAvgPool2d+FC(512,32)+LeakyReLU+ Conv(32,512,1,1)

AdaptiveMaxPool2d+FC(512,32)+LeakyReLU+
Conv(32,512,1,1)+Sigmoid()

spatial attention model torch.mean+torch.max+Conv(2,1,7,1,1)+Sigmoid()

RetinaNet RetinaNet with ResNet(50)
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3.1. Visible Branch

The visible branch contains a fusion model, a generator and a discriminator. Visible
branch is utilized to fuse the visible images and detection features. Detection features
extracted from the visible images and style features extracted from the encoder of the
generator are fed into the visible fusion model. The structure of the visible branch is in
Figure 3b. Five convolution layers are assigned to the encoder, decoder and detection
backbone to extract the high-level features for vehicle detection. The fusion model is
as follows:

FusionV = Fusion(V + DetectionV) (1)

where FusionV is the visible branch, Fusion is the fusion model, V is the visible images,
Detectionv is the detection feature extracted from the visible images.

The generator fuses those inputs and generates the synthesis images with fused
features, those generated images are fed into the discriminator. The discriminator distin-
guishes the synthesis images with the visible images and infrared images. The adversarial
loss function in the visible branch is as follows:

LV_GAN(GV , DV , FusionV , I) = EI∼pdata(I)[log DI(I)]
+EFusionV∼pdata(FusionV)

[log(1− DI(GV(FusionV))]
(2)

where LV_GAN(GV , DV , FusionV , I) is the adversarial loss in the visible branch. FusionV ∼
pdata(FusionV) and I ∼ pdata(I) are distribution characters of the fusion model and infrared
images. Generator GV generates images with the styles similar to the one of the infrared
images. Discriminator DI distinguishes GV(FusionV) and the infrared images I.

The total loss function of the visible images:

LV(V, GV) = LV_GAN(GV , DV , FusionV , V, I) (3)

3.2. Infrared Branch

The structure of the infrared branch is shown in Figure 3d. Three convolution layers
are adopted in the encoder, decoder and detection backbone to extract the salient details
for vehicle detection. The spatial attention model is added in the fusion model.

Spatial attention formula is as follows:

MS(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) ∗ F (4)

where MS(F) is the channel attention model, F is the input feature, MLP is the convolution
layers, AvgPool is the mean operation and MaxPool is the max operation.

Similar to the visible branch, the fusion model, adversarial loss and the infrared branch
are calculated as follows:

FusionI = MS(Fusion(I + DetectionI)) (5)

where FusionI is the infrared branch, Fusion is the fusion model, I is the infrared images,
DetectionI is the detection feature extracted from the infrared images.

The generator fuses those inputs and generates the synthesis images with fused
features, those generated images are fed into the discriminator. The discriminator distin-
guishes the synthesis images with the infrared images. The adversarial loss function in the
infrared branch is as follows:

LI_GAN(GI , DI , FusionI , V) = EV∼pdata(V)[log DV(V)]

+EFusionI∼pdata(FusionV)[log(1− DV(GI(FusionI)))]
(6)

where LI_GAN(GI , DI , FusionI , V) is the adversarial loss in the infrared branch. FusionI ∼
pdata(FusionI) and V ∼ pdata(V) are distribution characters of the fusion model and visible
images. Generator GI generates images with the styles similar to the one of the visible
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images. Discriminator DV distinguishes GI(FusionI) and the true visible images V. The
total loss function of the infrared fusion images:

LI(I, GI) = LI_GAN(GI , DI , FusionI , I, V) (7)

3.3. Self-Attention Fusion Model

The self-attention fusion model contains a fusion module and a self-attention module.
The structure is visualized in Figure 3c. The fusion module fuses the visible features
from the visible branch and the infrared branch. The self-attention module contains a
channel attention mechanism and a spatial attention mechanism in order to enhance the
fusion features for vehicle detection. The fusion model in the self-attention fusion model is
calculated as follows:

FusionS = Fusion(GV(FusionV) + GI(FusionI)) (8)

where FusionS is the fusion model in the self-attention fusion model. Fusion is the fusion
module, GV(FusionV) is the reconstructed visible images, GI(FusionI) is the reconstructed
infrared images.

The channel attention model calculates the weight of each channel through the sigmoid
activation function by the mean or max value of the input channels, and then multiplied
with the input channels to enhance the channel features. The spatial attention model
calculates the weight of each point in the feature map though the sigmoid activation
function by the mean or max value of the input features, and then multiplied with the input
features to enhance the spatial features.

The channel attention formula is as follows:

Mc(F) = σ(FC(AvgPool(F)) + FC(MaxPool(F))) ∗ F (9)

where Mc(F) is the channel attention model, F is the input feature, FC is the fully connected
layers, AvgPool is the mean operation and MaxPool is the max operation.

The whole loss function of the self-attention fusion model is as follows:

FusionS = σ(MLP(AvgPool(F))
+MLP(MaxPool(F))) ∗ F

(10)

3.4. Detection Model

RetinaNet is adopted as the detection model for vehicle detection. Focal loss is
employed to tackle the imbalance of the positive and negative sampling. The detection
model weight is refreshed in the training process. The whole loss in the detection model is
as follows:

p = Detection(FusionS) (11)

L_detection(g, p) = L_regression(g, p) + FL(pt) (12)

where L_detection(g, p) is the whole loss in the detection model, L(g, p) is the L1 loss
function, detection is the detection model, g is the ground-truth annotations, p is the
predicted boxes. FL(pt) is the focal loss, pt is the modified classification results.

3.5. Total Loss Function

The total loss function in the GF-detection model is as follows:

LGF_detection(V, I, G) = LV_GAN(GV , DV , FusionV , I)
+LI_GAN(GI , DI , FusionI , V)
+Ldetection(g, p)

(13)
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4. Experiment and Discussion

Though variety datasets of paired visible and infrared images are released, there is still
a lack of the vehicle datasets with paired visible and infrared images at nighttime. Drone
RGBT Crowd counting is an open paired visible and infrared dataset at nighttime for crowd
counting. It is collected with Drone. In this paper, we propose a vehicle datasets named
RGBT-Vehicle containing paired visible and infrared images by choosing and labeling the
vehicle images from Drone RGBT Crowd counting datasets. A total of 825 paired images
with visible and infrared images are utilized for vehicle detection. The visible and infrared
images are registered and share the same image size. Pixel to pixel mapping has been
conducted in the visible and infrared images before the fusion.

Lighting conditions vary in different vehicle scenes. The contour and color information
of vehicles are affected by low illumination conditions, especially the black vehicles hidden
in the dark. The size of vehicles varies from 20 × 30 to 100 × 50 pixels. Much interference,
such as woods, buildings and stones, share the same characters with the vehicles which
hinders vehicle detection. Vehicles contain cars, trucks and buses, etc. The number of
different vehicle categories varies greatly, among which cars are the largest. All vehicles
are treated as the same category and no more classification works are performed due to the
imbalance of various vehicle targets.

A server with 2080Ti GPU is used in our experiments. The learning rate of the detection
model is 0.001, which is reduced to 0.1 times per 10 epochs. The learning rate of the GAN
is 0.001, which is reduced to 0.1 times per 10 epochs. The batch sizes of detection model
and GAN are 4. The images fed into the GAN and detection model are 512 × 512 pixels.
As a single vehicle category, the detection performance is evaluated by the Precision and
Recall curve (PR curve). The PR Curve evaluates the detection results in a range of IoU
thresholds. Furthermore, we set the IoU threshold as 0.5 to obtain the precision and recall
in order to achieve a quantitative result.

4.1. Experiments on RGBT-Vehicle

Six detection models, RetinaNet trained on the visible images (visible), RetinaNet trained
on the infrared images (infrared), the fusion model based on features (Fusion), the fusion
model with BGR channels (BGR), distangle with detection task oriented (Distangle-oriented)
and GF-detection models are tested. Figure 4 illustrates the structure of the comparisons.

RetinaNet trained on the visible images (Figure 4a) is tested on the visible images.
RetinaNet trained on the infrared images (Figure 4b) is tested on the infrared images.
The fusion model based on features (Figure 4c) refers to the models which fuse features
from the visible branch and infrared branch and fed into the detection model. The fusion
model with BGR channels (Figure 4e) refers to the fusion model dividing the visible branch
into blue, green and red branch and fusing four branches. The distangle with detection
task-oriented (Figure 4d) refers to the fusion model with GAN dividing the reconstructed
images with mutual features and identical features. Only complementary features are fed
into the fusion model. The detection model weight is refreshed during the training to adapt
to the reconstructed images.
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Figure 4. The structures of six comparisons.

Figure 5 shows the PR-Curve of six fusion models. Figure 5 visualizes that our
GF-detection model achieves the best detection performance. Compared with single
images with visible or infrared models, fusion models with two source images achieve an
improvement in the vehicle detection.

Figure 5. PR-Curve of six fusion models.

Table 2 lists the precision and recall scores with IoU set as 0.5 of six fusion models. It
demonstrates that our fusion model achieves the best detection performance in the IoU
set as 0.5. Fusion models achieve an improvement compared with the models of single
branch. Distangle-oriented and GF-detection achieve an competitive result with GAN,
and it proves that GAN could be introduced into the fusion work. Fusion with detection
results prove that the detection features are valuable for fusion work.
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Table 2. Comparison results of six fusion models with IoU set as 0.5.

Fusion Model Precision Recall F1

visible 71.0 81.0 75.6
infrared 60.2 72.4 65.8
fusion 81.3 92.6 86.5
BGR 81.0 90.4 85.4

distangle-oriented 82.9 92.3 87.3
GF-detection(ours) 86.7 94.4 90.3

Figures 6 and 7 visualize the detection results of six models on the visible and infrared
images. These images illustrate that the GF-detection model preserves the most detection
boxes with the least missing alarms and false alarms are also the least at nighttime. Detec-
tion models based on the single branch suffer a great number of missing alarms and false
alarms. The fusion models of visible and infrared images can distinguish the vehicle targets
and the interference of the background in weak or strong light conditions and receive an
improvement in vehicle detection.

Figure 6. Samples of six fusion models in the visible images. From left to right are visible, infrared,
fusion, BGR, Distangle-oriented and GF-detection. Red box denotes the ground-truth annotations,
green is the predicted box.
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Figure 7. Samples of six fusion models in the infrared images. From left to right are visible, infrared,
fusion, BGR, Distangle-oriented and GF-detection. Red box denotes the ground-truth annotation,
green is the predicted box.

4.2. Ablation Study

GF-detection introduces GAN, detection features and self-attention fusion models
to improve the fusion performance of the visible and infrared images at nighttime. Four
models designed as fusions with detection features (visible and infrared branches are
fused in the fusion model directly), fusion with GAN (visible GAN branch and infrared
GAN branch are fused in the fusion model, the detection model weight is refreshed
during the training to adapt to the reconstructed images), fusion with GAN and detection
features (visible GAN branch with detection features and infrared GAN branch with
detection features in the fusion model) and fusion with GAN, detection features and self-
attention (visible GAN branch with detection features and infrared GAN branch with
detection features in the self-attention fusion model) namely GF-detection. The PR-Curve
is visualized in Figure 8 and the precision-recall scores at IoU 0.5 are listed in Table 2.

Table 2 illustrates that three models we design to fuse visible and infrared images
for vehicle detection at nighttime are effective and necessary. Furthermore, three models
work together to achieve the best fusion performance. Those loss functions, such as the
adversarial loss and detection feature enhanced detection loss, play a positive effect on the
fusion performance.

In particular, compared with fusion based on features, fusion models with GAN
achieve a better detection performance, which demonstrates the value of the image recon-
struction in the fusion work. Two-layer fusion mechanism enables GF-detection fusing the
visible and infrared branch effectively.

Compared with fusion GAN, the fusion model with GAN and detection features
receives a high score in the precision, recall and F1. It demonstrates the value of the
detection features to the adversarial networks. The self-attention fusion models share
similar values.
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Figure 8. PR-Curve of four fusion models.

4.3. Images Reconstructed by GAN

GAN is employed in the fusion of the visible and infrared images. Different super-
visions lead to different styles of the reconstructed images learned. In this section, three
GAN models with various loss supervision are evaluated for the vehicle detection, namely
GAN, detection task oriented GAN and GAN with detection features enhanced. GAN
refers to the fusion model with GAN. Detection task-oriented GAN refers to the fusion
model with GAN and a detection model based on the reconstructed images. The detection
model weight is refreshed to adapted to the reconstructed images. Detection task oriented
GAN. GAN with detection features enhanced refers to the GAN with detection features
extracted from the trained detection model. Figures 9 and 10 visualize some samples of the
four GAN models and Table 3 lists the detection results of those models.

Table 3. Comparison results of four fusion models with IoU set as 0.5.

Fusion Model Precision Recall F1

fusion with detection
features 84.6 92.3 86.5

fusion with GAN 85.1 94.0 89.3
fusion with GAN and

detection features 86.0 94.4 90.0

GF-detection (ours) 86.7 94.4 90.3

Figures 9 and 10 illustrate that the reconstructed images by GAN are blurred and lack
details. More noises are introduced. The color of those images is wired and unrealistic.
Images reconstructed by GAN with detection task-oriented own more salient targets,
but still suffer unrealistic colors. Images reconstructed by GAN with detection features
enhanced is colorful and has many details of the vehicle. The style of those images is the
closest to the real scenes and least noise is mixed with the reconstructed images.

GF-detection introduces the two layer fusion with two layer detection task supervisions
and preserves the most details in the reconstructed images. Detection task-oriented GAN
introduces the single detection branch after the fusion model and preserves fewer details.
GAN generates images without extra detection task supervision and keeps the least details.
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Figure 9. Samples of the four GAN models. From left to right are the visible images, images
generated by GAN, images generated by detection task oriented GAN and GAN with detection
features enhanced in our models.

Figure 10. Samples of the four GAN models. From left to right are the infrared images, images
generated by GAN, images generated by detection task oriented GAN and images generated by
GAN with detection features enhanced.

5. Conclusions

In this study, we design a fusion network of infrared and visible images based on Gen-
erative Adversarial Networks for nighttime vehicle detection in the remote sensing scenes.
We introduce the Generative Adversarial Networks (GAN) into the fusion task. With the
reconstructed images by GAN, the infrared and visible images are fused. Furthermore,



Remote Sens. 2022, 14, 2771 16 of 17

we introduce detection features into the image reconstruction to enhance the detection
features for vehicle detection. A self-attention fusion model is designed to fulfill another
fusion. Extensive experiments based on paired infrared and visible images demonstrate the
effectiveness of our model in the fusion work of visible and infrared images for nighttime
vehicle detection.
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