
GFAKluge: A C++ library and command line utilities for
the Graphical Fragment Assembly formats
Eric T. Dawson1, 2, 3 and Richard Durbin2, 3

1 Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA 2
Department of Genetics, University of Cambridge, Cambridge, UK 3 Wellcome Sanger Institute,
Hinxton, UK

DOI: 10.21105/joss.01083

Software
• Review
• Repository
• Archive

Submitted: 24 September 2018
Published: 22 January 2019

License
Authors of papers retain copy-
right and release the work un-
der a Creative Commons Attri-
bution 4.0 International License
(CC-BY).

Summary

GFAKluge is a set of command line utilities and a C++ library for parsing and manip-
ulating the Graphical Fragment Assembly (GFA) format. Genome assembly algorithms
often use graph structures to represent relationships between reads during the assembly
process. Such information is typically thrown away when assemblies are converted to
FASTA files of contig sequences. Previous attempts to convey graph information did not
gain widespread acceptance because there were no standard representations that were
easily parsed and extensively used. The Graphical Fragment Assembly (GFA) format
was proposed as a way to encode the graph structure of an assembly in a human-readable
text format (Li, 2014). GFA aims to provide a single format for interchange between
software for assembly, scaffolding, assessment and visualization. Such programs are of-
ten written in high-performance programming languages such as C or C++. GFAKluge
facilitates interprogram exchange by providing a high-level C++ API for developers and
a set of command line tools for users. We hope the availability of an open-source, easily
extensible API will encourage software developers to consider adding support for GFA to
their bioinformatics programs.
Homepage: https://github.com/edawson/gfakluge License: MIT

Command Line Utilities

GFAKluge also provides a command line interface for working with GFA. This includes
support for common tasks on assemblies such as calculating assembly N50 or graph statis-
tics. There are also methods for merging assemblies, reformating files for readability, and
converting between the GFA 1.0 and GFA 2.0 specifications. A tool for constructing basic
variation graphs from a FASTA file and a VCF file is also included. Many other tools
exist for manipulating the GFA formats (Myers, Jackman, Gonnella, Chin, & Durbin,
2015), though only RGFA (Gonnella & Kurtz, 2016), GfaPy (Gonnella & Kurtz, 2017)
and ABySS2.0 (S. D. Jackman et al., 2017) are known to produce and consume both
versions. By allowing interconversion between the compatible subsets of the formats,
the gfak convert tool allows programs that usually can’t communicate to share data
without changes to their code. We have used GFAKluge to convert GFA from TwoPaCo
(Minkin, Pham, & Medvedev, 2016) for visualization in Bandage (Wick, Schultz, Zobel,
& Holt, 2015), to calculate assembly statistics from the Falcon assembler (C.-S. Chin et
al., 2016), and to extract FASTA from a vg msga assembly (Garrison et al., 2018).

Dawson et al., (2019). GFAKluge: A C++ library and command line utilities for the Graphical Fragment Assembly formats. Journal of Open
Source Software, 4(33), 1083. https://doi.org/10.21105/joss.01083

1

https://doi.org/10.21105/joss.01083
https://github.com/openjournals/joss-reviews/issues/1083
https://github.com/edawson/gfakluge
https://doi.org/10.5281/zenodo.2546721
http://creativecommons.org/licenses/by/4.0/
https://github.com/edawson/gfakluge
https://doi.org/10.21105/joss.01083

Convert GFA 2.0 from TwoPaCo to GFA 1.0 for ingestion by Bandage.
gfak convert -S 1.0 data/gfa_2.gfa

Calculate assembly statistics
gfak stats -a data/gfa_2.gfa

Extract FASTA entries from a GFA file
gfak extract data/gfa_2.gfa

The full list of gfak commands follows:

convert: Convert between GFA 0.1 <-> 1.0 <-> 2.0
diff: Determine whether two GFA files have identical graphs
extract: Convert the S lines of a GFA file to FASTA format.
fillseq: Add sequences from a FASTA file to S lines.
ids: Coordinate the ID spaces of multiple GFA graphs.
concat: Merge GFA graphs (without ID collisions).
sort: Print a GFA file in HSLP / HSEFGUO order.
stats: Get assembly statistics (e.g. N50) for a GFA file.
subset: Extract the subgraph between two IDs in a graph.
trim: Remove elements from a GFA graph.

Examples of most commands are included in the examples.md file.

Integrating GFAKluge into an existing program

As an example of how to use the GFAKluge API, we briefly summarize its use in the
variation graph toolkit vg (Garrison et al., 2018). vg creates bidirected sequence graphs
from assemblies and population variation that can then be used for read mapping and
variant calling. We incorporated GFAKluge into vg to support input and output of GFA.
Reading in a GFA file requires one line of code and is agnostic to the GFA version used.
Converting from GFA to vg’s internal structures and vice versa requires approximately
forty lines of code. Changing output from GFA v1.0 to GFA v2.0 requires a single API
call. This allows vg to take assemblies in GFA format from TwoPaCo and many other
assembly algorithms. The gfak command line tools can be used to calculate assembly
graph statistics on graphs produced by vg. A full description of the developer API is
available in the interface.md file.
Chin, C.-S., Peluso, P., Sedlazeck, F. J., Nattestad, M., Concepcion, G. T., Clum, A.,
Dunn, C., et al. (2016). Phased diploid genome assembly with single-molecule real-time
sequencing. Nature Methods, 13, 100–1054. doi:doi:10.1038/nmeth.4035
Garrison, E., Sirén, J., Novak, A. M., Hickey, G., Eizinga, J. M., Dawson, E. T., Jones,
W., et al. (2018). Variation graph toolkit improves read mapping by representing genetic
variation in the reference. Nature Biotechnology, 36, 875–879. doi:doi:10.1038/nbt.4227
Gonnella, G., & Kurtz, S. (2016). RGFA: Powerful and convenient handling of assembly
graphs. PeerJ, 4. doi:doi:10.7717/peerj.2681
Gonnella, G., & Kurtz, S. (2017). GfaPy: A flexible and extensible software library for
handling sequence graphs in python. Bioinformatics, 33, 3094–3095. doi:doi:10.1093/
bioinformatics/btx398
Jackman, S. D., Varndervalk, B. P., Mohamadi, H., Chu, J., Yeo, S., Hammond, S. A.,
Jahesh, G., et al. (2017). ABySS 2.0: Resource-efficient assembly of large genomes using
a bloom filter. Genome Research, 27, 768–777. doi:doi:10.1101/gr.214346.116

Dawson et al., (2019). GFAKluge: A C++ library and command line utilities for the Graphical Fragment Assembly formats. Journal of Open
Source Software, 4(33), 1083. https://doi.org/10.21105/joss.01083

2

https://github.com/edawson/gfakluge/blob/master/examples.md
https://github.com/vgteam/vg
https://github.com/edawson/gfakluge/blob/master/interface.md
https://doi.org/doi:10.1038/nmeth.4035
https://doi.org/doi:10.1038/nbt.4227
https://doi.org/doi:10.7717/peerj.2681
https://doi.org/doi:10.1093/bioinformatics/btx398
https://doi.org/doi:10.1093/bioinformatics/btx398
https://doi.org/doi:10.1101/gr.214346.116
https://doi.org/10.21105/joss.01083

Li, H. (2014). A proposal of the grapical fragment assembly format. Retrieved from
http://lh3.github.io/2014/07/19/a-proposal-of-the-grapical-fragment-assembly-format

Minkin, I., Pham, S., & Medvedev, P. (2016). TwoPaCo: An efficient algorithm to build
the compacted de bruijn graph from many complete genomes. Bioinformatics, 33, 4024–
4032. doi:doi:10.1093/bioinformatics/btw609

Myers, G., Jackman, S., Gonnella, G., Chin, J., & Durbin, R. (2015). Graphical frag-
ment assembly (gfa) format specification. Retrieved from https://github.com/GFA-spec/
GFA-spec

Wick, R., Schultz, M., Zobel, J., & Holt, K. (2015). Bandage: Interactive visualisa-
tion of de novo genome assemblies. Bioinformatics, 31, 3350–3352. doi:doi:10.1093/
bioinformatics/btv383

Dawson et al., (2019). GFAKluge: A C++ library and command line utilities for the Graphical Fragment Assembly formats. Journal of Open
Source Software, 4(33), 1083. https://doi.org/10.21105/joss.01083

3

http://lh3.github.io/2014/07/19/a-proposal-of-the-grapical-fragment-assembly-format
https://doi.org/doi:10.1093/bioinformatics/btw609
https://github.com/GFA-spec/GFA-spec
https://github.com/GFA-spec/GFA-spec
https://doi.org/doi:10.1093/bioinformatics/btv383
https://doi.org/doi:10.1093/bioinformatics/btv383
https://doi.org/10.21105/joss.01083

	Summary
	Command Line Utilities
	Integrating GFAKluge into an existing program

