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ABSTRACT

Background Surrogate end points are needed to assess whether treatments are effective in the early

stages of CKD. GFR decline leads to kidney failure, but regulators have not approved using differences in

the change in GFR from the beginning to the end of a randomized, controlled trial as an end point in CKD

because it is not clear whether small changes in the GFR slope will translate to clinical benefits.

Methods To assess the use of GFR slope as a surrogate end point for CKD progression, we performed

ameta-analysis of 47 RCTs that tested 12 interventions in 60,620 subjects.We estimated treatment effects

on GFR slope (mean difference in GFR slope between the randomized groups), for the total slope starting

at baseline, chronic slope starting at 3 months after randomization, and on the clinical end point (doubling

of serum creatinine, GFR,15 ml/min per 1.73 m2, or ESKD) for each study. We used Bayesian mixed-

effects analyses to describe the association of treatment effects on GFR slope with the clinical end point

and to test how well the GFR slope predicts a treatment’s effect on the clinical end point.

Results Across all studies, the treatment effect on 3-year total GFR slope (median R250.97; 95% Bayesian

credible interval [BCI], 0.78 to 1.00) and on the chronic slope (R2 0.96; 95% BCI, 0.63 to 1.00) accurately

predicted treatment effects on the clinical end point. With a sufficient sample size, a treatment effect of

0.75ml/min per 1.73m2/yr or greater on total slope over 3 years or chronic slope predicts a clinical benefit

on CKD progress with at least 96% probability.

ConclusionsWith large enough sample sizes, GFR slopemay be a viable surrogate for clinical end points in

CKD RCTs.

JASN 30: 1735–1745, 2019. doi: https://doi.org/10.1681/ASN.2019010007

CKD is common and harmful, causing kidney failure

in its late stages, but with few therapies.1 One of the

challenges in development and evaluation of thera-

pies for CKD is that randomized, controlled trials

(RCTs) to assess efficacy and safety of novel therapies

traditionally use kidney failure and doubling of se-

rum creatinine as clinical end points,2 which are late

events in the progression of CKD. In order to obtain

sufficient end points, RCTs in CKD often require

substantial follow-up periods or are restricted to pa-

tients with rapidly progressive or late-stage disease,

yet some interventionsmayhave a greater effectwhen

applied earlier versus later in the disease course.3 Al-

ternative endpoints are thus needed to performRCTs

more efficiently, especially in earlier stages of CKD.
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Decline in GFR is on the causal pathway to kidney failure,

providing strong biologic plausibility for GFR decline as a sur-

rogate end point for CKD progression in RCTs. There are also

strong epidemiologic associations of both GFR level and GFR

decline with subsequent kidney failure.4–9 However, concerns

that relatively small treatment effects on average GFR slope

may not translate to treatment effects on clinical end points

have complicated regulatory approval of GFR slope as an end

point for clinical trials of CKD. Validation of surrogate end

points also requires evidence on the basis of randomized com-

parisons from RCTs that treatment effects on the surrogate end

point predict treatment effects on the clinical end point. On the

basis of these sorts of analyses, we previously demonstrated that

30% or 40% declines in GFR are valid surrogate end points for

CKD progression, but these end points are not appropriate for

all populations or interventions, or at early stages of disease. End

points on the basis of themeanGFR slope could overcome some

of these limitations. However, relatively small differences in

mean GFR are generally feasible in follow-up periods for most

therapies. Concerns that these seemingly small effects on mean

GFR level may not translate to effects on clinical end points have

contributed to the reluctance to useGFR slope as an end point in

CKD clinical trials. Moreover, patterns of change in GFR after

intervention are often nonlinear, with possibly differing direc-

tion and rates of changes in early follow-up (herein called acute

slope) and longer-term follow-up (herein called chronic slope).

The total decline from beginning to the end of the study incor-

porates both elements (herein called total slope). The frequent

occurrence and uncertain implications of acute effects for CKD

therapies have also limited the use of GFR slope. Hence, empir-

ical validation of the total and chronic GFR slopes as surrogate

end points is necessary before these end points can play a sig-

nificant role in trials of kidney disease progression.

In March of 2018, the National Kidney Foundation (NKF),

Food and Drug Administration (FDA), and European Medi-

cines Agency (EMA) cosponsored a scientific workshop,

“Change in Albuminuria and GFR as End Points for Clinical

Trials in Early Stages of CKD,” to evaluate surrogate end points

for trials of kidney disease progression and to improve under-

standing of changes in albuminuria and GFR as measures of

kidney disease progression in early stages of CKD. For this

workshop, we performed an individual patient meta-analysis

of 47 RCTs accounting for a total of 60,620 subjects across 12

interventions to provide a comprehensive assessment of total

or chronic GFR slope as a surrogate end point for trials of CKD

progression. We used Bayesian analyses to examine the agree-

ment between treatment effects on GFR slope and treatment

effects on the clinical end point and to inform the use of GFR

slope as a surrogate end point in future RCTs.

METHODS

A more detailed description of the methods is available in the

Supplemental Materials.

Datasets and Analytic Groups

For our prior work investigating surrogate end points, we

developed a pooled database of RCTs using a systematic

search (see Supplemental Table 1 for search terms and Sup-

plemental Table 2 for complete list of inclusion criteria).10 In

December of 2016, we updated this search and identified

additional RCTs and requested individual patient data. After

eliminating studies that did not have sufficient data, we had a

total of 49 RCTs. Risks of bias for each study were assessed

using the risk-of-bias tool of the Cochrane collaboration11

(Supplemental Figure 1). For RCTs that evaluated more than

one intervention, we included a separate randomized treat-

ment comparison for each independent treatment versus con-

trol comparison reported, such that some participants were

included in more than one analytic unit.12–16 We then pooled

small RCTs that had ,100 participants if the disease and in-

tervention were the same and thus had 49 randomized treat-

ment comparisons as the main unit of analysis (herein called

studies) (Supplemental Figure 2, Supplemental Table 3).17–29

Tufts Medical Center Institutional Review Board approved this

study.

Clinical End Points

The clinical end point was defined as a composite of any of the

following events over the full study duration: ESKD (initiation

of chronic treatment with dialysis or kidney transplantation),

GFR,15 ml/min per 1.73 m2, or sustained doubling of serum

creatinine. Of the 49 studies, 47 had sufficient end points for

estimation of treatment effects on the clinical end point and

were used for the primary analysis.

GFR

GFR was estimated using the Chronic Kidney Disease

Epidemiology Collaboration 2009 creatinine equation.30

Creatinine was standardized to isotope dilution mass spec-

troscopy traceable reference methods using direct compar-

ison or was reduced by 5% as has previously been described

(Supplemental Table 4).31

Significance Statement

Surrogate end points are needed to assess whether treatments are
effective in the earlier stages of CKD. Measuring the effects of
treatments on GFR decline, which leads to kidney failure, might be
one way to identify early benefits of CKD treatments. So far reg-
ulators have not approved the use of GFR slope, the difference in
the change in GFR between treatment groups over time, as an end
point in CKD randomized, controlled trials because they are con-
cerned that small treatment effects on GFR may not translate into
meaningful clinical benefits. Using a Bayesian individual patient
meta-analysis of 47 studies including 60,620 participants, the au-
thors found, that for sufficiently large studies, treatment effects on
GFRslopefrombaselineandfrom3-monthfollow-upof0.5–1.0ml/min
per 1.73 m2/yr strongly predict benefits on clinical end points such as
doubling of serum creatinine, GFR,15 ml/min per 1.73 m2, or ESKD.
GFR slope can play a useful role as a surrogate end point for CKD
progression in clinical trials.
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Statistical Analyses

Objectives
Our first goal was to evaluate the validity of the chronic and

total slopes as surrogate end points by assessing the association

between treatment effects on eachGFR slope end point and the

treatment effects on the clinical end point across studies. Our

second goal was to use these results to estimate the probability

of clinical benefit associated with treatment effects on GFR

slope for application to future studies.

Analyses of the Total and Chronic GFR Slopes (Surrogate

End Points)
We used a simplified linear mixed-effects model on the basis

of a single slope starting at 3 months postrandomization ad-

justed for baseline GFR. The Supplemental Material describes

in detail how the model accounted for various sources of var-

iation in GFR slopes between and within subjects and treat-

ment arms. Under this model, the differences between the

randomized groups in the mean intercepts at 3-month fol-

low-up; the mean slopes after 3 months; and the estimated

mean changes from baseline to either 1-, 2-, 3-, or 4-year

follow-up factored by the follow-up duration represented

the treatment effects on the acute, chronic, and total slopes.

Trial-Level Analysis
The trial-level analysis requires two steps: intent-to-treat esti-

mation of the treatment effects on the surrogate and clinical

end points within each RCTand ameta-regression to relate the

treatment effects on the surrogate and clinical endpoints across

RCTs. In the first step, treatment effects on GFR slopes were

estimated using the shared parametric mixed-effects models

described above and were expressed as mean differences in the

GFR slopes between the treatment versus control groups, in

units of ml/min per 1.73 m2/yr. Treatment effects on the clin-

ical end point were estimated by performing separate Cox

proportional hazard regressions to estimate log hazard ratios

(HRs) for the treatment in each trial. Summary estimates of

treatment effects were obtained by use of random-effects

models. In the second step, a Bayesian mixed-effects meta-

regression related the estimated treatment effects on the clin-

ical end point to the estimated treatment effects on GFR slope

with study as the unit of analysis (details in the Supplemental

Material). The model relates the treatment effects on the two

end points after accounting for random errors in the estimated

effects in each RCT. The meta-regression supports validity of

GFR slope as a surrogate end point if (1) the slope of the meta-

regression line is statistically significant as defined by 95%

Bayesian credible intervals (95% BCIs) that do not cross 0,

with a large magnitude; (2) the intercept is close to 0, implying

absence of an average effect on the clinical end point when the

treatment does not affect GFR slope; (3) the R2 is high, so that

treatment effects on GFR slope account for most of the vari-

ation in treatment effects on the clinical end point; and (4) the

root mean square error (RMSE) is low, assuring low variation

in the clinical end point given a fixed treatment effect on GFR

slope. We used the designations of low, moderate, and strong

trial-level association as defined by R2
,0.49, 0.49–0.71,

and $0.72, respectively.32

Positive Predictive Value
We used positive predictive values (PPVs) to describe the un-

certainty in predicting the treatment effect on the clinical end

point from the treatment effect on the GFR slope. From the

trial-level meta-regression, we computed 95% Bayesian pre-

diction intervals and estimated the probabilities of clinical

benefit (defined as HR,1) for an infinite, large, or modest-

sized RCT. A large RCTwas defined as one in which the treat-

ment effect on GFR slope can be estimated to within an SEM

of 0.25, corresponding to a total sample size (N) of about 1900

for RCTs whose average follow-up accorded with the RCTs in

the analysis. A modest RCTwas defined as having an SEM of

0.4 (N roughly 720). We computed the threshold associated

with the smallest observed treatment effect on either the

chronic or total slope that would assure a high probability

of benefit of the treatment on the clinical end point, which

we defined as the treatment effect on the GFR slope end point

providing a PPVof 97.5%.

Subgroup and Sensitivity Analyses
We performed the trial-level analysis for the primary analytic

dataset overall and by subgroups defined by average study level

of baseline albumin-to-creatinine ratio (, or $30 mg/g;

or, or$3.4 mg/mmol), GFR (, or$60 ml/min per 1.73 m2),

cause (diabetes and diabetic kidney disease, glomerular dis-

eases, or other causes of CKD), and intervention. Because of

differences in the ranges of treatment effects, accuracy in pre-

dicting the treatment effect on the clinical end point is best

compared between subgroups using the RMSE.

Analyses were performed using SAS version 9.4 (SAS

Institute, Cary, NC) and R 3.16.1 (R Project for Statistical

Computing, www.r-project.org).33

RESULTS

Table 1 summarizes aggregate characteristics of the included

studies stratified by disease. The study characteristics of each

individual study are reported in Supplemental Tables 5 and 6.

Average baseline mean (SD) GFR and median (25th, 75th

percentiles) albumin-to-creatinine ratio were 61.7 (26) ml/min

per 1.73 m2 and 60 mg/g (13, 554) in the pooled dataset,

respectively.

For most studies, the mean total slope at 1, 2, 3, and 4 years

and chronic slopewere slightly attenuated in the treatment arm

compared with the control arm (Supplemental Table 7). For

example, the pooled mean total slope at 3 years was 23.49

(95% confidence intervals24.04,22.93) ml/min per 1.73 m2/yr

in the control armand22.94 (23.45,22.43)ml/minper 1.73m2/yr

in the treatment arm. The mean treatment effect on the total slope

at 3 years (0.45 [0.19, 0.72] ml/min per 1.73 m2/yr) was similar
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to thatof thechronic slope (0.53 [0.32, 0.74])ml/minper1.73m2/yr)

with apparent variation by intervention (Figure 1, Supplemental

Figure 3, A–E, Supplemental Table 8).

A total of 7115 patients reached the composite clinical end

point across the 47 studies (Supplemental Table 9). Across all

interventions, the active treatment led to a reduction in risk

for the clinical end point (HR, 0.76; 95% confidence interval,

0.69 to 0.84), with similar results across subgroups (Figure 1,

right panel; Supplemental Figure 4).

There was strong agreement between the treatment effects on

thetotal slopeat3yearsandthoseof theclinicalendpoint(Figure2,

Supplemental Table 10). The slope of themeta-regression linewas

20.42 (95% BCI, 20.55 to 20.30 per ml/min per 1.73 m2/yr),

which indicates that each 0.75 ml/min per 1.73 m2/yr greater

treatment effect on the total GFR slope was associated with an

average 27% lower hazard for the clinical end point (95% BCI,

20% to 34%). The intercept of the regression line was 20.05

(95% BCI, 20.14 to 0.02), indicating that when the treatment

had no effect on the total GFR slope at 3 years, there was a low

probability of having a substantial treatment effect on the clinical

end point. The median estimate for R2 was 0.97 (95% BCI,

0.78 to 1.00), with Bayesian probabilities of 0.1%, 0.9%, and

99% for the R2 values falling into low, moderate, or high ranges

for the strength of a surrogate end point. Similar results are

shown for the chronic slope (R2 0.96), with Bayesian probabilities

of 0.6%, 5%, and94% for theR2 values falling into low,moderate,

or high ranges for the strength of a surrogate end point.32 Results

were weaker when the total slope was computed over shorter

durations (Supplemental Figure 5, Supplemental Table 10).

No clear evidence of significant differences in RMSE was

found in comparisons of summary results obtained from sub-

groups stratified by GFR or cause of disease, but credible in-

tervals were wide for some groups (Supplemental Figure 6,

Supplemental Table 11, Table 2).

For application of GFR slope as a surrogate end point in

future RCTs, Table 3 shows the predicted HRs and 95% pre-

diction intervals for the treatment effects on the clinical end

point as well as the corresponding PPVs. For example, for

future large trials, the model predicts that a mean difference

between the treatment and control groups of 0.54 or 0.48ml/min

per 1.73 m2/yr in total GFR slope over either 2 or 3 years, respec-

tively, and 0.62ml/min per 1.73m2/yr for chronic slope, confers a

97.5% probability of a nonzero clinical benefit. For modest-sized

trials, a studywould be required tohave observed treatment effects

of 0.72 or 0.74 ml/min per 1.73 m2/yr mean difference in total

GFR slope over either 2 or 3 years, respectively, and 0.85 ml/min

per 1.73 m2/yr mean difference for chronic GFR slope, to confer

97.5% probability of clinical benefit. The predicted probabilities

for a clinical benefit for total slope over 1 year are lower.

DISCUSSION

There is strong biologic plausibility and epidemiologic sup-

port for GFR slope as a measure of kidney disease progression.T
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This report provides the addition of trial-level analyses to sup-

port GFR slope as a surrogate end point performed for a sci-

entific workshop cosponsored by theNKF, FDA, and EMA.We

found that with computation of GFR slope using a robust

method, treatment effects on both the total slope at 3 years

and the chronic slope have strong associations with the treat-

ment effect on clinical end points, with similar results across

key subgroups, including patients with higher baseline GFR,

with weaker associations observed for total slope of shorter

duration, especially at 1 year. We provide thresholds for min-

imum effects on change in GFR slope that provide high con-

fidence for significant treatment effects on the clinical end

point, providing guidance as to how to interpret treatment

effects on GFR slope in future RCTs. This, together with the

two companion papers, supports the validity and utility ofGFR

slope as a surrogate end point inRCTsofCKDprogression.34,35

The results provide strong general support for the validity of

both total slope over 3 years and chronic slope as surrogate end

points inCKDRCTs. The treatment effects on both the chronic

and total slopes over 3 years accounted for at least an estimated

96%of the variationbetween studies in treatment effects on the

clinical end point, with Bayesian probabilities of at least 90%

that the R2s exceed 0.72, a threshold suggested for a strong

surrogate end point.34 The strength of this trial-level associa-

tion compares favorably withwidely used surrogate end points

in other fields.36–38 Our analyses imply that, although an ef-

fective treatment may reduce mean GFR decline by what

might appear to be a small magnitude over the typical dura-

tion of RCTs, treatment effects in the range of 0.5–1.00ml/min

per 1.73 m2/yr can have high predictive values of .98% for

benefit on the clinical end point. The companion meta-anal-

ysis of observational studies that examined the association

between GFR slope and subsequent ESKD incidence in more

than 1 million individuals demonstrated results consistent

with our results.34

The frequently encountered presence of acute effects in

therapies for CKD progression has limited the use of GFR

slope, and, when used, there are often questions as to how

GFR slope should be computed—should we use the total

slope, which incorporates both the acute and chronic periods,
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Figure 1. Treatment effect on total slope at 3 years, chronic slope, and on the clinical end point. Shown are treatment effects on total
slope at 3 years (left), on chronic slope (middle), and treatment effects on clinical end point (right). Treatment effects on GFR slope are
expressed as mean difference in treatment minus control and are expressed in ml/min per 1.73 m2/yr. The clinical end point is defined
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or just the chronic slope?14 As we demonstrated, use of total

slope with a follow-up time over 3 years or more limits the

effect of the acute effect, but long trials are often challenging to

accomplish. A greater effect of varying acute effects likely ex-

plains the deterioration in the trial-level association when the

total slope is computed over shorter time intervals. The effect

of the acute effect may also be reduced by using the chronic

slope as the primary end point, and our results are in support.

There has been reluctance to use the chronic slope as a primary

outcome because it is defined by change in GFR from a post-

baseline time point at which the GFR has already been mod-

ified by the treatment, incurring risk of bias due to attenuation

of the acute effect or early discontinuation of the study med-

ication.36 Future work should guide us on how to minimize

bias with the use of chronic slope, such as innovative designs

employing off-treatment GFR measurements and application

of different prerandomization baseline measurements for the

treatment and control arms after introduction of the treat-

ment in a run-in phase, as seen in the recent studies evaluating

tolvaptan in polycystic kidney disease.37

There are several implications of these results. First, in phase

3 studies, GFR slope could be considered as a candidate pri-

mary end point. However, as shown in the simulations com-

panion paper, total or chronicGFR slope confers the advantage

of statistical power only under select circumstances.35 For ex-

ample, the advantage of total slope over time to event time

points is clearly demonstrated when there is no acute effect.

The effect of an acute effect on the performance of the total

slope is greater when the acute effect is large, the time interval

for calculating total slope is short, or the control group pro-

gression rate is slow. Hence, the time interval required for

good performance of the total slope in specific RCTs is likely

to depend on each of these factors. The simulations also show

that chronic slope has substantially greater power than the

clinical end point when the acute effect is negative, but there

is a risk of false conclusions for benefit. Thus, sponsors or

investigators who consider GFR slope as an end point should

do so after consideration of the entire set of design parameters.

Second, trials that utilize clinical end points will be most sen-

sitive to fast progressors. GFR slope can be used to demon-

strate whether there is similar or different benefit among slow

progressors. GFR slope can be used to explore heterogeneous

effects among subgroups for trials that are powered for the

clinical end point. Similarly, GFR slope might be an appropri-

ate end point for confirmatory studies in a subsequent study

after initial RCT showed benefit on the clinical end point but

there is interest in demonstrating benefit of a drug in a pop-

ulation or with a study design where the clinical end point is

not practical. Third, GFR slope is likely to have great value in

phase 2 studies, which are shorter and smaller than phase 3

studies and cannot be powered for benefit on the clinical end

point. Thus, overall, use of GFR slope can be considered
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a potential end point in the design and implementation of

multiple phases within a drug development pathways.

The main drawback to using GFR slope as an end point in a

pivotal trial is that it does not directly indicate themagnitude of

the treatment benefit on the clinical end point. Some clinicians

might question whether a small difference in mean GFR slope

between treatment arms is sufficient evidence to adopt the

intervention. Our results as well as those of our companion

paper linking changes in GFR slope over a 1-, 2-, or 3-year

period provide quantifiable data on the implications of such

differences in GFR slope for longer term outcome.34

Strengths of this study include a systematic literature search

to include all available studies, resulting in a large and diverse

collection of RCTs, and a rigorous evaluation using individual

patient data. Because we analyzed patient-level data, we were

able to characterize agreement between the GFR slope and

clinical end points after adjusting for spurious correlations

in sampling error that resulted from inclusion of the same

GFR measurements in the GFR slope and clinical end points.

Our application of a robust method for analysis of GFR slope

that accounted for informative censoring and multiple poten-

tial sources of variability in GFR measurements over time al-

lowed us to apply a uniform analysis of GFR slope across all

RCTs. Our use of a Bayesian meta-regression model with dif-

fuse prior distributions allowed us to rigorously account for

multiple sources of uncertainty and to translate treatment ef-

fects on the surrogate end points to probabilities of benefit on

the clinical end point.

There are several limitations. First, because ascertainment

of clinical end points was limited to the follow-up period of

each trial,wewere able to evaluate only the associationbetween

the treatment effects on the surrogate and clinical end points

during the RCTs, and could not determine whether treatment

effects on the surrogate end points predicted the longer term

effects of the treatment on future clinical end points. The first

companion paper evaluates epidemiologic associations over a

longer period of follow-up.34,38 Second, because we used the

same slope model for each RCT, somewhat different results

might be obtained if the model for slope were tailored to each

RCT, including trial-specific strategies for informative censor-

ing and designating the timing of the acute effect.39 Third,

because most included trials were not designed as short trials

we cannot be certain about the effect of lesser follow-up time

on the results, nor could we consider the effect of increased

measurement frequencies on such shorter trials. Fourth, our

results are dependent on the specific RCTs available to us.

Hence, application of these results to future trials with differ-

ent characteristics to those included here must be done with

caution, particularly in trials with larger magnitude of acute

effects, or lower rates of GFR decline. Fifth, our analyses do

not address the risk that slope-based analyses would lead to

false positive conclusions under the null hypothesis of no ef-

fect of the treatment on the clinical end point, nor do they

evaluate the specific conditions inwhich analyses of GFR slope

outcomes provide superior statistical power than analyses ofT
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Table 3. Application of GFR slope as surrogate end point in new RCT: predicted treatment effect on clinical end point and PPV

GFR Slope

Observed Treatment

Effect on Change

in GFR Slope

Infinite Sample Size in New RCT Large RCT Modest RCT

Median HR and

95% Prediction

Interval

PPV

Median HR and

95% Prediction

Interval

PPV

Median HR and

95% Prediction

Interval

PPV

Total slope over 4 yr 0.5 0.78 (0.69 to 0.87) 1.00 0.78 (0.59 to 1.01) 0.97 0.78 (0.52 to 1.15) 0.90

0.75 0.69 (0.61 to 0.78) 1.00 0.69 (0.52 to 0.89) 1.00 0.69 (0.46 to 1.02) 0.97

1.0 0.61 (0.53 to 0.7) 1.00 0.61 (0.46 to 0.8) 1.00 0.61 (0.4 to 0.91) 0.99

Threshold for treatment effect on

GFR slope to assure PPV$97.5%

0.20 0.52 0.79

Total slope over 3 yr 0.5 0.77 (0.64 to 0.90) 1.00 0.77 (0.59 to 0.99) 0.98 0.77 (0.53 to 1.11) 0.93

0.75 0.69 (0.58 to 0.81) 1.00 0.69 (0.52 to 0.89) 1.00 0.69 (0.47 to 1.00) 0.98

1.0 0.62 (0.52 to 0.74) 1.00 0.62 (0.47 to 0.80) 1.00 0.62 (0.42 to 0.90) 1.00

Threshold for treatment effect on

GFR slope to assure PPV$97.5%

0.24 0.48 0.74

Total slope over 2 yr 0.5 0.75 (0.56 to 0.98) 0.98 0.75 (0.54 to 1.01) 0.97 0.75 (0.51 to 1.07) 0.95

0.75 0.7 (0.52 to 0.91) 0.99 0.7 (0.5 to 0.94) 0.99 0.69 (0.47 to 0.99) 0.98

1.0 0.65 (0.48 to 0.85) 1.00 0.65 (0.46 to 0.87) 1.00 0.64 (0.43 to 0.92) 0.99

Threshold for treatment effect on

GFR slope to assure PPV $97.5%

0.42 0.54 0.72

Total slope over 1 yr 0.5 0.74 (0.49 to 1.1) 0.94 0.74 (0.49 to 1.11) 0.94 0.74 (0.48 to 1.11) 0.93

0.75 0.72 (0.47 to 1.06) 0.96 0.72 (0.47 to 1.07) 0.95 0.72 (0.47 to 1.07) 0.95

1.0 0.69 (0.46 to 1.03) 0.97 0.69 (0.45 to 1.04) 0.97 0.69 (0.45 to 1.04) 0.96

Threshold for treatment effect on

GFR slope to assure PPV$97.5%

1.26 1.32 1.31

Chronic slope 0.5 0.8 (0.66 to 0.95) 0.99 0.8 (0.6 to 1.05) 0.95 0.8 (0.54 to 1.17) 0.88

0.75 0.72 (0.59 to 0.86) 1.00 0.72 (0.54 to 0.94) 0.99 0.72 (0.48 to 1.05) 0.96

1.0 0.65 (0.53 to 0.78) 1.00 0.65 (0.48 to 0.85) 1.00 0.65 (0.42 to 0.94) 0.99

Threshold for treatment effect on

GFR slope to assure PPV$97.5%

0.37 0.62 0.85

Units of GFR areml/min per 1.73m2. Treatment effect onGFR slope is expressed asmean difference and in units ofml/min per 1.73m2/yr. Treatment effect on the clinical end point is expressed asHR. PPVs are defined as
the97.5%probabilities for clinical benefit, definedasHR,1 for an infinite, large, ormodest-sized RCT. A largeRCTwasdefined as one inwhich the treatment effect onGFR slope canbeestimated towithin an SEMof 0.25,
corresponding to a total sample size (N) of about 1900 for RCTs whose average follow-up accorded with the RCTs in the analysis. A modest RCT was defined as having SEM of 0.4 (N roughly 720).
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the clinical end point. Our companion paper uses simulations

to address the latter three questions.35

In summary, the results presented here, together with our

companion papers, suggest that total and chronic GFR slope

are strong surrogate end points andmay be used as end points

for RCTs of kidney disease progression in certain circum-

stances in both early and late CKD. Future work is required

to optimize the design of RCTs to deploy slope-based end

points to increase efficiency while preserving a sufficiently

low risk of false positive conclusions.
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