
ORIGINAL RESEARCH
published: 30 June 2020

doi: 10.3389/fphy.2020.00232

Frontiers in Physics | www.frontiersin.org 1 June 2020 | Volume 8 | Article 232

Edited by:

Xiaotian Wang,

Southwest University, China

Reviewed by:

Saadi Berri,

University Ferhat Abbas of

Setif, Algeria

Jabbar M. Khalaf Al-Zyadi,

University of Basrah, Iraq

Fethallah Dahmane,

Centre Universitaire El-Wancharissi

Tissemsilt, Algeria

*Correspondence:

Chuankun Zhang

chknzhang@163.com

Specialty section:

This article was submitted to

Computational Physics,

a section of the journal

Frontiers in Physics

Received: 26 April 2020

Accepted: 28 May 2020

Published: 30 June 2020

Citation:

Zhang C, Huang H, Wu C, Zhu Z,

He Z and Liu G (2020) GGA and GGA

Plus U Study of Half-Metallic

Quaternary Heusler Compound

CoCrScSn. Front. Phys. 8:232.

doi: 10.3389/fphy.2020.00232

GGA and GGA Plus U Study of
Half-Metallic Quaternary Heusler
Compound CoCrScSn
Chuankun Zhang*, Haiming Huang, Chengrui Wu, Zhanwu Zhu, Zedong He and

Guoying Liu

School of Science, Hubei University of Automotive Technology, Shiyan, China

The structural, mechanical, electronic, magnetic, and half-metallic properties of
quaternary Heusler compound CoCrScSn are studied using the GGA and GGA +

U method based on first-principles calculations. It is found that Type-I structure of
CoCrScSn compound is the most stable, and its ground state is ferromagnetic. At
the equilibrium lattice constant, the electronic structures obtained by GGA and GGA +

U methods indicate that CoCrScSn compound have typical half-metal character. The
results of elastic constants and half-metallic robustness show that the mechanical
stability and half-metallicity of CoCrScSn can be well-maintained in the range of 6.2–6.9
Å under GGA and 5.7–6.4 Å under GGA + U, respectively. When CoCrScSn compound
exhibits half-metallic properties, the total magnetic moment per molecular unit is 4.0
µB, which is in good agreement with the Slater-Pauling rule, and Cr atoms are the
main source of molecular magnetic moment. All the aforementioned results indicate that
quaternary Heusler compound CoCrScSn would be an ideal candidate in spintronics.
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INTRODUCTION

Spintronics, also known as magnetoelectronics, is a new discipline and technology that has
developed rapidly since the 1990s [1, 2]. The information transport of traditional electronic devices
mainly depends on the charge. Spintronics not only uses the charge transport, but also adds the
spin and magnetic moment of the electron. Compared with traditional semiconductor electronic
devices, spintronic devices havemany advantages such as non-volatile, low power consumption and
high integration. For spintronic materials, it is necessary to have higher electron polarizability and
in this case, half-metallic magnetic materials become the best choice for spintronic applications. In
the field of spintronics, half-metallic magnetic materials are widely used in spin diodes, spin valves,
spin filters, and other devices due to their special electronic structure [3–5]. The most important
feature of half-metallic magnetic materials is that the majority-spin (minority-spin) direction is
metal property, and the minority-spin (majority-spin) direction is semiconductor or insulator
property, leading to 100% spin polarization at the Fermi level [6, 7]. The unique electronic structure
of half-metallic magnetic materials has become a research hotspot recently [8–10].

Heusler alloy compounds have always been one of the most important members of half-metallic
magnetic materials. Since the first half-metallic magnetic material, ternary Heulser alloy NiMnSb
[11] was predicted, researchers have paid great attention to the this kinds of compounds [12–25].
The crystal of Heusler compounds is generally cubic structure with four atoms. The four atoms
occupy A(0,0,0), B(0.25,0.25,0.25), C(0.50, 0.50, 0.50), and D(0.75, 0.75, 0.75), respectively [26, 27].
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According to the different ways of occupying atoms, Heusler
compounds have derivedmany types of structures, including full-
Heusler, half-Heuler, inverse-Heusler, and quaternary-Heusler,
etc. There are many half-metallic magnetic materials in these
different Heusler configurations, and they are widely concerned
by researchers in experiments and theory [28–34].

In recent years, there are some reports about the CoCr-based
quaternary Heusler compounds. In 2012, Gokoglu [35] found
that quaternary Heusler compound NiCoCrGa displays a slightly
disturbed half-metallic behavior with high-spin polarization ratio
at Fermi level. In 2017, Xu et al. [36] found that the quaternary
Heusler (Y, La, Lu)CoCr/FeMn(Al, Ga) containing rare earth
elements has the characteristics of spin gapless semiconductors.
In 2019, Wu et al. [37] found that the Curie temperature of
CrCoScZ (Z = Si, Ge, Sn) based on mean field theory is higher
than that of room temperature. Huang et al. [38] found that the
bulk and surface states of CoCrScBi are half-metallic. In 2020,
Khan et al. [39] studied the structural stability, band structure,
density of states, magnetic and mechanical properties of CoCr-
based quaternary Heusler compounds CoCrYZ (Z = Si, Ge, Ga,
Al) and found all these materials possess half-metallic character.

Recent studies on quaternary Heusler compounds show
that the Coulomb interaction of 3d electrons in transition
metals has a significant effect on the electronic structure of
alloys. Gao et al. [40] reveal that the half-metallicity is lost
for both CoFeCrAl and CoFeCrGa but retentive for both
CoFeCrSi and CoFeCrGe when the Coulomb interactions are
considered. Paudel et al. [41] found the band gap width of
CoFeZrGe, CoFeZrSb, and CoFeZrSi compounds under GGA
+ U changed a lot compared with that under GGA. Although
CoCrScSn compound has been shown to have half-metallic
behavior in previous studies [37], there has been no report on
whether it has stable mechanical properties, nor on whether
the Coulomb interactions between transition metal atoms in
CoCrScSn affect its physical properties. Therefore, in order to
reveal the effect of the coulomb interaction on the electronic
structure of CoCrScSn, and also to understand its mechanical
stability, so that CoCrScSn can be applied in spintronics. In
this study, we perform a complete first-principles study of the
ground state, mechanical, electronic, magnetic, and half-metallic
properties of CoCrScSn compound based on the generalized
gradient approximation (GGA) [42] with strong-correlated
correction (GGA+ U).

CALCULATION METHODS

In this study, the GGA and GGA + U as implemented in
the Vienna ab-initio simulation package (VASP) package [43],
was used to calculate the physical and mechanical properties
of the CoCrScSn compound. The effective U(Ueff) values of
2.7 eV for Co, 2.0 eV for Cr, and 0.5 eV for Sc [44, 45] were
selected, respectively, as these values provides correct description
magnetic moment and electronic structure in the Heusler
compounds [46]. For the self-consistent calculation, the plane
wave cutoff energy was chosen to be 500 eV. A mesh of 9 × 9 ×
9Monkhorst-Pack k-point was used. The convergence tolerances

TABLE 1 | Equilibrium lattice equilibrium constants (Å) and atomic positions for
three different types of crystals.

Types a Co Cr Sc Sn

Type-I 6.3848 3/4, 3/4, 3/4 1/4, 1/4, 1/4 1/2, 1/2, 1/2 0, 0, 0

Type-II 6.4172 3/4, 3/4, 3/4 1/2, 1/2, 1/2 1/4, 1/4, 1/4 0, 0, 0

Type-III 6.4705 3/4, 3/4, 3/4 0, 0, 0 1/2, 1/2, 1/2 1/4, 1/4, 1/4

TABLE 2 | Total energies (eV) of CoCrScSn compound in NM, FM, and AFM
states.

Types NM FM AFM

Type-I −105.1269 −108.6031 −108.5538

Type-II −101.0947 −105.3795 −105.0217

Type-III −102.5495 −106.5999 −105.5016

were selected as the difference in total energy and the maximum
force within 1.0× 10−5 eV and 1.0× 10−2 eV/atom, respectively.

RESULTS AND DISCUSSIONS

Structural Properties
According to the results of earlier research, quaternary Heusler
compounds usually have three different structures depending on
the positions occupied by the atoms. The three structures are
defined as type-I, type-II, and type-III, respectively [47–50]. For
CoCrScSn compound, the occupancy positions of Co, Cr, Sc, and
Sn atoms are shown in Table 1. We must first determine which
of the three structures is the most stable. Therefore, we are very
concerned about the relationship between the total energy of
the three structures and the lattice constant. Through structural
optimization, we have obtained the equilibrium lattice constants
of three structures of CoCrScSn compounds as shown in Table 1.
Table 2 shows the total energies of CoCrScSn compound in
non-magnetic (NM), ferromagnetic (FM), and antiferromagnetic
(AFM) states at the equilibrium structures. It can be seen that
among these three structures, the energy of the ferromagnetic
state with the type-I structure is the lowest, which means that the
type-I structure of the CoCrScSn compound is the most stable,
and the ground state of this stable structure is ferromagnetic. The
next studies only consider the ferromagnetic type-I structure of
CoCrScSn compound.

So far, there are no experimental reports about CoCrScSn
compound. In order to test the possibility of synthesizing
CoCrScSn compound, we performed a calculation of formation
energy, which is calculated as follows:

Ef = ETot − ECo − ECr − ESc − ESn (1)

where ETot are the total energy of the CoCrScSn compound per
formula unit at equilibrium lattice constants and ECo, ECr , ESc,
and ESn correspond to the total energy per atom for the Co, Cr,
Sc, and Sn atoms, respectively. During calculation, Co, Cr, and Sc
are taken as face-centered cubic structure (space group Fm-3m),
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FIGURE 1 | Phonon dispersion curves of the CoCrScSn compound at
equilibrium lattice constants.

Sn is taken as body-centered cubic structure (space group Im-
3m). We use the ferromagnetic energy of the title compound as
the ETot of formula (1) to obtain the formation energy of type-I,
type-II, and type-III as −1.35, −0.55, and −0.85 eV, respectively.
The negative values of the formation energy indicate that these
three structures of CoCrScSn compounds are energetically stable
and may be fabricated experimentally.

In order to examine the dynamical stability, the phonon
dispersion curves of the type-I structure of CoCrScSn compound
have been calculated and depicted in Figure 1. It is seen that
the title compound have positive phonon frequency, which is an
key indicator of the dynamical stability of the Heusle compound.
There are no available experimental related to the quaternary
Heusler compoud CoCrScSn to make a comparison with our
data, and we are looking forward to the experimental synthesis
of the title compound.

Mechanical Properties
The mechanical properties of cubic crystals are determined by
three elastic constants, C11, C12, and C44. The elastic constants
C11, C12, and C44 at are obtained by calculating the strain as
a function of total energy. Born and Huang criteria give that
the mechanical stability of cubic crystals is determined by the
following formula [51, 52]:

C11 − C12 > 0 C44 > 0 C11 + 2C12 > 0 (2)

The elastic constants C11, C12, and C44 of CoCrScSn compound
at equilibrium lattice constant were calculated to be 154.9 GPa,
61.5 GPa, and 62.7 GPa for GGA and 165.2 GPa, 70.3 GPa, and
74.2 GPa for GGA + U, respectively. As a comparison, we found
that the C11 and C44 of CoCrScSn in this paper were larger
than that of another similar compound CoCrScBi, while C12 was

smaller than that of CoCrScBi [38].

B =
C11 + 2C12

3
(3)

GV =
C11 − C12 + 3C44

5
(4)

GR =
5(C11 − C12)C44

4C44 + 3(C11 − C12)
(5)

G =
GV + GR

2
(6)

According to formula (3)–(6), the bulk modulus B and shear
modulus G calculated are 92.63 GPa, 55.72 GPa for GGA, and
101.93 GPa, 62.02 GPa for GGA + U, respectively. The bulk
modulus and shear modulus of CoCrScBi are reported as 127.03
GPa and 31.88 GPa, respectively. The bulk modulus of CoCrScSn
is smaller than that of CoCrScBi, indicating that CoCrScSn is
more prone to volume deformation than CoCrScBi. However,
the larger shear modulus of CoCrScSn confirms its greater
resistance to shear strain than CoCrScBi. The elastic constants
obtained by using GGA and GGA + U all meet the elastic
stability criteria and therefore, ferromagnetic type-I structure of
CoCrScSn compound are mechanically stable.

As we all know, the physical properties of compounds will
change with the change of crystal structure. The change of lattice
constant of compounds under external pressure is one of the
simplest ways to change the physical properties of compounds.
Next, we study the mechanical stability of CoCrScSn compound
when the lattice constant changes.

Under the uniform pressure P, the stress-strain coefficients will
replace the elastic constants with the following expression:

B11 = C11 − P,B12 = C12 + P,B44 = C44 − P (7)

Accordingly, the mechanical stability of CoCrScSn compound
under uniform pressure is determined by the following formula
[53, 54]:

B11 − B12 > 0,B11 + 2B12 > 0,B44 > 0 (8)

That is

C11 − C12 − 2P > 0,C11 + 2C12 + P > 0,C44 − P > 0 (9)

Figures 2A,B shows the change curve of the elastic modulus of
CoCrScSn compound with the lattice constant under GGA and
GGA + U, respectively. Under GGA, when the lattice constant
of CoCrScSn compound is between 5.8 and 7.2 Å, C11-C12-
2P, C11+2C12+P, and C44-P are greater than zero, as shown
in Figure 2A. This means that the mechanical properties of
CoCrScSn compound in this lattice constant range are stable.
One can see from Figure 2A that when the lattice constant is too
large, it may cause negative values of C11-C12-2P, C11+2C12+P,
and C44-P. At this time, CoCrScSn compound will show unstable
mechanical properties. This result is consistent with the fact
that the interaction between atoms weakens and the stability
is destroyed when the crystal expands. Under GGA + U, the
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FIGURE 2 | Elastic modulus of CoCrScSn compound under different lattice
constant. (A) GGA, (B) GGA + U.

mechanical properties of CoCrScSn are stable in the range of 5.6–
6.7 Å as shown in Figure 2B. When the lattice constant is lower
than 5.6 Å, C11-C12-2P appears a negative value, and when the
lattice constant is > 6.7 Å, C44-P may be a negative value, both
of which will make the mechanical properties of the CoCrScSn
compound unstable.

Electronic Properties
We further calculated the band structures of the CoCrScSn
compound under GGA and GGA + U, as shown in Figures 3,
4, respectively. Under the cases of GGA and GGA + U, the
majority-spin direction shows metal behavior, while minority-
spin direction shows semiconductor behavior, which is a typical
half-metal character. Furthermore, the band gap of minority-spin
is an indirect under GGA, and direct (at the G point) under GGA
+ U. Under GGA and GGA + U, the minority-spin band gap
of the title compound is 0.66 and 0.93 eV, respectively. The band
gap considering Coulomb interaction is larger than that without
Coulomb interaction. It shows that the Coulomb interaction has
an obvious influence on the electronic structure of the CoCrScSn

FIGURE 3 | Band structures of CoCrScSn compound under GGA.
(A) Majority-spin, (B) minority-spin.

FIGURE 4 | Band structures of CoCrScSn compound under GGA + U.
(A) Majority-spin, (B) minority-spin.

compound, so it is necessary to consider the Coulomb interaction
when studying the electronic structure of the title compound.

Figure 5 shows the total and local density of states (DOSs) of
CoCrScSn compound under GGA and GGA + U, respectively.
Same as the result of the energy band structure, one spin direction
is metallic, the other is semiconductor, and the title compound
is a half-metal. By comparing the DOS distribution under GGA
and GGA + U, it is clear that the shape of density of state
in the two cases is roughly the same, but the local position is
slightly different due to the Coulomb interaction. Obviously, the
majority-spin below the Fermi level moves slightly to the low
energy region, the minority-spin below the Fermi level moves
toward the Fermi level, and the minority-spin above the Fermi
level moves away from the Fermi level when the Coulomb
interaction is considered.
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FIGURE 5 | Total and local density of states of CoCrScSn compound under
GGA and GGA + U, respectively.

The robustness of half-metallicity is a key factor for spintronic
materials. For practical applications, it is particularly important
whether the half-metallic properties can still exist under external
pressure or strain. Next, we will study the stability of half-
metallicity of CoCrScSn compound when the lattice constant
changes. Figure 6 shows the curve of the minority-spin band
gap width with the lattice constant of the CoCrScSn compound
under GGA and GGA + U. The results show that the majority-
spin direction always shows the metallic property when the
lattice constant changes, therefore, the half-metallic property is
determined by the minority-spin band gap. That is to say, when
there is a band gap in minority-spin, the title compound has half-
metallic property, when there is no band gap, the half-metallicity
will disappears.

Figure 6 shows that under GGA and GGA + U, the
conduction band minimum (CBM) and valence band maximum
(VBM) in minority-spin change with the lattice constant. It can

FIGURE 6 | Minority-spin CBM and VBM of CoCrScSn compound at different
lattice constant. (A) GGA, (B) GGA + U.

be seen that within the lattice constants region of 6.2–6.9 Å,
the CBM and VBM are located on the two sides of the Fermi
level under GGA. At this time, the semiconductor character of
minority-spin is obvious, the title compound has stable half-
metallic property. When the lattice constant is lower than 6.2 Å
or higher than 6.9 Å, the minority-spin band gap disappears and
the half-metallicity disappears.

In the case of GGA + U, the CoCrScSn compound also
has similar characteristics, but due to the influence of Coulomb
interaction, the lattice constant of the compound maintaining
the half-metallicity region is from 5.7 to 6.4 Å. Combined with
the mechanical properties research, we can find that in the
case of GGA, the mechanical and half-metallic properties of the
CoCrScSn compound are very stable within the lattice constant
range of 6.2–6.9 Å. In the case of GGA + U, the mechanical
properties and half-metallic properties exist stably in the range
of 5.7–6.4 Å.
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Magnetic Properties
Slater and Pauling in two pioneering papers show that if a
minority-spin electron is added to a magnetic compound, the
total magnetic moment of the compound will be reduced by
1 µB. If a majority-spin electron is added, the total magnetic
moment of the compound will be increased by 1 µB [55–57].
This behavior called Slater-Pauling (SP) rule has been studied
not only in binary magnetic compounds [58], but also in half-
metallic Heusler compounds. So far, people have summarized
some SP relation between the total magnetic moment (Mt) and
number of valence electrons (Zt) of per molecular unit in half-
metallic Heusler compounds, such as Mt = Zt-18 [59], Mt =

Zt-24 [4], and Mt = Zt-28 [57]. Some half-metallic quaternary
Heusler compounds mainly satisfy the SP rule of Mt = Zt-18
[60–63] and Mt = Zt-24 [64–66].

In CoCrScSn compound, the number of valence electrons of
Co, Cr, Sc and Sn atoms are nine, six, three, and four, respectively,
so the Zt is twenty two. The calculations of GGA and GGA +

U show that the Mt at equilibrium lattice constant is 4.0 µB.
Obviously, the Mt and Zt are in accordance with the SP relation
Mt = Zt-18, and CoCrScSn compound conform to the typical
characteristics of half-metallic Heusler compound.

Figure 7 shows the total and local magnetic moments of
CoCrScSn compound at different lattice constants under GGA
and GGA + U, respectively. From 6.2 to 6.9 Å under GGA
and from 5.7 to 6.4 Å under GGA + U, the Mt is an integral
value 4.0 µB. Within this lattice constant range, the CoCrScSn
compound has stable half-metallic character. When the lattice
constant under GGA is lower than 6.2 Å or higher than 6.9 Å,
the Mt is no longer an integral value, and the half-metallicity of
the CoCrScSn compound will disappear.

The same situation also occurs when considering the
Coulomb interaction. If the lattice constant is < 5.7 Å or higher
than 6.4 Å, the Mt does not meet the SP rule and the title
compound will lose the half-metal character. It can be seen from
the local magnetic moment distribution curve that Cr atom is
the most important source of the magnetic properties of the title
compound, and Co atom also contributes to the total magnetic
moment, but the contribution degree is smaller than Cr atom. It
seems that Sc and Sn atoms also have certain magnetic moments,
but because Sc and Sn atoms are not magnetic themselves, they
are induced magnetic moments due to the influence of Cr and
Co atoms.

Higher Curie temperature is another key factor for the
application of half-metallic magnetic materials in spintronics.
Theoretically, the mean field approximation is often used to
estimate the Curie temperature (Tc) of materials. The formula
can be expressed as follows [37, 67]:

Tc =
21EAFM−FM

3CKB
(10)

where 1EAFM−FM is the total energy difference between
antiferromagnetic and ferromagnetic states. C is the amount
of the magnetic ion, and kB is Boltzmann constant. The Curie
temperature calculated based on formula (6) for CoCrScSn

FIGURE 7 | Total and atomic magnetic moments of CoCrScSn compound at
different lattice constant. (A) GGA, (B) GGA + U.

is 762K, which is slightly less than the previous theoretical
research result.

Furthermore, Wurmehl et al. [68] proposed a linear relation
to estimate the Curie temperature of the half-metal Heusler
compound by using the Mt, and the expression is [69]

Tc = 23+ 181Mt (11)

The Curie temperature for CoCrScSn were estimated according
to the model presented is 747K, which is very close to the result
of mean field approximation. Although the theoretical estimate
of the Curie temperature is often higher than the actual value,
we conclude that the Curie temperature of CoCrScSn should
be higher than room temperature, which make it interesting for
technological applications in spintronics.
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CONCLUSIONS

In this study, we focused on quaternary Heusler compound
CoCrScSn, and showed a complete first-principles study on the
structure, mechanical, electronic, magnetic, and half-metallic
properties of this material. It was found that the type-I structure
of quaternary Heusler compound CoCrScSn is the most stable,
and the type-I structure has a stable ferromagnetic ground state.
Elastic constant analysis shows that CoCrScSn compound have
stable mechanical properties at the equilibrium lattice constant.
The mechanical properties of CoCrScSn will change if the lattice
constant changes. The further studies show that if the lattice
constant can be maintained within the range of 5.8–7.2 Å under
GGA, and 5.6–6.7 Å under GGA + U, the mechanical properties
of CoCrScSn compound are also stable. At the equilibrium
lattice constant, the electronic structure of CoCrScSn compound
under GGA and GGA + U shows that it has obvious half-metal
character. The half-metal robustness of the CoCrScSn compound
can be maintained in the lattice constant range of 6.2–6.9 Å
for GGA, 5.7–6.4 Å for GGA + U. At the equilibrium lattice
constant, the molecular magnetic moment of the compound is
an integer value of 4.0 µB. No matter how the lattice constant
changes, as long as the compound has half-metallic character,
the total magnetic moment of the CoCrScSn compound meets

the Slater-Pauling rule. The mean field approximation shows that
the Curie temperature is higher than room temperature, which
makes the title compound a promising application in spintronics.
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