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ABSTRACT

The use of genotype main effect (G) plus geno-

type-by-environment (GE) interaction (G+GE) 

biplot analysis by plant breeders and other agri-

cultural researchers has increased dramatically 

during the past 5 yr for analyzing multi-environ-

ment trial (MET) data. Recently, however, its 

legitimacy was questioned by a proponent of 

Additive Main Effect and Multiplicative Inter-

action (AMMI) analysis. The objectives of this 

review are: (i) to compare GGE biplot analy-

sis and AMMI analysis on three aspects of 

genotype-by-environment data (GED) analysis, 

namely mega-environment analysis, genotype 

evaluation, and test-environment evaluation; (ii) 

to discuss whether G and GE should be com-

bined or separated in these three aspects of 

GED analysis; and (iii) to discuss the role and 

importance of model diagnosis in biplot analy-

sis of GED. Our main conclusions are: (i) both 

GGE biplot analysis and AMMI analysis com-

bine rather than separate G and GE in mega-

environment analysis and genotype evaluation, 

(ii) the GGE biplot is superior to the AMMI1 

graph in mega-environment analysis and geno-

type evaluation because it explains more G+GE 

and has the inner-product property of the biplot, 

(iii) the discriminating power vs. representative-

ness view of the GGE biplot is effective in evalu-

ating test environments, which is not possible 

in AMMI analysis, and (iv) model diagnosis for 

each dataset is useful, but accuracy gain from 

model diagnosis should not be overstated.
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Genotype-by-Environment Data
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Plant breeders and geneticists, as well as statisticians, have 
a long-standing interest in investigating and integrating G 

and GE in selecting superior genotypes in crop performance tri-
als (Barah et al., 1981; Kang, 1988, 1993; Eskridge, 1990; Kang 
and Pham, 1991; Hühn, 1996; Yan et al., 2000). Many statisti-
cal methods have been developed for GED analysis, including 
AMMI analysis (Gauch 1992) and GGE biplot analysis (Yan and 
Kang, 2003; Yan and Tinker, 2006).

The biplot (Gabriel, 1971) has become a popular data visu-
alization tool in many scientifi c research areas, including psy-
chology, medicine, business, sociology, ecology, and agricultural 
sciences. Earlier uses of biplots in GED analyses include Bradu 
and Gabriel (1978), Kempton (1984), and Cooper and DeLacy 
(1994). The biplot tool has become increasingly popular among 
plant breeders and agricultural researchers since its use in culti-
var evaluation and mega-environment investigation (Yan et al., 
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2000). Yan et al. (2000) referred to biplots based on sin-
gular value decomposition (SVD) of environment-cen-
tered or within-environment standardized GED as “GGE 
biplots,” because these biplots display both G and GE, 
which are the two sources of variation that are relevant to 
cultivar evaluation (Kang, 1988, 1993; Gauch and Zobel, 
1996; Yan and Kang, 2003).

The commonly used GGE biplot is based on the Sites 
Regression (SREG) linear-bilinear (multiplicative) model 
(Cornelius et al., 1996), which can be written as

 
1

t

ij j k ik jk ij
k

y
=

−μ = λ α γ + ε∑  [1]

where y–
ij
 is the cell mean of genotype i in environment 

j; μ
j
 is the mean value in environment j; i = 1, ∙ ∙ ∙ g; j = 

1, ∙ ∙ ∙ e, g and e being the numbers of cultivars and envi-
ronments, respectively; and t is the number of principal 
components (PC) used or retained in the model, with t ≤ 
min(e,g − 1). The model is subject to the constraint λ

1
 ≥ λ

2
 

≥ ∙ ∙ ∙ λ
t
 ≥ 0 and to orthonormality constraints on the α

ik
 

scores, that is, '1

g
ik iki=

α α∑  = 1 if k = k' and '1

g
ik iki=

α α∑  
= 0 if k ≠ k', with similar constraints on the γ

jk
 scores 

[defi ned by replacing symbols (i,g,α) with ( j,e, γ)]. The 

ije  are assumed 2NID(0, / )rσ , where r is the number of 
replications within an environment.

Least squares solution for μ
j
 is the empirical mean (y–

. j
) 

for the jth environment, and the least squares solutions for 
parameters in the term λ

k
α

ik
γ

jk
 (for i = 1, ∙ ∙ ∙ ,g; j = 1,…,e) 

are obtained from the kth PC of the SVD of the matrix 
Z = [z

ij
], where z

ij
 = y–

ij
 – y–

. j
. The maximum number of 

PCs available for estimating the model parameters is p = 
Rank(Z). In general, p ≤ min(e, g − 1), with equality hold-
ing in most cases. For k = 1, 2, 3, ∙ ∙ ∙ , α

ik
 and γ

jk
 have also 

been characterized as primary, secondary, tertiary, etc., 
multiplicative eff ects of the ith cultivar and jth environ-
ment (for fi rst usage of such terminology in a multiplica-
tive model context, see Seyedsadr and Cornelius, 1992). 
Thus, Eq. [1] may be described as modeling the deviations 
of the cell means from the environment means as a sum of 
PCs, each of which is the product of a cultivar score (α

ik
), 

an environment score (γ
jk
), and a scale factor (the singular 

value, λ
k
).

The GGE biplot is constructed from the fi rst two PCs 
from the SVD of Z with “markers,” one for each cultivar, 
plotted with 1 1

ˆ ˆf
iλ α  as abscissa and 2 2

ˆ ˆf
iλ α  as ordinate. Simi-

larly, markers for environments are plotted with 1
1 1

ˆ ˆf
j

−λ γ  
as abscissa and 1

2 2
ˆ ˆf

j
−λ γ  as ordinate. The exponent f, with 

0 ≤ f ≤ 1, is used to rescale the cultivar and environment 
scores to enhance visual interpretation of the biplot for a 
particular purpose. Specifi cally, singular values are allo-
cated entirely to cultivar scores if f = 1 [this is “cultivar-
focused” scaling (Yan, 2002)], or entirely to environment 
scores if f = 0 (“environment-focused” scaling); and f = 
0.5 will allocate the square roots of the λ̂

k
 values to cul-

tivar scores and also to environment scores (“symmetric” 

scaling). Mathematically, a GGE biplot is a graphical rep-
resentation of the rank 2 least squares approximation of the 
rank p matrix Z. This representation is unique except for 
possible simultaneous sign changes on all 1

ˆ
iα and 1

ˆ
jγ  and/

or all 2
ˆ

iα  and 2
ˆ

jγ . An important property of the biplot is 
that the rank 2 approximation of any entry in the original 
matrix Z can be computed by taking the inner product 
of the corresponding genotype and environment vectors,

i.e., ( )( )1 1
1 1 2 2 1 1 2 2 1 1 1 2 2 2

ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, ,f f f f
i i j j i j i j

− −
′

λ α λ α λ γ λ γ = λ α γ +λ α γ .

This is known as the inner-product property of the biplot.
The GGE biplot methodology (Yan et al., 2000; Yan, 

2001, 2002; Yan and Kang, 2003; Yan and Tinker, 2006) 
consists of a set of biplot interpretation methods, whereby 
important questions regarding genotype evaluation and 
test-environment evaluation can be visually addressed. 
Increasingly, plant breeders and other agronomists have 
found GGE biplots useful in mega-environment analysis 
(Yan and Rajcan, 2002; Casanoves et al., 2005; Samonte 
et al., 2005; Yan and Tinker, 2005b; Dardanellia et al., 
2006), genotype evaluation (Bhan et al., 2005; Malvar et 
al., 2005; Voltas et al., 2005; Kang et al., 2006), test-envi-
ronment evaluation (Yan and Rajcan, 2002; Blanche and 
Myers, 2006; Thomason and Phillips, 2006), trait-asso-
ciation and trait-profi le analyses (Yan and Rajcan, 2002; 
Morris et al., 2004; Ober et al., 2005), and heterotic pat-
tern analysis (Yan and Hunt, 2002; Narro et al., 2003; 
Andio et al., 2004; Bertoia et al., 2006). The legitimacy 
of GGE biplot analysis was, however, recently questioned 
by Gauch (2006), who concluded that, for GED analyses, 
AMMI analysis was either superior or equal to GGE bip-
lot analysis.

The objectives of this review and interpretation paper 
are: (i) to compare GGE biplot analysis and AMMI analysis 
on three aspects of GED analysis, namely, mega-environ-
ment analysis, genotype evaluation, and test-environment 
evaluation; (ii) to discuss whether G and GE should be 
combined or separated in GED analysis; and (iii) to discuss 
the importance of model diagnosis in SVD-based analy-
sis of GED. This discussion should enhance agricultural 
researchers’ understanding of biplot analysis of GED.

THREE ASPECTS OF GED 
ANALYSIS USING GGE BIPLOTS
The analysis of GED (i.e., MET data for a single trait) 
should include three major aspects: (i) mega-environment 
analysis; (ii) test-environment evaluation, and (iii) geno-
type evaluation (Yan and Kang, 2003). We use the yield 
data of 18 winter wheat (Triticum aestivum L.) genotypes 
(G1 to G18) tested at nine Ontario locations (E1 to E9) 
(Table 1) as an example to illustrate the three aspects of 
biplot analysis. The same dataset was used extensively in 
Yan and Kang (2003) and Yan and Tinker (2006). When 
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supplemental information (e.g., data on environmental or 
genotypic covariates) is available, a fourth aspect, which 
is to understand the causes of G and GE, can be included 
(Yan and Hunt, 2001; Yan and Kang, 2003; Yan and Tin-
ker, 2005b, 2006).

Mega-environment Analysis
A GGE biplot is constructed by plotting the fi rst prin-
cipal component (PC1) scores of the genotypes and the 
environments against their respective scores for the second 
principal component (PC2) that result from SVD of envi-
ronment-centered or environment-standardized GED. 
The “which-won-where” view of the GGE biplot (Yan et 
al., 2000) is an eff ective visual tool in mega-environment 
analysis. It consists of an irregular polygon and a set of 
lines drawn from the biplot origin and intersecting each 
of the sides at right angles. The vertices of the polygon 
are the genotype markers located farthest away from the 
biplot origin in various directions, such that all genotype 
markers are contained within the resulting polygon. A 
line that starts from the biplot origin and perpendicularly 
intersects a polygon side represents the set of hypotheti-
cal environments in which the two cultivars defi ning that 
side perform equally; the relative ranking of the two culti-
vars would be reversed in environments on opposite sides 
of the line (the so-called “crossover GE”). Therefore, the 
perpendicular lines to the polygon sides divide the biplot 
into sectors, each having its own winning cultivar. The 
winning cultivar for a sector is the vertex cultivar at the 
intersection of the two polygon sides whose perpendicular 
lines form the boundary of that sector; it is positioned usu-
ally, but not necessarily, within its winning sector (see Yan, 
2002 for a detailed example).

If all environment markers fall into a single sector, 
this indicates that, to a rank-two approximation, a single 
cultivar had the highest yield in all environments. If envi-
ronment markers fall into diff erent sectors, this indicates 
that diff erent cultivars won in diff erent sectors. Revealing 
the which-won-where pattern of a GED set is an intrinsic 
property of the GGE biplot rendered by the inner-prod-
uct property of the biplot (Yan and Kang, 2003). Once a 
GGE biplot is constructed, the polygon and the lines that 
divide the biplot into sectors can be drawn by hand without 
further calculation. In the which-won-where view of the 
GGE biplot (Fig. 1) based on the data in Table 1, the nine 
environments fell into two sectors with diff erent winning 
cultivars. Specifi cally, G18 was the highest yielding cultivar 
in E5 and E7 (but only slightly higher than several other 
cultivars with markers in close proximity to G18), and G8 
was the highest yielding cultivar in the other environments. 
This crossover GE suggests that the target environments 
may be divided into diff erent mega-environments.

Since a mega-environment is defi ned as a group of 
locations that consistently share the best set of genotypes 

or cultivars across years (Yan and Rajcan, 2002), data 
from multiple years are essential to decide whether or not 
the target region can be divided into diff erent mega-envi-
ronments. Furthermore, a defi nitive conclusion must be 
based on data in which the same (sub-)set of genotypes is 
tested at the same (sub-)set of test locations across multi-
ple years. Repeatable environment grouping is necessary, 
but not suffi  cient, for declaring diff erent mega-environ-
ments. For example, even if the target environments can 
be subdivided into Group 1 and Group 2 repeatedly across 
years, the target environment still may not be meaning-
fully divided if cultivar A and B win in Groups 1 and 2, 
respectively, in 1 yr, but the which-won-where pattern 
is reversed in another year. The necessary and suffi  cient 
condition for mega-environment division is a repeatable 
which-won-where pattern rather than merely a repeatable 
environment-grouping pattern (Yan and Rajcan, 2002; 
Yan and Kang, 2003).

If the which-won-where or crossover patterns are 
repeatable across years and, hence, the target environment 
can be divided into subregions or mega-environments, as 
in the barley example given in Yan and Tinker (2005b), the 
GE that causes the crossovers among winning genotypes 
can be exploited by selecting in and for each mega-envi-
ronment. If the crossover GE patterns are not repeatable 
across years, the GE cannot be exploited. Rather, it must 
be avoided by selecting high yielding and stable genotypes 
across target environments.

Appropriate mega-environment analysis should clas-
sify the target environment into one of three possible 

Table 1. Mean yield (Mg ha−1) of 18 winter wheat cultivars (G1 

to G18) tested at nine Ontario locations (E1 to E9) in 1993.

Geno-

types

Test Environments

E1 E2 E3 E4 E5 E6 E7 E8 E9 Mean

G1 4.46 4.15 2.85 3.08 5.94 4.45 4.35 4.04 2.67 4.00

G2 4.42 4.77 2.91 3.51 5.70 5.15 4.96 4.39 2.94 4.31

G3 4.67 4.58 3.10 3.46 6.07 5.03 4.73 3.90 2.62 4.24

G4 4.73 4.75 3.38 3.90 6.22 5.34 4.23 4.89 3.45 4.54

G5 4.39 4.60 3.51 3.85 5.77 5.42 5.15 4.10 2.83 4.40

G6 5.18 4.48 2.99 3.77 6.58 5.05 3.99 4.27 2.78 4.34

G7 3.38 4.18 2.74 3.16 5.34 4.27 4.16 4.06 2.03 3.70

G8 4.85 4.66 4.43 3.95 5.54 5.83 4.17 5.06 3.57 4.67

G9 5.04 4.74 3.51 3.44 5.96 4.86 4.98 4.51 2.86 4.43

G10 5.20 4.66 3.60 3.76 5.94 5.35 3.90 4.45 3.30 4.46

G11 4.29 4.53 2.76 3.42 6.14 5.25 4.86 4.14 3.15 4.28

G12 3.15 3.04 2.39 2.35 4.23 4.26 3.38 4.07 2.10 3.22

G13 4.10 3.88 2.30 3.72 4.56 5.15 2.60 4.96 2.89 3.80

G14 3.34 3.85 2.42 2.78 4.63 5.09 3.28 3.92 2.56 3.54

G15 4.38 4.70 3.66 3.59 6.19 5.14 3.93 4.21 2.93 4.30

G16 4.94 4.70 2.95 3.90 6.06 5.33 4.30 4.30 3.03 4.39

G17 3.79 4.97 3.38 3.35 4.77 5.30 4.32 4.86 3.38 4.24

G18 4.24 4.65 3.61 3.91 6.64 4.83 5.01 4.36 3.11 4.48

Mean 4.36 4.44 3.14 3.49 5.68 5.06 4.24 4.36 2.90 4.19
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types (Table 2). Type 1 is the easiest target environment 
one can hope for, but it is usually an overoptimistic expec-
tation. Type 2 suggests opportunities for exploiting some 
of the GE. Such opportunities should not be overlooked 
if they exist, which is the whole point of mega-environ-
ment analysis and GE analysis. Type 3 is the most chal-
lenging target environment and, unfortunately, also the 
most common one.

Genotype evaluation and test-environment evaluation 
become meaningful only after the mega-environment 
issue is addressed. Within a single mega-environment, 
cultivars should be evaluated for their mean performance 
and stability across environments (Fig. 2); and the test 
environments should be evaluated for being, or not being, 
representative of the target environment and for their 
power to discriminate among genotypes (Fig. 3).

Genotype Evaluation
Genotype evaluation is mean ingful only for a specifi c 
mega-environment, and an ideal geno type should have both 
high mean performance and high stability within a mega-
environment. Assuming that the mega-environment dif-
ferentiation in Fig. 1 is repeatable across years, genotype 
evaluation should be conducted for each mega-environ-
ment. Figure 2 is the “Average Environment Coordina-
tion” (AEC) view (Yan, 2001) of the GGE biplot involving 
the seven environments in the G8 niche identifi ed in Fig. 

1. This AEC view is based on 
genotype-focused singular value 
partitioning (SVP), that is, the 
singular values are entirely par-
titioned into the genotype scores 
(GGE biplot option “SVP = 1”) 
(Yan, 2002). This AEC view with 
SVP = 1 is also referred to as the 
“Mean vs. Stability” view because 
it facilitates genotype compari-
sons based on mean performance 
and stability across environments 
within a mega-environment. 
The axis of the AEC abscissa, or 
“average environment axis,” is 
the single-arrowed line that passes 
through the biplot origin and the 
“average environment,” which is 
at the center of the small circle 
with coordinates .1 .2

ˆ ˆ( , )γ γ , i.e., 
means of environment PC1 and 
PC2 scores. The axis of the AEC 
ordinate is the double-arrowed 
line that passes through the bip-
lot origin and is perpendicular to 
the AEC abscissa. Because of the 
inner-product property of the bip-

lot, the projections of the genotype markers on the “aver-
age environment axis” are proportional to the rank-two 
approximation of the genotype means and represent the 
main eff ects of the genotypes, G. The arrow shown on the 
axis of the AEC abscissa points in the direction of higher 
mean performance of the genotypes and, consequently 
ranks the genotypes with respect to mean performance. 
Unless G is too small to be meaningful, the ranking of 
the genotypes on the AEC abscissa is always perfectly or 
highly correlated with G, the correlation being 1.0 for the 
current example. Thus, the genotypes are ranked accord-
ing to G as follows: G8 > G4 = G10 > G5 = G9 = G15 
= G16 = G17 = G18 > G6 > G2 > Mean = G11 > G3 > 
G13 > G1 > G14 > G7 > G12.

Since GGE represents G+GE and since the AEC 
abscissa approximates the genotypes’ contributions to G, 
the AEC ordinate must approximate the genotypes’ con-
tributions to GE, which is a measure of their stability or 
instability. Thus, G4 was the most stable genotype, as it 
was located almost on the AEC abscissa and had a near-
zero projection onto the AEC ordinate. This indicates 
that its rank was highly consistent across environments 
within this mega-environment. In contrast, G17 and G6 
were two of the least stable genotypes with above average 
mean performance.

Yan (2001) defi ned an “ideal” genotype on the basis 
of both mean performance and stability, and the geno-

Figure 1. The “which-won-where” view of the GGE biplot based on the G × E data in Table 1. The 

data were not transformed (“Transform = 0”), not scaled (“Scaling = 0”), and were environment-

centered (“Centering = 2”). The biplot was based on environment-focused singular value 

partitioning (“SVP = 2”) and therefore is appropriate for visualizing the relationships among 

environments. It explained 78% of the total G+GE. The genotypes are labeled as G1 to G18 and 

the environments are labeled as E1 to E9.
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types can be ranked based on their bip-
lot distance from the ideal genotype. 
Dimitrios Baxevanos (personal com-
munication, 2006) found this GGE 
distance to be more repeatable across 
years than either mean performance or 
a stability index.

Test Environment Evaluation
The purpose of test-environment evalu-
ation is to identify test environments that 
eff ectively identify superior genotypes 
for a mega-environment. An “ideal” test 
environment should be both discrimi-
nating of the genotypes and representa-
tive of the mega-environment. Figure 3 
is the same GGE biplot as Fig. 2 except 
that it is based on environment-focused 
scaling (Yan, 2002), that is, the singular 
values were entirely partitioned into the 
environment scores (“SVP = 2”) so that 
it is appropriate for studying the relation-
ships among test environments. This 
type of AEC can be referred to as the 
“Discriminating power vs. Representa-
tiveness” view of the GGE biplot. It can 
be helpful in evaluating each of the test 
environments with respect to the following questions: 

1. Is the test environment capable of discrimi-
nating among the genotypes, i.e., does it pro-
vide much information about the diff erences 
among genotypes? 

2. Is it representative of the mega-environment?
3. Does it provide unique information about the 

genotypes?
When the data are not scaled (or standardized) 
(“Scaling = 0”), the length of an environment vec-
tor is proportional to the standard deviation of cul-
tivar means in the  environment, which is a measure 
of the discriminating power of the environment, 
assuming that the experimental errors of the test 
environments are comparable. Test environments 
with longer vectors (like E1 in our example) are 
more discriminating of the genotypes. If a test environ-
ment marker falls close to the biplot origin, that is, if the 
test environment has a very short vector, it means that 
all genotypes performed similarly in it and therefore it 
provided little or no information about the genotype dif-
ferences. A short vector could also mean that the environ-
ment is not well represented by PC1 and PC2 if the biplot 
does not explain most of the GGE of the data.

A second usage of Fig. 3 is to indicate the test-environ-
ments’ representativeness of the mega-environment. Since 
the AEC abscissa is the “average-environment axis,” test 

environments that have small angles with it (e.g., E2, E3, E4, 
E6, and E9 are more representative of the mega-environment 
than those that have larger angles with it, e.g., E1 and E8). 
This follows from the fact that when SVP = 2, the cosine of 
the angle between any environment vector and the “average 
environment axis” approximates the correlation coeffi  cient 
between the genotype values in that environment and the 
genotype means across the environments.

Based on Fig. 3, a test environment may be classifi ed 
into one of three types (Table 3). Type 1 environments 
have short vectors and provide little or no information 

Figure 2. The “mean vs. stability” view of the GGE biplot based on a subset of the G × E 

data in Table 1. The data were not transformed (“Transform = 0”), not scaled (“Scaling = 

0”), and were environment-centered (“Centering = 2”). The biplot was based on genotype-

focused singular value partitioning (“SVP = 1”) and therefore is appropriate for visualizing 

the similarities among genotypes. It explained 79.5% of the total G+GE for the subset.

Table 2. Three types of target environment based on mega-environ-

ment analysis.

 With Crossover GE No Crossover GE

Repeatable 

across years

Type 2: target environment consist-

ing of multiple mega-environments.

Strategy: select specifi cally 

adapted genotypes for each mega-

environment. A single year multilo-

cation trial may be suffi cient.

Type 1: target environ-

ment consisting of a 

single, simple mega-

environment.

Strategy: test at a 

single test location in a 

single year suffi ces to 

select for a single best 

cultivar.

Not 

repeatable 

across years

Type 3: target environment consist-

ing of a single but complex mega-

environment.

Strategy: select a set of cultivars 

for the whole region based on both 

mean performance and stability 

based on data from multiyear and 

multilocation tests
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about the genotypes and, therefore, should not be used as 
test environments. Type 2 environments have long vec-
tors and small angles with the AEC abscissa and are ideal 
for selecting superior genotypes. If budgetary constraints 
allow only a few test environments, Type 2 test environ-
ments are the fi rst choice. Type 3 environments have long 
vectors and large angles with the AEC abscissa (e.g., E1); 
they cannot be used in selecting superior genotypes, but 
are useful in culling unstable genotypes.

Useful test environments should be further exam-
ined for their uniqueness. Some environments may never 
provide unique information, as they are always similar 
to some other environment(s) in separating and ranking 
the genotypes. Some (not all) of these environments can 
be dropped without losing much information about the 
genotypes. Testing cost can be reduced and effi  ciency 
improved by using a minimum set of test environments. 
Identifi cation and removal of noninformative and redun-
dant test locations (not environments) must be based on 
multiyear data. In Fig. 3, fi ve environments (E2, E3, E4, 
E6, and E9) were highly correlated in their ranking of the 
genotypes, indicating that these environments produced 
similar information about the genotypes. If this pattern 
repeats across years, then it can be concluded that some of 
them are redundant and can be dropped. In analyzing a 
multiyear Ontario soybean performance trial dataset, Yan 

and Rajcan (2002) reported one test loca-
tion that was always highly correlated with 
one of the other three locations in ranking 
genotypes and was regarded as a redundant 
test location.

Yan (2001) defi ned an “ideal” test 
environment, which is a virtual environ-
ment that has the longest vector of all test 
environments (most discriminating) and is 
located on the AEC abscissa (most represen-
tative). Test environments can be visually 
ranked for their usefulness in identifying 
superior genotypes based on the distances 
on the GGE biplot between their mark-
ers and the marker of the ideal test envi-
ronment. Blanche and Myers (2006) used 
this idea creatively in their study of cotton 
test locations. Test-environment evalua-
tion should be an important aspect of GED 
analysis. Analysis of historical MET data 
can lead to the identifi cation of a minimum 
set of test environments (locations) for cul-
tivar evaluation. For example, E3 may be 
regarded as an ideal test location and E1, 
E3, and E8 may constitute a minimum set 
of test locations if the pattern shown in Fig. 
3 is repeatable across years. For quantita-
tive trait loci (QTL) mapping studies, the 

identifi cation of a few discriminating and  representative 
test  environments (locations) is even more crucial because 
it is usually not feasible to test a large number of genotypes 
in many environments (Anna McClung, personal commu-
nication, 2006).

THREE ASPECTS OF GED 
ANALYSIS USING AMMI GRAPHS
Mega-Environment Analysis
The AMMI1 graph, fi rst proposed in Gauch and Zobel 
(1997), was designed to address the which-won-where 
pattern. In this graph, the abscissa represents the envi-
ronment scores for the fi rst interaction principal com-
ponent (IPC1) and the ordinate represents the “nominal 
yield” based on genotype mean yield (G) and IPC1. Each 
genotype is represented by a straight line defi ned by that 
genotype’s mean yield and IPC1 score (i.e., regression on 
the environment IPC1 score). Ebdon and Gauch (2002b) 
claimed that mega-environment classifi cation based on 
this method should be virtually the same as that based on 
a GGE biplot like Fig. 1. This may be true in some cases, 
but, even then, the GGE biplot is more advantageous in 
several aspects. First, the GGE biplot always explains more 
G+GE than the AMMI1 graph and is, therefore, a more 
accurate presentation of the GGE of the data. For exam-

Figure 3. The “discriminating power vs. representativeness” view of the GGE biplot 

based on a subset of the G × E data in Table 1. The data were not transformed 

(“Transform = 0”), not scaled (“Scaling = 0”), and were environment-centered (“Centering 

= 2”). The biplot was based on genotype-focused singular value partitioning (“SVP = 

2”) and therefore is appropriate for visualizing the relationships among environments. 

It explained 79.5% of the total G+GE for the subset.
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ple, for a rice dataset, the GGE bip-
lot and the AMMI1 graph explained 
77.3 and 64.6% of the total G+GE, 
respectively (Samonte et al., 2005). 
Second, the which-won-where pat-
terns are not always easy to visualize 
in the AMMI1 graph, particularly when many geno-
types and test environments are involved, as shown in 
Fig. 2 of Ebdon and Gauch (2002b). This is because, in 
the AMMI1 graph, the environments can be labeled only 
along the abscissa rather than across the graph, and the 
genotypes are represented by straight lines rather than by 
dots. Moreover, whereas the which-won-where view of 
a GGE biplot is an intrinsic property of the GGE biplot, 
the AMMI1 graph is a completely diff erent graph than the 
AMMI1 biplot. Therefore, the AMMI1 graph is better 
viewed as a tool for presenting conclusions rather than as a 
tool for discovering which-won-where patterns.

The GGE biplot was criticized by Ebdon and Gauch 
(2002b) and Gauch (2006) for not being able to reveal 
which-won-where patterns if more than two PCs are 
required to approximate the data. This problem, however, 
is easily solved by generating GGE biplots for each group 
of environments, as exemplifi ed in Fig. 2 vs. Fig. 1. In 
contrast, such remains a challenge in AMMI analysis if 
more than one IPC is required. Although Gauch (1992) 
proposed an AMMI2 graph for mega-environment analy-
sis when two IPCs are needed to approximate the data, 
its usefulness has not been demonstrated thus far. This 
graph is a plot of test environments defi ned by their IPC1 
and IPC2 scores; the test environments are grouped by 
the IPC1 and IPC2 scores, and the winning genotypes 
for each group are identifi ed from the genotype by envi-
ronment table of “predicted” yield based on the AMMI2 
model and superimposed on the graph. Because one must 
go to the predicted yield table to identify the winning 
genotypes, this graph is better understood as a conclu-
sion-presentation tool rather than a pattern-discovery 
tool, while pattern discovery is the primary interest of 
GED analysis. Gauch (1992) envisioned this graph as a 
3D plot with G being a third dimension perpendicular 
to the IPC1 vs. IPC2 plane. Even so, it is still not capable 
of identifying the which-won-where patterns, because 
G and the IPC scores are not in the same units, just as 
the two axes of the AMMI1 biplot are not in the same 
units (more discussion on this later). Moreover, neither 
AMMI1 nor AMMI2 graph has the inner-product prop-
erty of a true biplot, which is the underpinning of bip-
lot analysis. Gauch (1992) hypothesized that the universal 
winners would be located near the origin of the IPC1 
vs. IPC2 graph. This may be true in some cases; how-
ever, the universal losers would also be located exactly in 
the same area. The usefulness of this AMMI2 graph has 
never been demonstrated, even in the work of the AMMI 

advocates where AMMI2 (AMMI with two IPCs) and 
AMMI7 (AMMI with seven IPCs) were identifi ed as the 
best models (Ebdon and Gauch, 2002b).

Genotype Evaluation
The AMMI1 biplot (Zobel et al., 1988) is the most well-
known and appealing component of AMMI analysis. Its 
abscissa represents the main eff ects (G and E) and its ordi-
nate represents the IPC1 scores. Therefore, it provides a 
means of visualizing the mean performance (G) and the 
stability (IPC1) of the genotypes simultaneously. However, 
although regarded as a biplot, the AMMI1 biplot does not 
have the most important property of a true biplot, namely 
the inner-product property. As a result, the performance 
of a given genotype in a given environment cannot be 
accurately visualized even if it fully displays the data. This 
is why a diff erent AMMI1 graph (Gauch and Zobel, 1997) 
is needed for visualizing the which-won-where pattern 
as discussed above. There are two other reasons why the 
AMMI1 biplot is less useful to breeders than the GGE bip-
lot. First, it always explains less G+GE than the GGE bip-
lot. Second, its shape is completely  subjective because the 
axes are in diff erent units (original unit for the abscissa and 
square root of the original unit for the ordinate). Unlike 
the GGE biplot, the AMMI1 biplot also presents the envi-
ronment main eff ects of the test environments or E, which 
is irrelevant to cultivar and test-environment evaluation 
(Yan and Kang, 2003).

Test Environment Evaluation
Although identifying test environments for eff ective 
genotype evaluation is an important component of GED 
analysis, which has a great impact in plant breeding, it has 
not been a research topic in AMMI analysis. The AMMI1 
biplot (Zobel et al., 1988) displays the test environments 
by their main eff ects E and IPC1 scores, but it provides no 
information on the environment’s ability in identifying 
superior cultivars.

G AND GE: JOINTLY OR SEPARATELY?
Gauch (2006) criticized GGE biplot analysis for not 
explicitly separating G from GE and concluded that 
AMMI analysis was “always superior” over GGE biplot 
analysis for its clear separation of G from GE. However, 
it is neither in the interests of plant breeders, nor in the 
interests of growers, to base selection of cultivars either 
solely on G or on GE (Kang, 1993). We believe that GGE 
biplot analysis achieves much more than AMMI analysis 

Table 3. Three types of test environments based on test environment evaluation.

 Discriminating Nondiscriminating

Representative Type 2: Ideal for selecting superior genotypes. 
Type 1: Useless

Not representative Type 3: Useful for culling inferior genotypes. 
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relative to the three objectives of GED analysis, namely 
mega-environment analysis, test-environment evaluation, 
and genotype evaluation. In this section, we will examine 
from a more theoretical point of view whether G and GE 
should be separated.

G and GE Must Be Considered 
Simultaneously in Genotype Evaluation
There is no disagreement among AMMI users and GGE 
biplot users on this issue; all agree that G and GE must 
be considered simultaneously in genotype evaluation. The 
GGE biplot was designed to include both G and GE. The 
AMMI1 graph for mega-environment analysis and the 
AMMI1 biplot for genotype evaluation also contain both 
G and GE; they might as well be called “GGE graphs.” 
They diff er from the GGE biplot only in that they con-
tain less G+GE and have less functionality than the GGE 
biplot. The AMMI analysis separates G from GE fi rst and 
then puts them together again, whereas GGE biplot analy-
sis deals with G+GE directly. Therefore, explicit separa-
tion of G from GE in AMMI analysis does not lead to the 
conclusion that it is superior to GGE biplot analysis.

G and GE Are Mathematical Defi nitions
Gauch (2006) argued that AMMI analysis was superior 
to other methods because it clearly separated G and GE 
and that G and GE have diff erent agricultural implica-
tions, with G representing wide adaptation and GE rep-
resenting specifi c adaptation. Indeed, if wide adaptation 
is high performance across environments, it is fair to say 
that G represents wide adaptation, but only within the 
confi nes of the test environments. If specifi c adaptation 
is high performance in specifi c environments, however, 
it is determined by G+GE, not by GE alone. The GE is a 
component of specifi c adaptation; it alone has no defi ned 
agricultural implications, because a genotype interacting 
positively with an environment can have the lowest yield 
in that environment.

It should also be recognized that G and GE are fun-
damentally mathematical partitioning of the total varia-
tion of a GED set. Their correspondence to biological and 
agricultural implications is not automatic. The G and GE 
can be regarded as representing diff erent biological inter-
pretations only if it is shown that G and GE are under 
the control of distinct genes or genetic interactions. There 
is much evidence that the expression of genes and their 
eff ects on crop productivity are aff ected by the environ-
ment, and the same gene can exert diff erent eff ects on 
crop productivity in diff erent regions (vernalization genes 
and photoperiodism genes are the most notable examples), 
but there is little evidence for the existence of genes whose 
expression is completely independent of the environment, 
particularly for those that control agronomically important 
traits. The QTL studies involving multiple environments 

often reveal that major QTL are responsible for both G 
and GE (e.g., Romagosa et al., 1996; Tinker et al., 1996; 
de Koeyer et al., 2004). An AMMI analysis often reveals 
strong correlations between G and genotypic scores for GE 
(e.g., see fi gures in Ebdon and Gauch, 2002a), suggesting 
common genetic controls for both G and GE. Therefore, 
the stance that G and GE must be treated as distinct enti-
ties in GED analysis is neither plausible nor supported by 
agricultural and biological evidence.

The G and GE Are Interchangeable
There is no clear biological boundary between G and GE; 
G and GE are interchangeable. It is understood that G, the 
genotype main eff ect, is always specifi c to the environ-
ments in which it is estimated. It has no meaning when 
separated from its environmental context. The G esti-
mated from a small range of environments can be GE if 
put into a wider scope of environments. Conversely, GE 
estimated in a wider range of environments can become G 
if the environments are subdivided. In other words, G and 
GE can be interpreted only in the context of the actual set 
of cultivars evaluated in the actual set of environments. 
Recognition of the interchangeability between G and GE 
is the sole justifi cation for mega-environment analysis, 
as discussed earlier. The GE becomes G if the scope of 
the environments is narrowed; G becomes GE when the 
scope of environments is widened. The gist of mega-envi-
ronment analysis is to seek opportunities to subdivide the 
target environment into subregions (mega-environments) 
so that some repeatable GE can be converted into G.

In summary, G and GE must be considered simulta-
neously in mega-environment analysis, genotype evalu-
ation, and test-environment evaluation; separation of G 
from GE is primarily a mathematical manipulation that is 
not always supported by biological evidence. Combining 
G and GE in GGE biplot analysis is essential for addressing 
plant breeding and agricultural problems. It is an intention 
rather than a mistake, a strength rather than a weakness.

The Utility of the AEC Is Beyond 
Reseparation of G from GE
The AEC view of the GGE biplot (Fig. 2 and 3) does 
reseparate G from GE whenever G is sizable, as pointed 
out by Gauch (2006); however, as discussed in the previ-
ous sections, it partitions GGE in a way that genotype 
evaluation and test-environment evaluation can be visu-
ally addressed in terms familiar to researchers without sac-
rifi cing the inner-product property of the biplot. That is, 
the AEC allows genotypes to be evaluated by their mean 
performance and stability, and test environments evalu-
ated by their discriminating power and representativeness. 
Such functionality has not been shown for any other GED 
analysis methodology.
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In a GGE biplot, the vector length of a genotype, 
which is the distance from the biplot origin to the  position 
of the genotype marker, approximates the genotype’s con-
tribution to GGE. When all environments are on the same 
side of the AEC ordinate (i.e., when G is large enough to 
be meaningful), the Mean vs. Stability view of the GGE 
biplot (Fig. 2) partitions this GGE into the genotype’s con-
tribution to G (projection onto the AEC abscissa) and its 
contribution to GE (projection onto the AEC ordinate). 
This property allows identifi cation of “ideal” genotypes (a 
large and positive contribution to G and a small contribu-
tion to GE) for a given mega-environment. Many breeders 
have found this application of GGE biplots to be useful. 
However, as illustrated in earlier sections, the AEC view 
of the GGE biplot is used only for genotype evaluation for 
a single mega-environment, where the GE is either small 
(a simple mega-environment) or not exploitable (a com-
plex mega-environment).

The length of an environment vector in the GGE bip-
lot approximates the environment’s discriminating power. 
When all environments are on the same side of the AEC 
ordinate (i.e., when the G in the data is large enough to be 
meaningful), the “Discriminating power vs. Representative-
ness” view of the GGE biplot (Fig. 3) partitions this discrim-
inating power into two components: discrimination on G 
(projection to the AEC abscissa) and discrimination on GE 
(projection to the AEC ordinate), whereby test environments 
ideal for selecting high-yielding and stable genotypes can be 
identifi ed. Gauch (2006) considered E as an essential com-
ponent for environment evaluation. Although E is essential 
for environment evaluation for nonbreeding purposes, it is 
irrelevant for identifying test environments that are superior 
for genotype evaluation.

MODEL DIAGNOSIS 
AND ACCURACY GAIN
Model Diagnosis Is Useful
We agree with Gauch (2006) that model diagnosis for 
each dataset is useful. Many methods have been pro-
posed to determine how many PCs are required to fully 
approximate a two-way table of data, which can be used 
to determine whether a biplot under-fi ts or over-fi ts the 
data. Currently, we (Yan, Ma, and Cornelius) are investi-
gating alternative methods for addressing two questions: 
(i) how does one know if the biplot is adequate in approxi-
mating the two-way table that is under investigation, and, 
(ii) what should one do if the biplot is inadequate. Briefl y, 
whenever the biplot is judged as inadequate, attempts 
should be made to divide the data into subsets based on 
environmental and/or genotypic groups revealed in the 
biplot, as demonstrated in the above example. Data sub-
division should stop when the biplot is judged as suffi  cient 
in displaying the patterns of the subset or when there are 

no clear patterns (environmental or genotypic groupings) 
in the biplot.

Accuracy Gain from Model Diagnosis 
Should Not Be Overstated
Great accuracy gain and many “free observations” are 
claimed for model diagnosis and identifi cation of “predic-
tively accurate” models in AMMI analysis. For example, 
Ebdon and Gauch (2002b) reported for a perennial rye-
grass (Lolium perenne L.)performance dataset that a statisti-
cal effi  ciency of 5.6 was achieved by using the AMMI2 
model (AMMI with two IPCs), which was converted 
to 101 844 “free observations” or a saving of $1,000,000 
(Gauch, 2006). However, this claim can be justifi ed only 
if all of the following conditions are met: (1) the accuracy 
that was achieved by the “best model” is absolutely neces-
sary; (2) the cultivar recommendations are made exactly 
as suggested by the “best model”; and (3) future perfor-
mances are exactly the same as expected from the cur-
rent data. However, Condition 1 is met only if adopting 
the best model leads to diff erent cultivar recommenda-
tions, bearing in mind that, in practice, multiple culti-
vars rather than a single one are recommended for each 
mega-environment. Condition 2 is often false due to 
practical considerations. For example, AMMI1 was used 
in mega-environment analysis and cultivar recommen-
dation, even though AMMI2 and AMMI7 were identi-
fi ed as the best models for two turfgrass datasets (Ebdon 
and Gauch, 2002b), which renders the model diagnosis 
completely irrelevant. Condition 3 is almost always false 
because genotype × year and genotype × location × year 
interactions are inevitable. Pertaining to Condition 3, the 
term “predictive success” used in AMMI analysis must 
be interpreted properly. There is a fundamental diff erence 
between predicting future performance and “predicting” 
past performance (cross-validation). It is the former that 
is important and it remains a question whether the best 
model identifi ed through cross-validation is truly more 
predictive of future performance (Sneller and Dombek, 
1995). Therefore, model diagnosis is useful, but accuracy 
gain from model diagnosis must not be overstated.

As Gauch (2006) pointed out, GED analysis is fi rst of 
all an agricultural issue rather than a statistical one. There-
fore, it is important to understand how cultivars are selected 
and recommended in the real world to have a realistic 
assessment about gains from model diagnosis. Breeders do 
not select cultivars on the basis of only a single trait (e.g., 
yield), because superior cultivars must meet requirements 
for multiple breeding objectives. Breeders do not select 
just one genotype with respect to a trait, because breed-
ing objectives are often negatively associated, and it is rare 
to fi nd a genotype that is best for everything (Yan and 
Wallace, 1995). For the same reason, agronomists always 
recommend a set of cultivars, rather than a single cultivar, 
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to the growers for any given region. Consequently, the 
choice among similar models may not aff ect cultivar selec-
tion and recommendations, and the argument of Gauch 
(2006) that using a suboptimal statistical model in GED 
analysis is like “turning the clock back on plant breed-
ing” is an overstatement. In practice, it suffi  ces to classify 
the genotypes into a few categories based on each breed-
ing objective (trait), e.g., excellent, acceptable, and unac-
ceptable, and to select those that are excellent or at least 
acceptable for all of the breeding objectives. Therefore, 
understanding the patterns in a GED set is more impor-
tant than getting some “accurate” estimates, and GGE 
biplot is an eff ective tool for this purpose.

The Penalty for Not 
Conducting Model Diagnosis
It is important to have realistic understanding of the pen-
alty when the GGE biplot under-fi ts or over-fi ts the G+GE 
of the data. When the data are over-fi tted, some of the 
patterns in the biplot can be spurious. This can be eas-
ily prevented if formal statistical tests are conducted before 
any serious decisions are made. Furthermore, this situation 
happens only when the dataset is small and, thus, it is nor-
mally not a problem. When under-fi tting is suspected, it is 
important to understand that the GGE biplot still presents 
the most important patterns of the GGE in the GED. These 
patterns are not only directly meaningful; they also serve as 
guide for data subdivision so that additional patterns can be 
explored. Continued data subdivision without a stopping 
criterion may eventually lead to data over-fi tting. This can 
be prevented by conducting a formal statistical test or by 
imposing some practical considerations so that subdivision 
terminates when a feasible number of mega-environments 
(or groups of environments) is defi ned (Ebdon and Gauch, 
2002b). By defi nition, the GGE biplot always displays the 
most important patterns of the G+GE in the GED. There-
fore, if no pattern is seen from the biplot, it means that 
there is no clear pattern in the data; the question about the 
adequacy of the biplot becomes irrelevant and the search 
for patterns should stop. Yan and Tinker (2005b) presented 
an example of environment subdivision based on the GGE 
biplot patterns.

Essential Information about a Biplot
Since biplot analysis has been increasingly used in GED 
analysis and multivariate data analysis, this section discusses 
specifi cations of a biplot that are essential for its correct 
interpretation. Although the focus of this paper is on GGE 
biplot analysis, it is important to be aware that many dif-
ferent types of biplots can be constructed based on a single 
two-way dataset. All types of biplots are useful depending 
on the research objectives (Yan and Tinker, 2005b). The 
GGE biplots presented in this paper were generated using 
the “GGEbiplot” software fi rst reported in Yan (2001) and 

later detailed in Yan and Kang (2003), and more recently 
summarized in Yan and Tinker (2006). One feature of the 
GGEbiplot software that has not been described previ-
ously is that it provides information on the methods of data 
transformation, centering, scaling, and singular-value par-
titioning associated with the biplot, along with its good-
ness of fi t (see top-left corner in Fig. 1–3), which is essential 
for correct interpretation of the biplot.

“Transform = 0” indicates that the data were not 
transformed before biplot analysis. Other transformation 
options in GGEbiplot include: (i) transformation to natu-
ral logarithm; (ii) transformation to base 10 logarithm; and 
(iii) square-root transformation. The purpose of transfor-
mation is to normalize or stabilize the data and thereby to 
linearize the relationships among variables. For example, 
log transformation is usually desirable for biplot analysis of 
gene expression data (Pittelkow and Wilson, 2003).

“Scaling = 0” means that the data were not rescaled 
(i.e., not divided by anything). Other data scaling options 
in GGEbiplot include: 1, rescaled by the within-environ-
ment standard deviation; 2, rescaled by the within-envi-
ronment standard errors; 3, rescaled by the environmental 
means. The purpose of scaling is to put the variables (envi-
ronments) in comparable ranges (i.e., max- min). Scaling 
is optional for GED, but it is necessary if the variables are 
of diff erent units. For the GED of a given trait, which 
are expressed in the same unit of measure in all environ-
ments, use of “Scaling = 0” will retain the information of 
diff erential standard deviations in diff erent environments, 
which may be used as a measure of the discriminating 
ability of the environments. Use of “Scaling = 1” will 
remove this information and assume all environments to 
be equally important. Use of “Scaling = 2” can remove 
any heterogeneity among environments with regard to 
their experimental errors while retaining the information 
about the environments’ discriminating ability. Repli-
cated data are required for using this option. Use of “Scal-
ing = 3” removes the diff erences in unit and data range 
among variables while retaining the discriminating abil-
ity of the environments. Therefore, this option may have 
some advantage over “Scaling = 1.” The choice of a trans-
formation method and of a scaling method is dataset and 
research purpose specifi c.

“Centering = 2” indicates that the data were envi-
ronment centered (i.e., the main eff ect E was removed 
from the data and the biplot displays only G+GE). Other 
centering options in GGEbiplot include: 0, no center-
ing; 1, grand mean centered, useful when both row main 
eff ects and column main eff ects are of interest; and 3, 
double-centered. The choice of a centering method is also 
research purpose specifi c. Use of “Centering = 0” is useful 
for visualizing the original data and is eff ective for datasets 
whose grand mean is close to 0. “Centering = 0” was used 
in studying QTL-by-environment interactions (Yan and 
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Tinker, 2005a) and genotypic covariate-by-environment 
interactions (Yan and Tinker, 2005b). Use of “Centering 
= 3” is desirable if GE is of sole interest; it is also desirable 
for studying gene expression data where it is the relative 
change of gene expression levels, as opposed to the abso-
lute levels of the genes or of the treatments, that is the 
research focus (Pittelkow and Wilson, 2003). Centering 
by a “shift parameter” is more suitable than centering by 
the grand-mean (“Centering = 1”) for studying crossover 
interactions (Seyedsadr and Cornelius, 1992).

“Sum = 78%” indicates that the GGE biplot explained 
78% of the G+GE variation. Generally speaking, the greater 
this value, the more confi dence the researcher would have 
in the interpretations based on the biplot. However, if a 
smaller portion of the total variation is explained, it does 
not necessarily mean that the biplot is useless. See more 
discussion of this issue in the model diagnosis section. 

“SVP = 2” indicates that the singular values are par-
titioned entirely into the environment scores before the 
construction of the biplot to enhance the suitability of the 
biplot for visualizing the relationships among the environ-
ments (e.g., Fig. 1 and 3). Conversely, “SVP = 1” indicates 
that the singular values are partitioned entirely into the 
row or genotype scores to enhance the suitability of the 
biplot for comparing the genotypes (e.g., Fig. 2). These 
two SVP options are equally useful for visualizing the 
responses of the genotypes to the environments (e.g., the 
which-won-where patterns) (Yan, 2002).

Clearly, for a single two-way dataset, numerous unique 
biplots can be generated, depending on data transforma-
tion, data scaling, data centering, and SVP. Specifying 
these pieces of information for a biplot is essential for its 
correct interpretation. So far, biplots generated by other 
statistical packages and biplots published in most scientifi c 
journals do not contain such information. Such informa-
tion should be standard in biplot analysis.

SUMMARY AND CONCLUSIONS
The discussion of issues in this review leads to the 10 con-
clusions listed below. While points 3 to 5 are comparisons 
between GGE biplot and AMMI analysis of GED, other 
points are summaries of our general understanding on 
GED analysis and biplot analysis.

1. The GED analysis must address these three impor-
tant aspects: mega-environment analysis, geno-
type evaluation, and test-environment evaluation. 
Understanding the target environment is a prerequi-
site for meaningful genotype and test-environment 
evaluations because superior genotypes and superior 
test environments are mega-environment-specifi c.

2. The G and GE are the two sources of variation that 
are relevant to mega-environment analysis, geno-
type evaluation, and test-environment evaluation; 
they must be considered simultaneously for these 

purposes. Both GGE biplot analysis and AMMI 
analysis combine rather than separate G and GE 
in mega-environment analysis and genotype evalu-
ation; AMMI graphs for these purposes are also 
“GGE” graphs.

3. The which-won-where view of the GGE biplot is 
superior to the AMMI1 graph for mega-environ-
ment analysis in that it explains more G+GE, it is 
easier to construct, and it is easier to visualize the 
which-won-where patterns, especially for large 
GED sets.

4. The mean vs. stability view of the GGE biplot is 
superior to the AMMI1 biplot for genotype evalu-
ation because it explains more G+GE, it has the 
same units on both axes, and it has an objective 
shape that inherently results from the data and 
the SVP method (if the axes are drawn to scale as 
required for correct biplot interpretation), whereby 
it shows the relative importance of G vs. GE in the 
data. Furthermore, the GGE biplot has the inner-
product property of a biplot; it shows not only the 
mean performance and stability of each genotype, 
but also the relative performance of each genotype 
in each environment.

5. The discriminating power vs. representativeness 
view of the GGE biplot is an eff ective tool for   
test-environment evaluation, which can lead to the 
identifi cation of a minimum set of discriminating 
and representative test environments. Test-environ-
ment evaluation has not been a research topic in 
AMMI analysis.

6. The G and GE are fi rst of all mathematical defi ni-
tions, and moreover, there is little evidence that G 
and GE are controlled by distinct genes and thereby 
can be subjected to selection separately.

7. The G and GE are specifi c to the environments 
in which they are estimated, and G and GE are 
interchangeable, depending on the scope of the 
environments. This understanding is the basis and 
justifi cation for mega-environment analysis and 
GE analysis.

8. While G can be regarded as representing wide 
adaptation, it is only as wide as the range of the test 
environments allows; specifi c adaptation is deter-
mined by both G and GE rather than by GE alone.

9. Model diagnosis for each dataset is useful, but accuracy 
gain from model diagnosis should not be overstated.

10. A biplot should be companioned with the following 
specifi cations for its correct interpretation: (i) how 
the data are transformed, centered, and scaled (stan-
dardized), (ii) what is the goodness of fi t of the bip-
lot, and (iii) how the singular values are partitioned. 
In addition, the biplot axes must be drawn to scale 
for correct interpretation.
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