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Recent technological advances have transformed the research on physical activity initially based on questionnaire data to the
most recent objective data from accelerometers. The shift to availability of raw accelerations has increased measurement
accuracy, transparency, and the potential for data harmonization. However, it has also shifted the need for considerable
processing expertise to the researcher. Many users do not have this expertise. The R package GGIR has been made available to all
as a tool to convermulti-day high resolution raw accelerometer data from wearable movement sensors into meaningful evidence-
based outcomes and insightful reports for the study of human daily physical activity and sleep. This paper aims to provide a one-
stop overview of GGIR package, the papers underpinning the theory of GGIR, and how research contributes to the continued
growth of the GGIR package. The package includes a range of literature-supported methods to clean the data and provide day-by-
day, as well as full recording, weekly, weekend, and weekday estimates of physical activity and sleep parameters. In addition, the
package also comes with a shell function that enables the user to process a set of input files and produce csv summary reports with
a single function call, ideal for users less proficient in R. GGIR has been used in over 90 peer-reviewed scientific publications to
date. The evolution of GGIR over time and widespread use across a range of research areas highlights the importance of open
source software development for the research community and advancing methods in physical behavior research.
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Human physical activity and sleep are popular areas of
research because of their important role in health outcomes (He,
Zhang, Li, Dai, & Shi, 2017; Lee et al., 2012). Physical activity and
sleep have traditionally been quantified with diaries and question-
naires, but wearable sensors have gained momentum since the
1990s. In the beginning, wearable movement sensors (i.e., accel-
erometers) typically performed onboard signal processing and only
stored derived output to reduce battery consumption and memory
requirements. However, following a general movement towards

more transparent and open science, and thanks to technological
evolution towards smaller, cheaper, and power efficient sensors,
accelerometers now tend to store ‘raw’ data for offline processing
and analysis. The data recorded are typically expressed in gravita-
tional acceleration (g) because this is the reference point for
acceleration value calibration, reflecting both the movement and
gravitational component (van Hees et al., 2013). However, this
technological advance is counterbalanced by the large amount of
data collected per measurement (typically 2·108 data points per
week of measurement) and the necessity to process the data to
obtain meaningful variables that can be used in standard statistical
analysis and software. Many physical activity and sleep researchers
do not have the expertise necessary to process and analyze raw
accelerometer data. The GGIR software presented in this paper
facilitates the processing and extraction of insightful physical
activity and sleep variables of the data collected with these so
called raw data accelerometers from three widely used sensor
brands (Wijndaele et al., 2015). The individual algorithms that
are embedded in GGIR have been described across a number of
published papers. The fast advances in wearable sensor technology
over the last decades comes with the price of mandatory develop-
ment of scientific software to ensure a good valorization of the
newly available sensors (Seinstra, Wallom, & Keahey, 2015).
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However, scientific software instruments need to be subjected to a
peer review process as it is the case for other methodological
components (e.g., algorithms and study protocols). Previous pub-
lications related to GGIR focused on specific algorithms, such as
sleep detection, and their validity. However, those publications did
not focus on GGIR as a generic piece of scientific software that
connects all these algorithms and adds a range of essential extra
functionalities (e.g., time zone and daylight-saving time handling)
to provide value to an entire research community far beyond the
specificities of those studies. Therefore, this paper aims to provide a
one-stop overview of the GGIR package, the papers underpinning
the theory of GGIR, and how research contributes to the continued
growth of the GGIR package.

How Open Source Software Can Contribute
to Advances in the Field of Physical Activity

Measurement

GGIR contributes to scientific discovery by enabling researchers to
study (human) physical activity and sleep using accelerometers
without pre-required programing expertise. GGIR is appropriate
for use across a wide variety of study designs (e.g., variations in
measurement duration, in sample frequency, instructions given to
the participant) and study populations.

Applications of GGIR have been reported in over 90 peer
reviewed journal publications since its first release in 2013, with
24 in 2017 and 48 in 2018 based on looking up the citations to
the key journal publications underlying GGIR (see also: https://
github.com/wadpac/GGIR/wiki/Publication-list). Additionally, nine
methodological papers were written to motivate and evaluate parts
of GGIR. Previous accelerometer software has been commercial
(e.g., Actilife) and/or restricted to one brand of accelerometer
(e.g., Actilife, GENEActiv PC combined with Excel macros).
GGIR facilitates the processing and analysis of data from three
of themost widely used brands of research-grademovement sensors
(GENEActiv by ActivInsights Ltd, ActiGraph by Actigraph LLC,
and Axivity by Axivity Ltd) using open source generic brand
agnostic methods, potentially providing a means for harmonization
of data from large surveys globally (Rowlands,Mirkes, et al., 2018).
Further, GGIR is continually updated to include innovations devel-
oped by the software team and/or users expediting the application of
novel analytics in research (Rowlands, Edwardson, et al., 2018;
Rowlands, Mirkes, et al., 2018; van Hees et al., 2014, 2015, 2018).

GGIR is very much a community-driven development as testified
by the multiple contributors from both health research and techno-
logical backgrounds, the fact that many publications that use GGIR
are not co-authored by the development team, and the existence of a
support and maintenance service by V. van Hees where GGIR users
can hire van Hees’ time as freelancer to help address specific needs
from the user-community (www.movementdata.nl). This service
fueled a range of package upgrades in 2018, and is one of the
possible ways to sustain open source software like GGIR. The
availability of a user forummakes it possible for users to reach out to
each other (see Table 1).

Previously, accelerometers were typically either used to assess
waking physical activity or sleep and circadian rhythms, but rarely
tailored for both research areas. The new generation of acceler-
ometers, worn night and day, allows the measurement of both
physical activity and sleep using the same tool. Moreover, in several
studies, such as UK Biobank (Doherty, Jackson, et al., 2017), a
sleep diary was not used to define a sleep window as commonly
done in sleep research. The GGIR package allows differentiation of
waking from sleep periods and provides sleep quality parameters.
Using the GGIR package, the Colaus study reported better sleep
efficiency among those more physically active (Gubelmann,
Heinzer, Haba-Rubio, Vollenweider, & Marques-Vidal, 2018).
Several papers using UK Biobank data have now been published
and show the advantage of using accelerometer instead of ques-
tionnaire data to identify, for example, the genetics of sleep (Jones,
Lane, et al., 2019; Jones, van Hees, et al., 2019; Lane et al., 2018).

There are further examples of research studies that were
facilitated by the use of GGIR. Results from the Whitehall II study
showed 1) the association between physical activity and body mass
index was much stronger when using accelerometer data rather
than questionnaire data (Sabia et al., 2015); 2) obese people with an
unfavorable metabolic profile had a lower level of physical activity
than those with a healthy metabolic profile, which was not evident
when using questionnaire data (Bell et al., 2015); 3) the association
between moderate and vigorous physical activity and healthy
aging was evident whether the activity was performed in short
(<10 minutes) or long (≥10 minutes) bouts (Menai et al., 2017).
Results from the UK Biobank also showed 1) people with cardi-
ometabolic disease are less physically active and tend to engage
more in sedentary activities that last more than 30 minutes (Cassidy
et al., 2018), and 2) short bursts of very high intensity physical
activity are associated with better bone health in pre- and post-
menopausal women (Stiles, Metcalf, Knapp, & Rowlands, 2017).

Table 1 Key Metadata on the Current Version of GGIR

Current code version 1.6-7

Permanent link to code/repository used of this code version https://github.com/wadpac/GGIR

Legal code license LGPL (≥ 2.0, < 3)

Code versioning system used Git

Software code languages, tools, and services used R, C++, Travis-CI

Compilation requirements, operating environments & dependencies 64-bit operating system&R environment version 3.2.3 and up (64-bit) & R
packages: MASS, signal, zoo, mmap, bitops, matlab, GENEAread, tuneR,
testthat, covr, knitr, rmarkdown, data.table, Rcpp

Link to developer documentation/manual https://cran.r-project.org/web/packages/GGIR/GGIR.pdf

User forum https://groups.google.com/forum/#!forum/rpackageggir

Works on Operating Systems Windows, Linux, and OSx

Note. LGPL = Lesser General Public License.
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A Typical Experimental Setting

Studies vary in size from a few dozen participants in clinical or
methodological studies (Bachasson, Landon-Cardinal, Benveniste,
Hogrel, & Allenbach, 2017), a few thousand in epidemiological
cohorts (da Silva et al., 2014; Sabia et al., 2014), and a hundred
thousand in biobanks like UK Biobank (Doherty, Jackson, et al.,
2017). The researcher configures an accelerometer with the desktop
software supplied by the accelerometer manufacturer. Next, the
accelerometer is given or sent to the participant who wears it on
their wrist or other body location (depending on instructions) day
and night for usually seven consecutive days, although different
measurement periods have also been reported. After the period of
wear, the participant returns the accelerometer either in person or
by post. The data file is then downloaded with the same desktop
software from the accelerometer manufacturer. The file size typi-
cally ranges between 0.5 and 1.5 GB depending on specific format,
sensor brand, and recording duration. GGIR can either run on a
local computer or be integrated in parallel processing tasks on a
computing cluster when working with large numbers of datafiles.
GGIR generates reports in csv-format that can then be loaded in the
researcher’s preferred statistical software (e.g., R, SAS, SPSS,
or Stata).

Related Work

Software. A few other software tools exist to work with multi-
day raw accelerometer data (Table 2). Actilife (ActiGraph,
Pensacola, FL, USA) is a closed-source commercial software
designed for the accelerometer hardware developed by the same
company. The GENEActiv PC software by the developer of the
GENEActiv (ActivInsights Ltd, Kimbolton, UK), in combination
with freely available Excel macros (available from https://open.
geneactiv.org), is designed for the accelerometer hardware devel-
oped by the same company. GENEAclassify is an open source R
package primarily aimed at facilitating the segmentation and
classification of accelerometer data produced by the GENEAactiv
accelerometer (Campbell, Gott, Langford, & Sweetland, 2018).
OMGUI (Open Movement, Newcastle University, UK) by Dan
Jackson and colleagues is an open source GUI implemented in C#
and developed for the open source hardware AX3 (Jackson,
2018b). In addition to the monitor’s own binary .CWA format,
OMGUI can also create and load brand agnostic csv and audio
WAVE file formats (Jackson, 2018a). Pampro (v0.5.1), developed
by Tom White (Cambridge, UK) and further extended by Ella

Hutchinson and other developers at the MRC Epidemiology Unit
(University of Cambridge, UK), is implemented in Python, available
on GitHub (https://github.com/MRC-Epid/pampro), and designed
to process data from multiple wearable sensor brands and data
formats usingmethodologies replicated from publications, including
the publications describing parts of GGIR (White, 2018). Pampro
includes an open source license. BiobankAccelerometerAnalysis
(Doherty, Hollowell, Willetts, Jackson, & Hammerla, 2017) by
Aiden Doherty (Oxford, UK) and colleagues is an open source
tool designed to provide a minimum set of basic outcomes for the
UK Biobank accelerometer data, utilizing some of the key algo-
rithms from GGIR (Doherty, Jackson, et al., 2017). The Bioban-
kAccelerometerAnalysis software has recently been enhanced with
activity type classification for Axivity AX3 .cwa accelerometer files
(Willetts, Hollowell, Aslett, Holmes, & Doherty, 2018).

Literature. The main publications underlying GGIR describe
1) the potential of using wrist-worn raw data accelerometers for
estimating human daily energy expenditure (van Hees et al., 2011),
2) how raw acceleration data can be meaningfully aggregated (van
Hees et al., 2013), 3) a method to calibrate the acceleration signals
based on the recording itself with no need for additional data
collection (van Hees et al., 2014), 4) methods for sleep detection
when the accelerometer is worn on the wrist with (van Hees et al.,
2015) and without (van Hees et al., 2018) use of a sleep diary, and
5) comparisons with other research methods (Innerd, Harrison, &
Coulson, 2018; Rowlands, Cliff, et al., 2016; Rowlands, Yates,
Davies, Khunti, & Edwardson, 2016; Sabia et al., 2014; Stiles
et al., 2017).

Software Description

Software Architecture

R package GGIR has been released with an Open Source LGPL 2
license on CRAN since 2013, the central repository for R packages,
and on GitHub [www.github/wadpac/GGIR] since December
2016. GGIR can run on Windows, Linux, and OSx (this and
additional key facts about GGIR are summarized in Table 1).
The package comes with the following core functionalities: load
data; extract signal metrics (also called signal features); detect
when the sensor was not worn and impute these periods if requested
by the researcher; detect the sleep period time window and sleep
episodes within it; segment the data according to conventional
heuristic threshold techniques; specify which parts of the recording

Table 2 Related Software

GGIR Actilife
GENEActiv
PC+macros GENEAclassify OMGUI Pampro

Biobank-
Accelerometer-
Analysis

Executable version
online

YES NO YES YES YES YES YES

Source code available
online

YES NO NO, but
YES for macros

YES YES YES YES

Open source software
(OSS) license

LGPL
(copyleft)
OSS license

No OSS
license

NO OSS license GPL (copyleft)
OSS license

Custom permissive
OSS license

GPL (copyleft)
OSS license

BSD 2-Clause
License (permissive)

Primary programming
language

R Unknown Unknown R C# Python Java and Python

Note. LGPL = Lesser General Public License; GPL =General Public License.
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should be considered based on the researchers knowledge about
the study design (e.g., participant started wearing the accelerometer
for a certain number of hours after starting the record); and finally
to store convenient summary reports in csv and pdf format
(Figure 1).

The package is split in five parts that group functionalities
in logical processing order and in line with how the package
historically evolved. The parts are numbered from 1 to 5 and
the corresponding function names refer to the part number: g.part1,
g.part2, g.part3, g.part4, and g.part5. The parts should be executed
sequentially with milestone data automatically being stored in
between parts to facilitate re-processing parts without having to
go back to the original raw input data. One shell function allows for
interacting with the five parts and all underlying functionalities
from one central point: g.shell.GGIR. The shell function takes all
arguments from the five parts mentioned above. In this way, the
users can interact with GGIR from one single function call to
function g.shell.GGIR and easily share their call to allow for
replicating the analysis on a different dataset. The duration of
GGIR depends on computer specifications, input arguments, and
data characteristics. Part 1 (g.part1) is the most time consuming
taking up at least 80% of the processing time and lasting around
10 minutes when applied to a seven-day data file using GGIR’s
default argument settings.

The code builds a folder structure with a depth of two to store
the milestone data per participant in .RData files (including collec-
tions of data.frame and vector objects) and the analysis reports per
dataset (see Figure 1). The analysis reports are in .csv format to give
the user the flexibility to process their quantitative results in other
statistical or data processing environments. There are many vari-
ables stored in the reports, an introduction to these variables can be
found in the package vignette (https://cran.r-project.org/web/
packages/GGIR/vignettes/GGIR.html), while a more elaborate
discussion is found in the package manual (https://cran.r-project.
org/web/packages/GGIR/GGIR.pdf).

In GitHub the code is supported by continuous integration with
Travis-CI (https://travis-ci.org/wadpac/GGIR). Starting in 2017 we
have adopted the habit of writing unit tests, but as it was not done
before 2017 not all parts of the code are covered by tests yet and
current test coverage is 63%. In addition to unit tests, the develop-
ment has typically gone in close collaboration with GGIR end-users
who checked code validity by close examination of the package
output. We have created one video to introduce GGIR (https://
youtu.be/RuFBCAqFJ2M) and a second video to provide a visual
summary of how GGIR is typically used (https://youtu.be/
S8YPTrYNWdU).

Software Dependencies

Most of the code is written in R, with a small part in C++ needed for
reading the binary data from the AX3 accelerometer brand using
R package Rcpp as a dependency (Eddelbuettel, 2013). R packages
bitops and matlab are used to enable reading the binary data
from the Genea accelerometer (the non-commercial precursor to
the GENEActiv, Unilever Discover, UK). Dependencies are R
packages GENEAread and mmap, which are used for reading
GENEActiv accelerometer binary data. Finally, R package tuneR
(Ligges, Krey, Mersmann, & Schnackenberg, 2018) is used to read
wav format data, which is an optional export format for AX3
accelerometer data. The R package signal is used for frequency
filtering (Ligges et al., 2014), R package zoo is used for calculating
a rolling median, sum, and mean (Zeileis & Grothendieck, 2005),

and R package data.table is used at some steps to efficiently handle
large amounts of tabular data.

Software Functionalities

Part 1 (g.part1)

The g.part1 function searches the specified data directory recur-
sively for files that could possibly represent acceleration data. Next,
it automatically detects which accelerometer brand the file belongs
to, the data format in which it is stored (.csv, .bin, .cwa, .wav), and
extracts the file header using appropriate functions. Next, function
g.calibrate is used to investigate calibration error which results in
proposed correction coefficients as motivated and described in van
Hees et al., 2014 (van Hees et al., 2014). Then, metrics essential for
sensor wear detection, physical activity and sleep analysis are
extracted from the raw data. Here, the user can choose one or
multiple aggregation metrics out of a collection of most common
metrics (e.g. ENMO) and control the window size over which the
metrics are calculated. Additionally, a standard set of metrics is
extracted per long time window (default 15 minutes) which
are needed for the detection of accelerometer non-wear. The
data loading and metric extraction takes place in approximately
24-hour blocks since putting the full file content in computer
memory may not always be possible. The data window size is
modifiable in case the 24-hour blocks are still too large. Addition-
ally, the code evaluates available memory throughout the proces-
sing and shortens the window by 20% when available memory is
getting too low. At the end of part 1 the signal metrics are stored as
milestone data in an RData file (using a filename corresponding to
the input accelerometer data file). For most of the analysis we use
POSIX format for timestamps, which is the default in R, but for the
exported time series we transform these to ISO8601 format to
facilitate usage in other software environments. Further, GGIR
takes into account day saving time and time zone. The user is
expected to explicitly provide time zone of the recording, this to
avoid confusion about where the experiments took place, which
may not always be the time zone of the machine on which the
analyses are run, or the default time zone assumed by GGIR (UTC:
Europe/London).

Part 2 (g.part2)

As part of g.part2 function g.impute takes the milestone output
from g.part1, optionally identifies unreliable signal sections
(e.g., monitor not worn or signal clips near its extreme), and
replaces these sections by imputed values (average of same time
point on all other days of the measurement). Then, function
g.analyse performs a descriptive analysis of the output and
summarizes it per measurement, per day of measurement and
conveniently per day type (i.e., weekdays and weekend days
separately) as well as per segment(s) of each day (specified by
user with argument qwindow). For example, if qwindow has value
‘c(0,9,12,17,24)’ the summaries will be derived for the time
windows 0:00–24:00, 0:00–9:00, 9:00–12:00, 12:00–17:00, and
17:00–24:00. This could for instance be useful in research on the
level of physical activity during specific segments of the day in
children and workplace interventions in adults. Examples of
summaries generated per time segment are time spent in specific
acceleration magnitude ranges (bins), average acceleration metric
value, and the timing of the least and most active five-hour window
of the day (number of hours can be set by user). The user can also
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Figure 1 — Overview of main steps and output in GGIR workflow.
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provide important knowledge about the experimental design,
which is accounted for when generating the descriptive summaries
(e.g. instruct GGIR to ignore the first hour of the measurement or all
data before the first and after the last midnight of the recording). In
addition, the descriptive summaries take into account the quality of
the measurement. For example, the user can specify the necessary
minimum number of valid hours per day. Days with fewer valid
hours of data will be ignored in the person level descriptive
summaries.

The reason why g.part1 and g.part2 are not merged is because
g.part1 takes much longer to run and involves only minor decisions
of interest to the physical activity or sleep researcher. Function
g.part2 on the other hand is relatively fast and comes with all
the decisions that directly impact on the variables that are of interest
to the researcher. Therefore, the user may want to run g.part1
overnight or on a computing cluster, while g.part2 can then be the
main playground for research.

Part 3 and 4 (g.part3 and g.part4)

The functions g.part3 and g.part4 provide functionality for esti-
mating sleep when the accelerometer was worn on the wrist as
described in van Hees et al. (van Hees et al., 2015, 2018). Although
these functions can be applied to accelerometer data from any wear
location, currently no scientific literature exists to support the
interpretation for attachment locations other than the wrist. In
short, g.part3 detects time episodes with a sustained lack of change
in arm angle, which are referred to as sustained inactivity bouts.
The user can configure the parameters used for this and can specify
multiple parameter values to facilitate comparisons. The g.part3
function only generates milestone data to facilitate the work done in
g.part4. Output from g.part3 for example includes the start and end
times of the sustained inactivity bouts, and estimated start and end
of the sleep period time window. Then, the g.part4 function gives
the user the option to either use a sleep diary or to rely on the
estimated sleep period time window from g.part3 (van Hees et al.,
2018). Another option is to specify a general time window when
individuals within the study population are assumed to be in bed,
which is probably more naïve and primarily implemented for
reference purposes. Sustained inactivity bouts that occur within
the sleep period time window are considered sleep episodes, and
sustained inactivity bouts outside the sleep period time window are
considered rest, potential nap period, or undetected short episodes
of monitor non-wear time. Further, g.part4 offers the user the
option to exclude the first and last night. Both g.part3 and g.part4
store a record of the amount of available valid and invalid data
per night, and an indicator of whether sleep diary data was available
for each specific night used. To facilitate a relatively quick
inspection, sleep detection plots of the classification are exported
as pdf files. To facilitate identifying obvious mistakes in sleep diary
data g.part4 provides the option to visualize the differences
between accelerometer-based estimates and sleep diary; this was
for example used in van Hees et al. (van Hees et al., 2015)
to identify a dozen of problematic nights out of 27000 nights
(Figure 2, panel a).

Part 5 (g.part5)

The g.part5 function takes the output from g.part2 and g.part4 to
describe time spent in 16 time use classes, composed of night-time
or daytime behaviour; sustained inactive or sleep, other inactive,
light, moderate, or vigorous physical activity behavior; and

un-bouted, short, medium, or long bouts of behavior. The number
of 16 classes is the default, this can be adjusted. Next, the time
series of epoch level classes are segmented by day based on one or
both available definitions of a day: 1) Fromwaking up to waking up
the next day, which means that a full night of sleep is included per
day and that the duration of days vary; or 2) From midnight to
midnight which equals a calendar day, meaning that a night of sleep
is likely to be split between days. In the latter definition days are by
default assumed to end at midnight, but the user also has the option
to change the hour on which the day ends. From these daily
segments g.part5 calculates the time spent in these classes, the
number of occurrences of these classes, and the average accelera-
tion within the classes.

The thresholds to describe level of physical activity level
intensity (light, moderate, and vigorous) have their origin in energy
expenditure research, but in GGIR these levels should be inter-
preted as thresholds to mark ranges in acceleration values. How-
ever, if the user specifies the thresholds wisely he/she may be able
to interpret the levels as indicators of energy metabolism. The
concept of behavioral bouts may also need clarification: g.part5
calculates the total time spent in behavioral bouts, which is a time
segment that meets user-specified criteria on the range of accelera-
tion, the percentage of time during which those criteria on the range
need to be met, and the maximum duration of breaks allowed
to define a bout. The user selects one of four metrics for bout
calculation using argument bout.metric. This functionality overlaps
somewhat with g.part2 which also calculates time spent in bouts,
but g.part5 does it in a much more advanced way with also
attention to inactivity bouts, light activity bouts, as well as un-
bouted behavior and sleep. All this information is stored in csv files
and visual summaries are stored in pdf files (Figure 2, panels b
and c). The g.part5 function offers the user a large freedom to
explore multiple parameters simultaneously (thresholds, minimal
and maximal bout durations and percentage criteria to define a
bout) resulting in potentially hundreds or even thousands of output
variables to enable the study of physical behavior.

Impact

The main value of GGIR is that it offers a broad set of functionali-
ties ranging from data quality handling to 24 hours/7 days time use
characterization of physical activity and sleep utilizing literature
supported methods, and is study population agnostic making it
suitable for a wide range of research areas. GGIR can be operated
without significant prior programming expertise.

At the same time, the user experiences freedom in the specifi-
cation of input arguments and the selection of output variables.
Being fully open source, GGIR can be adapted and extended
according to the needs of the respective research project. GGIR
is currently being used by the physical activity and sleep research
communities, with over 90 peer-reviewed journal papers published
using the software since 2013, with the number published per year
increasing rapidly.

By facilitating analysis of raw accelerometer data, GGIR
enables the analysis of objective measures of physical activity
and sleep and encourages raw data accelerometers to be used
more readily in research studies that aim to understand the impor-
tance of physical activity and sleep for human health. Moving
away from closed commercial accelerometer software and self-
report questionnaires to assess physical activity and sleep will
improve knowledge, allowing better translation in public health
recommendations.
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Conclusion

Most of the knowledge on physical activity and sleep comes from
studies using questionnaire data or, more recently, proprietary
physical activity metrics generated using commercial software.
With the rapid advancement in technology over recent decades,
raw acceleration movement sensors can now be used in large scale
studies. However, the data they generate are not straightforward to

analyze. GGIR provides a tool for researchers to derive variables
that characterize physical activity and sleep assessed in an objective
manner. In addition, as the code is open source, it can be used in
part or as a whole making it flexible to research needs. It further
facilitates a reproducible analysis of the raw data which is key to
generating conclusions in clinical and observational research set-
tings. Previously, widely used software packages for analyzing
accelerometer data have been proprietary and there has been little

Figure 2 — Visual output reported by GGIR. a) Rest and sleep detected from acceleration features and sleep diary (g.part4); b) Bar plots with
information on key physical activity and sleep variables (g.part5); c) Visual summary of the physical activity and sleep patterns (g.part5).
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opportunity for most researchers to feed into how they can be
developed. This demonstrates the importance of open source
software development for the research community and for the
advancement of methods in physical behavior research.
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Erratum: Migueles et al. (2019)
In the original publication of this article, incorrect information was provided about the Pampro software. Under section heading
“Related Work”, subheading “Software”; and in Table 2; the description of Pampro in the original publication stated that the
software was not open source. This incorrect information was related to an earlier version of the software (v0.4) which is now
unsupported. The current supported version of Pampro (v0.5.1) has been further extended by Ella Hutchinson and other developers
at the MRC Epidemiology Unit (University of Cambridge, UK), and was made available on GitHub under a GNUGPL open-source
license in July 2019 (https://github.com/MRC-Epid/pampro). The authors regret this error.
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