GGS-GROUPS: ORDER OF CONGRUENCE QUOTIENTS AND HAUSDORFF DIMENSION

GUSTAVO A. FERNÁNDEZ-ALCOBER AND AMAIA ZUGADI-REIZABAL

Abstract

If G is a GGS-group defined over a p-adic tree, where p is an odd prime, we calculate the order of the congruence quotients $G_{n}=G / \operatorname{Stab}_{G}(n)$ for every n. If G is defined by the vector $\mathbf{e}=\left(e_{1}, \ldots, e_{p-1}\right) \in \mathbb{F}_{p}^{p-1}$, the determination of the order of G_{n} is split into three cases, according to whether \mathbf{e} is non-symmetric, non-constant symmetric, or constant. The formulas that we obtain only depend on p, n, and the rank of the circulant matrix whose first row is \mathbf{e}. As a consequence of these formulas, we also obtain the Hausdorff dimension of the closures of all GGS-groups over the p-adic tree.

1. Introduction

Subgroups of the group of automorphisms of a regular rooted tree have turned out to be a source of many interesting examples in group theory. Particular attention has been given to the so-called Grigorchuk groups and to the Gupta-Sidki group, introduced in [10] and [12], respectively. The second of the Grigorchuk groups and the Gupta-Sidki group are particular instances of the family of GGS-groups (GGS after Grigorchuk, Gupta, and Sidki, a term coined by Gilbert Baumslag), to which this paper is devoted. We work over the p-adic tree, where p is an odd prime, and we determine the order of all congruence quotients of GGS-groups; these are the automorphism groups induced by GGS-groups on the finite trees which are obtained by truncating the p-adic tree at every level. As a consequence, we also obtain the Hausdorff dimension of the closures of GGS-groups.

Before defining GGS-groups and stating our main results, it is convenient to recall some concepts from the theory of automorphisms of rooted trees. If $m \geq 2$ is an integer and $X=\{1, \ldots, m\}$, the m-adic tree \mathcal{T} is the tree whose set of vertices is the free monoid X^{*}, where a word u is a descendant of v if $u=v x$ for some $x \in X$. If we consider only words of length $\leq n$, then we have a finite tree \mathcal{T}_{n}, which we refer to as the tree \mathcal{T} truncated at level n. The group Aut \mathcal{T} of all automorphisms of \mathcal{T} is a profinite group with respect to the topology induced by the filtration of the level stabilizers $\operatorname{Stab}(n)$, and we have $\operatorname{Aut} \mathcal{T} \cong \lim _{n} \operatorname{Aut} \mathcal{T}_{n}$. The stabilizer $\operatorname{Stab}(n)$ of the nth level of \mathcal{T} is the normal subgroup of Aut \mathcal{T} consisting of all automorphisms leaving fixed all words of length n (and, consequently, also all vertices of \mathcal{T}_{n}). These stabilizers can be considered as natural congruence subgroups for Aut \mathcal{T}. If G is a subgroup of $\operatorname{Aut} \mathcal{T}$ and we put $\operatorname{Stab}_{G}(n)=\operatorname{Stab}(n) \cap G$, then we refer to the quotient $G_{n}=G / \operatorname{Stab}_{G}(n)$ as the nth congruence quotient of G. Since the kernel

[^0]of the action of G on \mathcal{T}_{n} is $\operatorname{Stab}_{G}(n)$, it follows that G_{n} can be naturally seen as a subgroup of Aut \mathcal{T}_{n}.

As is usual nowadays in group theory, we will write the composition of two maps f and g (where we apply first f and then g) in a symmetric group by juxtaposition, i.e. as $f g$, rather than $g \circ f$. This applies in particular to automorphism groups of trees. However, we will write the image of u under f as $f(u)$, instead of $(u) f$ or u^{f}. Thus we have $(f g)(u)=g(f(u))$.

If an automorphism g fixes a vertex u, then the restriction of g to the subtree hanging from u induces an automorphism g_{u} of \mathcal{T}. In particular, if $g \in \operatorname{Stab}(1)$, then g_{i} is defined for every $i=1, \ldots, m$, and we can consider the map

$$
\begin{array}{clc}
\psi: \operatorname{Stab}(1) & \longrightarrow & \operatorname{Aut} \mathcal{T} \times \cdots^{m} \times \operatorname{Aut} \mathcal{T} \\
g & \longmapsto & \left(g_{1}, \ldots, g_{m}\right)
\end{array}
$$

Clearly, ψ is a group isomorphism.
On the other hand, any $g \in$ Aut \mathcal{T} can be completely determined by describing how g sends the descendants of every vertex u to the descendants of $g(u)$. This can be done by indicating, for every $x \in X$, the element $\alpha(x) \in X$ such that $g(u x)=g(u) \alpha(x)$. Then α is a permutation of X, which we call the label of g at u, and we denote it by $g_{(u)}$. The set of all labels of g constitutes the portrait of g. Thus g is determined by its portrait. We have the following rules for labels under composition and inversion:

$$
\begin{equation*}
(f g)_{(u)}=f_{(u)} g_{(f(u))} \quad \text { and } \quad\left(f^{-1}\right)_{(u)}=\left(f_{\left(f^{-1}(u)\right)}\right)^{-1} \tag{1}
\end{equation*}
$$

An important automorphism of \mathcal{T} is the automorphism that permutes the m subtrees hanging from the root rigidly according to the permutation (12 ...m). This is called a rooted automorphism and will be denoted by the letter a. Since a has order m, it makes sense to write a^{k} for $k \in \mathbb{Z} / m \mathbb{Z}$. Now, given a non-zero vector $\mathbf{e}=\left(e_{1}, \ldots, e_{m-1}\right) \in(\mathbb{Z} / m \mathbb{Z})^{m-1}$, we can recursively define an automorphism b of \mathcal{T} via

$$
\psi(b)=\left(a^{e_{1}}, \ldots, a^{e_{m-1}}, b\right) .
$$

We say that the subgroup $G=\langle a, b\rangle$ of Aut \mathcal{T} is the $G G S$-group corresponding to the defining vector \mathbf{e}. If $m=2$, then there is only one GGS-group, which is isomorphic to D_{∞}, the infinite dihedral group. The second Grigorchuk group is obtained by choosing $m=4$ and $\mathbf{e}=(1,0,1)$, and the Gupta-Sidki group arises for m equal to an odd prime and $\mathbf{e}=(1,-1,0, \ldots, 0)$. The groups corresponding to $\mathbf{e}=(1,0, \ldots, 0)$ and arbitrary m have also deserved special attention. In the case $m=3$, this group was introduced by Fabrykowski and Gupta in [8]. As a reference for GGS-groups, the reader can consult Section 2.3 of the monograph [5] by Bartholdi, Grigorchuk, and Šunić, the habilitation thesis [15] of Rozhkov, or the papers 19 by Vovkivsky and [13, 14 by Pervova.

Little is known about the orders of the congruence quotients G_{n} when G is a GGS-group. As already mentioned, if $m=2$, then G is infinite dihedral. We have $\psi(b)=(a, b)$, and then by direct calculation $\psi\left((a b)^{2}\right)=(b a, a b)$ (see also Section 6 of (11). It readily follows that

$$
\log _{2}\left|G_{n}\right|=n+1, \quad \text { for every } n \geq 2
$$

Hence we may always assume that $m \geq 3$, as far as the problem of determining $\left|G_{n}\right|$ is concerned. To the best of our knowledge, the only other cases of GGS-groups
for which the order of G_{n} has been explicitly determined for every n correspond to $m=3$. For the Gupta-Sidki group, Sidki himself (see [16]) proved that

$$
\log _{3}\left|G_{n}\right|=2 \cdot 3^{n-2}+1, \quad \text { for every } n \geq 2
$$

On the other hand, for $\mathbf{e}=(1,1)$, Bartholdi and Grigorchuk showed in [4] that

$$
\log _{3}\left|G_{n}\right|=\frac{3^{n}+2 n+3}{4}, \quad \text { for every } n \geq 2
$$

From now onwards, we assume that m is equal to an odd prime p, and so \mathcal{T} stands for the p-adic tree. The first of our main results is the determination of the order of G_{n} for all GGS-groups under this assumption. Before giving the statement of the theorem, we introduce some notation. Given a vector $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$, we write $C(\mathbf{a})$ to denote the circulant matrix generated by a, i.e. the matrix of size $n \times n$ whose first row is a, and every other row is obtained from the previous one by applying a shift of length one to the right. In other words, the entries of $C(\mathbf{a})$ are $c_{i j}=a_{j-i+1}$, where a_{k} is defined for every integer k by reducing k modulo n to a number between 1 and n. If \mathbf{e} is the defining vector of a GGS-group, then we write $C(\mathbf{e}, 0)$ for the circulant matrix $C\left(e_{1}, \ldots, e_{p-1}, 0\right)$ over \mathbb{F}_{p}. We say that \mathbf{e} is symmetric if $e_{i}=e_{p-i}$ for all $i=1, \ldots, p-1$.

Theorem A. Let G be a GGS-group over the p-adic tree, where p is an odd prime, and let \mathbf{e} be the defining vector of G. Then, for every $n \geq 2$, we have

$$
\log _{p}\left|G_{n}\right|=t p^{n-2}+1-\delta \frac{p^{n-2}-1}{p-1}-\varepsilon \frac{p^{n-2}-(n-2) p+n-3}{(p-1)^{2}}
$$

where t is the rank of the circulant matrix $C(\mathbf{e}, 0)$,

$$
\delta=\left\{\begin{array}{ll}
1, & \text { if } \mathbf{e} \text { is symmetric, } \\
0, & \text { otherwise, }
\end{array} \quad \text { and } \quad \quad \varepsilon= \begin{cases}1, & \text { if } \mathbf{e} \text { is constant }, \\
0, & \text { otherwise }\end{cases}\right.
$$

If $\sigma=(12 \ldots p)$, then the automorphisms whose portrait consists only of powers of σ form a Sylow pro- p subgroup of Aut \mathcal{T}, which we denote by Γ. Observe that, under the assumption $m=p$ that we have made, all GGS-groups are subgroups of Γ. According to Theorem 1 of [19], the requirement that \mathbf{e} is non-zero implies that GGS-groups are infinite if $m=p$. Since they are countable groups, they cannot be closed in the pro- p group Γ. Our second main result is related to the Hausdorff dimension of the closures of GGS-groups.

The determination of the Hausdorff dimension of closed subgroups of Γ has received special attention in the last few years (see [2, $9,17,18$). The most natural choice is to calculate the Hausdorff dimension with respect to the metric induced by the filtration of Γ given by the level stabilizers $\operatorname{Stab}_{\Gamma}(n)$. In this case, it follows from a result of Abercrombie [1, and Barnea and Shalev [3, that the Hausdorff dimension of the closure \bar{G} of a subgroup G of Γ is given by the following formula:

$$
\begin{equation*}
\operatorname{dim}_{\Gamma} \bar{G}=\liminf _{n \rightarrow \infty} \frac{\log _{p}\left|G_{n}\right|}{\log _{p}\left|\Gamma_{n}\right|}=(p-1) \liminf _{n \rightarrow \infty} \frac{\log _{p}\left|G_{n}\right|}{p^{n}} \tag{2}
\end{equation*}
$$

As an immediate consequence of Theorem A, we get the Hausdorff dimension of the closure of any GGS-group.

Theorem B. Let G be a GGS-group over the p-adic tree, where p is an odd prime, and let \mathbf{e} be the defining vector of G. Then

$$
\operatorname{dim}_{\Gamma} \bar{G}=\frac{(p-1) t}{p^{2}}-\frac{\delta}{p^{2}}-\frac{\varepsilon}{(p-1) p^{2}},
$$

where t is the rank of the circulant matrix $C(\mathbf{e}, 0)$,

$$
\delta=\left\{\begin{array}{ll}
1, & \text { if } \mathbf{e} \text { is symmetric, } \\
0, & \text { otherwise, }
\end{array} \quad \text { and } \quad ~ \quad ~=~ \begin{cases}1, & \text { if } \mathbf{e} \text { is constant }, \\
0, & \text { otherwise } .\end{cases}\right.
$$

Our proof of Theorem A relies on finding some kind of branch structure inside a GGS-group G. In particular, if \mathbf{e} is not constant, we show that G is a regular branch group (see Section 3 for the definition). This result had been previously proved by Pervova and Rozhkov for periodic GGS-groups. On the other hand, it is worth mentioning that the theory of p-groups of maximal class also plays a crucial role in the proof of Theorem A, particularly in the case that \mathbf{e} is constant.
Notation. We use the convention that $f^{g}=g^{-1} f g$ and $[f, g]=f^{-1} g^{-1} f g$. On the other hand, we denote the i th row and j th column of a matrix C by C_{i} and C^{j}, respectively.

2. General properties of GGS-groups

Throughout the paper, a and b denote the canonical generators of a GGS-group G, and $b_{i}=b^{a^{i}}$ for every integer i. Note that $b_{i}=b_{j}$ if $i \equiv j(\bmod p)$. The images of the elements b_{i} under the map ψ of the introduction can be easily described:

$$
\begin{align*}
\psi\left(b_{0}\right) & =\left(a^{e_{1}}, a^{e_{2}}, \ldots, a^{e_{p-1}}, b\right), \\
\psi\left(b_{1}\right) & =\left(b, a^{e_{1}}, \ldots, a^{e_{p-2}}, a^{e_{p-1}}\right), \tag{3}
\end{align*}
$$

$$
\psi\left(b_{p-1}\right)=\left(a^{e_{2}}, a^{e_{3}}, \ldots, b, a^{e_{1}}\right)
$$

We begin with some easy facts about GGS-groups.
Theorem 2.1. If $G=\langle a, b\rangle$ is a GGS-group, then:
(i) $\operatorname{Stab}_{G}(1)=\langle b\rangle^{G}=\left\langle b_{0}, \ldots, b_{p-1}\right\rangle$ and $G=\langle a\rangle \ltimes \operatorname{Stab}_{G}(1)$.
(ii) $\operatorname{Stab}_{G}(2) \leq G^{\prime} \leq \operatorname{Stab}_{G}(1)$.
(iii) $\left|G: G^{\prime}\right|=p^{2}$ and $\left|G: \gamma_{3}(G)\right|=p^{3}$.

Proof. One can easily check the equalities in part (i). Thus $G / \operatorname{Stab}_{G}(1)$ is cyclic and $G^{\prime} \leq \operatorname{Stab}_{G}(1)$.

The quotient $G / G^{\prime}=\left\langle a G^{\prime}, b G^{\prime}\right\rangle$ is elementary abelian of order at most p^{2}. It follows that $G^{\prime} / \gamma_{3}(G)=\left\langle[a, b] \gamma_{3}(G)\right\rangle$ has order at most p. If $G^{\prime}=\gamma_{3}(G)$, then $\gamma_{i}(G)=G^{\prime}$ for every $i \geq 3$. On the other hand, since G is residually a finite p-group, the intersection of all the $\gamma_{i}(G)$ is trivial. Consequently $G^{\prime}=1$, which is a contradiction, since $b^{a} \neq b$ by (3). We conclude that $\left|G^{\prime}: \gamma_{3}(G)\right|=p$. Now, if $\left|G: G^{\prime}\right| \leq p$, then G / G^{\prime} is cyclic, and $G^{\prime}=\gamma_{3}(G)$. Hence we necessarily have $\left|G: G^{\prime}\right|=p^{2}$, and (iii) follows.

It only remains to prove that $N=\operatorname{Stab}_{G}(2)$ is contained in G^{\prime}. Since $\left|G: G^{\prime}\right|=$ p^{2}, it suffices to prove that $\left|G / N:(G / N)^{\prime}\right|=p^{2}$. If $\left|G / N:(G / N)^{\prime}\right| \leq p$, then G / N, being a finite p-group, must be cyclic. This is a contradiction, since $\langle a N\rangle$ and $\langle b N\rangle$
are two different subgroups of order p in G / N. (Note that $\langle b N\rangle$ is contained in $\operatorname{Stab}_{G}(1) / N$ while $\langle a N\rangle$ is not.)

Now if $g \in \operatorname{Stab}_{G}(1)$, it readily follows from (3) and the previous theorem that $g_{i} \in G$ for all $i=1, \ldots, p$. Thus the image of $\operatorname{Stab}_{G}(1)$ under ψ is actually contained in $G \times \stackrel{p}{\cdots} \times G$, and so

$$
\begin{equation*}
\psi\left(\operatorname{Stab}_{G}(k)\right) \subseteq \operatorname{Stab}_{G}(k-1) \times \stackrel{p}{\cdots} \times \operatorname{Stab}_{G}(k-1) \tag{4}
\end{equation*}
$$

for all $k \geq 1$. Another important property of the map ψ is the following.
Proposition 2.2. If G is a GGS-group, then the composition of ψ with the projection on any component is surjective from $\operatorname{Stab}_{G}(1)$ onto G.

Proof. Let us fix a position $i \in\{1, \ldots, p\}$, and let $j \in\{1, \ldots, p-1\}$ be such that $e_{j} \neq 0$. It follows from (3) that $\psi\left(b_{i-j}\right)$ and $\psi\left(b_{i}\right)$ have the entries $a^{e_{j}}$ and b in the i th component. Since $G=\langle a, b\rangle=\left\langle a^{e_{j}}, b\right\rangle$, the result follows.

For every positive integer n, we can define an isomorphism ψ_{n} from the stabilizer of the first level in Aut \mathcal{T}_{n} to the direct product Aut $\mathcal{T}_{n-1} \times \stackrel{p}{\cdots} \times$ Aut \mathcal{T}_{n-1}, in the same way as ψ is defined. Since G_{n} can be seen as a subgroup of Aut \mathcal{T}_{n}, we can consider the restriction of ψ_{n} to $\operatorname{Stab}_{G_{n}}(1)$. It follows from (4) that

$$
\psi_{n}\left(\operatorname{Stab}_{G_{n}}(k)\right) \subseteq \operatorname{Stab}_{G_{n-1}}(k-1) \times \stackrel{p}{\cdots} \times \operatorname{Stab}_{G_{n-1}}(k-1) .
$$

Obviously, G_{1} is of order p, generated by the image \bar{a} of a. Next we deal with G_{2}. Let us write \tilde{g} for the image of an element $g \in G$ in G_{2}. Since $G_{2}=\langle\tilde{a}\rangle \ltimes$ $\operatorname{Stab}_{G_{2}}(1)$, it suffices to understand $\operatorname{Stab}_{G_{2}}(1)=\left\langle\tilde{b}_{0}, \ldots, \tilde{b}_{p-1}\right\rangle$. Observe that ψ_{2} sends $\operatorname{Stab}_{G_{2}}(1)$ into $G_{1} \times \stackrel{p}{\rho} \times G_{1}$, which can be identified with \mathbb{F}_{p}^{p} under the linear map

$$
\left(\bar{a}^{i_{1}}, \ldots, \bar{a}^{i_{p}}\right) \longmapsto\left(i_{1}, \ldots, i_{p}\right) .
$$

This allows us to consider $\operatorname{Stab}_{G_{2}}(1)$ as a vector space over \mathbb{F}_{p}.
Before analyzing G_{2} in the next theorem, we need the following lemma (see Exercise 4 in Section 1 of the book [6]) about finite p-groups of maximal class, which will also be used at some other places in the paper.
Lemma 2.3. Let P be a finite p-group such that $\left|P: P^{\prime}\right|=p^{2}$. If P has an abelian maximal subgroup A, then P is a group of maximal class. Furthermore, if $g_{0} \in P \backslash A$, then:
(i) If $a \in A \backslash \gamma_{2}(P)$, then $\gamma_{2}(P) / \gamma_{3}(P)$ is generated by the image of $\left[a, g_{0}\right]$.
(ii) If $i \geq 2$ and $a \in \gamma_{i}(P) \backslash \gamma_{i+1}(P)$, then $\gamma_{i+1}(P) / \gamma_{i+2}(P)$ is generated by the image of $\left[a, g_{0}\right]$.

Theorem 2.4. Let G be a GGS-group with defining vector \mathbf{e}, and put $C=C(\mathbf{e}, 0)$. Then:
(i) The dimension of $\operatorname{Stab}_{G_{2}}(1)$ coincides with the rank t of C.
(ii) G_{2} is a p-group of maximal class of order p^{t+1}.

Proof. (i) If $\tilde{g} \in \operatorname{Stab}_{G_{2}}(1)$ and $\psi_{2}(\tilde{g})=\left(\bar{a}^{i_{1}}, \ldots, \bar{a}^{i_{p}}\right)$, where we consider the exponents i_{1}, \ldots, i_{p} as elements of \mathbb{F}_{p}, we define

$$
\Psi_{2}(\tilde{g})=\left(i_{1}, \ldots, i_{p}\right) \in \mathbb{F}_{p}^{p}
$$

Observe that Ψ_{2} is injective.

By (3),

$$
\Psi_{2}\left(\tilde{b}_{0}\right)=\left(e_{1}, e_{2}, \ldots, e_{p-1}, 0\right)=(\mathbf{e}, 0)
$$

coincides with the first row of C. Since the components of the rest of the b_{i} are obtained by cyclically permuting those of b_{0}, and since $C=C(\mathbf{e}, 0)$, it follows that $\Psi_{2}\left(\tilde{b}_{i}\right)$ is the $(i+1)$ st row of C. Thus the dimension of $\operatorname{Stab}_{G_{2}}(1)$ coincides with the dimension of the subspace of \mathbb{F}_{p}^{p} generated by the rows of C, i.e. with the rank t of the matrix C.
(ii) We have

$$
\left|G_{2}\right|=\left|G_{2}: \operatorname{Stab}_{G_{2}}(1)\right|\left|\operatorname{Stab}_{G_{2}}(1)\right|=p \cdot p^{t}=p^{t+1}
$$

On the other hand, it follows from (ii) and (iii) of Theorem [2.1]that $\left|G_{2}: G_{2}^{\prime}\right|=p^{2}$. Since $\operatorname{Stab}_{G_{2}}(1)$ is an abelian maximal subgroup of G_{2}, we conclude from Lemma 2.3 that G_{2} is a p-group of maximal class.

As a consequence, we can improve part (ii) of Theorem 2.1.
Corollary 2.5. If G is a $G G S$-group, then $\operatorname{Stab}_{G}(2) \leq \gamma_{3}(G)$.
Proof. Since the defining vector \mathbf{e} of G is different from $(0, \ldots, 0)$, it is clear that the rank t of the matrix $C(\mathbf{e}, 0)$ is at least 2. It follows from the previous theorem that $G_{2}=G / \operatorname{Stab}_{G}(2)$ is a p-group of maximal class of order greater than or equal to p^{3}. Thus $\left|G_{2}: \gamma_{3}\left(G_{2}\right)\right|=p^{3}=\left|G: \gamma_{3}(G)\right|$, and consequently $\operatorname{Stab}_{G}(2)$ is contained in $\gamma_{3}(G)$.

We have seen in Theorem 2.1] that $G^{\prime} \leq \operatorname{Stab}_{G}(1)$. Next we want to characterize which elements of $\operatorname{Stab}_{G}(1)$ belong to G^{\prime}. This goal will be achieved in Theorem 2.11. If $g \in \operatorname{Stab}_{G}(1)=\left\langle b_{0}, \ldots, b_{p-1}\right\rangle$, then we can write g as a word in b_{0}, \ldots, b_{p-1}, i.e. we can write $g=\omega\left(b_{0}, \ldots, b_{p-1}\right)$, where $\omega=\omega\left(x_{0}, \ldots, x_{p-1}\right)$ is a group word in the p variables x_{0}, \ldots, x_{p-1}.
Definition 2.6. Let ω be a group word in the variables x_{0}, \ldots, x_{p-1}, where p is a prime. Then:
(i) The partial p-weight of ω with respect to a variable x_{i}, with $0 \leq i \leq p-1$, is the sum of the exponents of x_{i} in the expression for ω, considered as an element of \mathbb{F}_{p}.
(ii) The total p-weight of ω is the sum of all of its partial p-weights.

It is not difficult to give examples showing that the representation of an element $g \in \operatorname{Stab}_{G}(1)$ as a word in b_{0}, \ldots, b_{p-1} is not unique. Our first step towards the proof of Theorem 2.11 will be to see that, however, the partial and total p-weights are the same for all word representations. For this purpose, we need the following lemma.

Lemma 2.7. Let p be a prime, and let $\left(a_{0}, \ldots, a_{p-1}\right) \in \mathbb{F}_{p}^{p}$ be a non-zero vector. If $C=C\left(a_{0}, \ldots, a_{p-1}\right)$, then:
(i) $\operatorname{rk} C=p-m$, where m is the multiplicity of 1 as a root of the polynomial $a(X)=a_{0}+a_{1} X+\cdots+a_{p-1} X^{p-1}$. As a consequence, we have $\operatorname{rk} C<p$ if and only if $\sum_{i=0}^{p-1} a_{i}=0$.
(ii) If 1 represents the column vector of length p with all entries equal to 1 , then

$$
\operatorname{rk} C=\operatorname{rk}(C \mid \mathbf{1}) .
$$

Proof. If we consider the quotient ring $V=\mathbb{F}_{p}[X] /\left(X^{p}-1\right)$ as an \mathbb{F}_{p}-vector space, then both

$$
\mathcal{B}=\left\{\overline{1}, \bar{X}, \ldots, \overline{X^{p-1}}\right\}
$$

and

$$
\mathcal{B}^{\prime}=\left\{\overline{1}, \overline{X-1}, \ldots, \overline{(X-1)^{p-1}}\right\}
$$

are bases of V. Multiplication by $\overline{a(X)}$ defines a linear map $\varphi: V \rightarrow V$, and the matrix of φ with respect to \mathcal{B} is C (we construct the matrix by rows). Thus $\operatorname{rk} C=\operatorname{rk} \varphi$.

On the other hand, we can write $a(X)=(X-1)^{m} b(X)$, with $b(X) \in \mathbb{F}_{p}[X]$ and $b(1) \neq 0$. Let $b(X)=b_{0}+b_{1}(X-1)+\cdots+b_{k-1}(X-1)^{k-1}$, where $k=p-m$ and $b_{0} \neq 0$. Then the matrix of φ with respect to \mathcal{B}^{\prime} is the block matrix

$$
\left(\begin{array}{cc}
0 & B \\
0 & 0
\end{array}\right), \quad \text { where } \quad B=\left(\begin{array}{ccccc}
b_{0} & b_{1} & \cdots & b_{k-2} & b_{k-1} \\
0 & b_{0} & \cdots & b_{k-3} & b_{k-2} \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & 0 & b_{0}
\end{array}\right)
$$

since $\overline{(X-1)^{i}}=\overline{0}$ in V for all $i \geq p$. Thus $\operatorname{rk} \varphi=k$, and (i) follows.
Let us now prove (ii). We first prove that

$$
\begin{equation*}
\operatorname{rk} C=\operatorname{rk}\binom{C}{1 \ldots 1} \tag{5}
\end{equation*}
$$

Since C is the matrix of φ with respect to \mathcal{B} constructed by rows, it is clear that (5) is equivalent to $\overline{1+X+\cdots+X^{p-1}}$ lying in the image of φ. Note that, since we are working with coefficients in \mathbb{F}_{p}, we have

$$
1+X+\cdots+X^{p-1}=(X-1)^{p-1}
$$

Since

$$
\varphi\left(\overline{(X-1)^{k-1}}\right)=\overline{b_{0}(X-1)^{p-1}}
$$

and $b_{0} \neq 0$, it follows that $\overline{(X-1)^{p-1}} \in \operatorname{im} \varphi$, as desired.
Now, since the transpose ${ }^{t} C$ of C is also a circulant matrix, we can apply (5) to ${ }^{t} C$ and get

$$
\operatorname{rk} C=\operatorname{rk}^{t} C=\operatorname{rk}\binom{{ }^{t} C}{1 \ldots 1}=\operatorname{rk}^{t}(C \mid \mathbf{1})=\operatorname{rk}(C \mid \mathbf{1}) .
$$

Let $g=\omega\left(b_{0}, \ldots, b_{p-1}\right)$ be an arbitrary element of $\operatorname{Stab}_{G}(1)$, and suppose that the partial p-weight of ω with respect to x_{i} is r_{i}, for $i=0, \ldots, p-1$. It follows from (3) that

$$
\begin{equation*}
\psi(g)=\left(a^{m_{1}} \omega_{1}\left(b_{0}, \ldots, b_{p-1}\right), \ldots, a^{m_{p}} \omega_{p}\left(b_{0}, \ldots, b_{p-1}\right)\right), \tag{6}
\end{equation*}
$$

where each ω_{i} is a word of total p-weight r_{i} (and where r_{p} is to be understood as r_{0}), and

$$
\begin{equation*}
m_{i}=\left(r_{0} r_{1} \ldots r_{p-1}\right) C^{i} \tag{7}
\end{equation*}
$$

Theorem 2.8. Let G be a $G G S$-group, and let $g \in \operatorname{Stab}_{G}(1)$. Then the partial and total p-weights are the same for all representations of g as a word in b_{0}, \ldots, b_{p-1}.

Proof. It suffices to see that, if ω is a word such that $\omega\left(b_{0}, \ldots, b_{p-1}\right)=1$, then the total p-weight of ω is 0 , and the partial p-weight r_{i} of ω with respect to x_{i} is equal to 0 , for every $i=0, \ldots, p-1$. Obviously, the second assertion implies the first one, but the proof will go the other way around.

As in (6), we write

$$
\begin{equation*}
\psi\left(\omega\left(b_{0}, \ldots, b_{p-1}\right)\right)=\left(a^{m_{1}} \omega_{1}\left(b_{0}, \ldots, b_{p-1}\right), \ldots, a^{m_{p}} \omega_{p}\left(b_{0}, \ldots, b_{p-1}\right)\right) \tag{8}
\end{equation*}
$$

Since this element is equal to 1 , it follows that $m_{i}=0$ for $i=1, \ldots, p$. According to (7), this means that

$$
\left(r_{0} r_{1} \ldots r_{p-1}\right) C=\left(\begin{array}{llll}
0 & 0 & \ldots & 0
\end{array}\right) .
$$

Now, since $\operatorname{rk} C=\operatorname{rk}(C \mid \mathbf{1})$ by Lemma 2.7 we also have $\left(r_{0} r_{1} \ldots r_{p-1}\right) \mathbf{1}=0$, that is,

$$
r_{0}+r_{1}+\cdots+r_{p-1}=0 .
$$

This proves that the total p-weight of ω is 0 .
Now we return to (8). Since $\omega\left(b_{0}, \ldots, b_{p-1}\right)=1$ by hypothesis, then we also have $\omega_{i}\left(b_{0}, \ldots, b_{p-1}\right)=1$ for all $i=1, \ldots, p$. Now, since the total p-weight of ω_{i} is r_{i}, it follows from the previous paragraph that $r_{i}=0$.

The independence of the partial and total p-weights from the word representation allows us to give the following definition.

Definition 2.9. Let G be a GGS-group, and let $g \in \operatorname{Stab}_{G}(1)$. We define the partial weight of g with respect to b_{i}, and the total weight of g, as the corresponding p-weights for any word ω representing g.

We prefer to speak simply about weights instead of p-weights in the case of an element $g \in \operatorname{Stab}_{G}(1)$, since all elements b_{i} (with respect to which the weights are considered) have order p. Now the following result is clear.

Theorem 2.10. Let G be a GGS-group. Then the maps from $\operatorname{Stab}_{G}(1)$ to \mathbb{F}_{p} sending every $g \in \operatorname{Stab}_{G}(1)$ to its partial weight with respect to one of the b_{i} or to its total weight are well-defined homomorphisms.

Theorem 2.11. Let G be a GGS-group. Then the derived subgroup G^{\prime} consists of all the elements of $\operatorname{Stab}_{G}(1)$ whose total weight is equal to 0 .

Proof. The map ϑ sending each element of $\operatorname{Stab}_{G}(1)$ to its total weight is a homomorphism onto the abelian group \mathbb{F}_{p}, and consequently $G^{\prime} \leq \operatorname{ker} \vartheta$. Since $\left|G: G^{\prime}\right|=p^{2}$ and $\left|G: \operatorname{Stab}_{G}(1)\right|=\left|\operatorname{Stab}_{G}(1): \operatorname{ker} \vartheta\right|=p$, the equality follows.

Definition 2.12. Let G be a GGS-group. If $g \in \operatorname{Stab}_{G}(1)$ has partial weight r_{i} with respect to b_{i} for $i=0, \ldots, p-1$, we say that $\left(r_{0}, \ldots, r_{p-1}\right) \in \mathbb{F}_{p}^{p}$ is the weight vector of g.

As we next see, we can analyze the subgroups $\operatorname{Stab}_{G}(2)$ and $\operatorname{Stab}_{G}(3)$ by using the weight vector.

Theorem 2.13. Let G be a GGS-group with defining vector \mathbf{e}, and put $C=C(\mathbf{e}, 0)$. If the weight vector of $g \in \operatorname{Stab}_{G}(1)$ is $\left(r_{0}, \ldots, r_{p-1}\right)$, then:
(i) We have $g \in \operatorname{Stab}_{G}(2)$ if and only if $\left(r_{0} \ldots r_{p-1}\right) C=(0 \ldots 0)$.
(ii) If $g \in \operatorname{Stab}_{G}(3)$, then $\left(r_{0}, \ldots, r_{p-1}\right)=(0, \ldots, 0)$.

Proof. (i) If we write $\psi(g)$ as in (6), then $g \in \operatorname{Stab}_{G}(2)$ if and only if $m_{i}=0$ in \mathbb{F}_{p} for every $i=1, \ldots, p$. Now, by (7), this is equivalent to the condition $\left(r_{0} \ldots r_{p-1}\right) C=(0 \ldots 0)$.
(ii) Again we use the expression in (6). If $g \in \operatorname{Stab}_{G}(3)$, then $\omega_{i}\left(b_{0}, \ldots, b_{p-1}\right)$ $\in \operatorname{Stab}_{G}(2)$ for all $i=1, \ldots, p$. As mentioned above, $\omega_{i}\left(b_{0}, \ldots, b_{p-1}\right)$ is an element of total weight r_{i}. Let $\left(s_{0}, \ldots, s_{p-1}\right)$ be the weight vector of this element, so that $r_{i}=s_{0}+\cdots+s_{p-1}$. Then, by (i), we have $\left(s_{0} \ldots s_{p-1}\right) C=(0 \ldots 0)$. Since $\operatorname{rk} C=\operatorname{rk}(C \mid \mathbf{1})$ by Lemma 2.7, it follows that $r_{i}=s_{0}+\cdots+s_{p-1}=0$, as desired.

One may wonder whether the converse holds in (ii) of the previous theorem, i.e. if the weight vector of an element is $(0, \ldots, 0)$, does it lie in $\operatorname{Stab}_{G}(3)$? We make things clearer in the following theorem.

Theorem 2.14. Let G be a $G G S$-group. Then $\operatorname{Stab}_{G}(1)^{\prime}$ consists of all elements of $\operatorname{Stab}_{G}(1)$ whose weight vector is $(0, \ldots, 0)$. Furthermore, we have $\left|G: \operatorname{Stab}_{G}(1)^{\prime}\right|=$ p^{p+1}.
Proof. The map ρ which sends every element of $\operatorname{Stab}_{G}(1)$ to its weight vector is a homomorphism onto \mathbb{F}_{p}^{p}. Thus $\left|\operatorname{Stab}_{G}(1): \operatorname{ker} \rho\right|=p^{p}$. Since \mathbb{F}_{p}^{p} is abelian, it follows that $\operatorname{Stab}_{G}(1)^{\prime} \leq \operatorname{ker} \rho$. On the other hand, since $\operatorname{Stab}_{G}(1)=\left\langle b_{0}, \ldots, b_{p-1}\right\rangle$ and every b_{i} has order p, we have $\left|\operatorname{Stab}_{G}(1): \operatorname{Stab}_{G}(1)^{\prime}\right| \leq p^{p}$. Hence ker $\rho=\operatorname{Stab}_{G}(1)^{\prime}$ and $\left|\operatorname{Stab}_{G}(1): \operatorname{Stab}_{G}(1)^{\prime}\right|=p^{p}$. Since $\left|G: \operatorname{Stab}_{G}(1)\right|=p$, we are done.

In particular, we have $\operatorname{Stab}_{G}(3) \leq \operatorname{Stab}_{G}(1)^{\prime}$. Once we prove Theorem A, it will follow that $\left|G: \operatorname{Stab}_{G}(3)\right|=p^{t p+1-\delta}$, where t is the rank of $C(\mathbf{e}, 0)$ and δ is 1 or 0 , according to whether or not \mathbf{e} is symmetric. Since t is always at least 2 , we have $\left|G: \operatorname{Stab}_{G}(3)\right|>p^{p+1}$ in every case. Hence $\operatorname{Stab}_{G}(3)$ is always a proper subgroup of $\operatorname{Stab}_{G}(1)^{\prime}$, and the converse of (ii) in Theorem 2.13 never holds.

Next we prove a result which will allow us to reduce, for the calculation of the order of congruence quotients and of the Hausdorff dimension, to the case of GGS-groups with defining vectors of the form $\mathbf{e}=\left(1, e_{2}, \ldots, e_{p-1}\right)$. We need the following lemma.

Lemma 2.15. Let p be a prime, and let $\sigma=\left(\begin{array}{l}1 \\ 2\end{array} \ldots p\right)$. Assume that $\alpha \in S_{p}$ satisfies the following two conditions:
(i) α normalizes the subgroup $\langle\sigma\rangle$.
(ii) $\alpha(p)=p$.

Then, for every $i=1, \ldots, p-1$, if $\alpha(i)=j$ we have $\alpha(p-i)=p-j$.
Proof. If we think of S_{p} as the set of permutations of the field \mathbb{F}_{p}, then σ corresponds to the map $\ell \mapsto \ell+1$, and the normalizer of $\langle\sigma\rangle$ in S_{p} corresponds to the affine group over \mathbb{F}_{p} (see Lemma 14.1.2 of [7]). Thus $\alpha(\ell)=a \ell+b$ for some $a \in \mathbb{F}_{p}^{\times}$and $b \in \mathbb{F}_{p}$. Since $\alpha(p)=p$, it follows that $b=0$, and so $\alpha(\ell)=a \ell$ for every $\ell \in \mathbb{F}_{p}$. Hence α is a linear map and, as a consequence,

$$
\alpha(p-i)=\alpha(-i)=-\alpha(i)=-j=p-j .
$$

We say that an automorphism f of \mathcal{T} has constant portrait if f has the same label at all vertices of \mathcal{T}. By formula (11) for the labels of a composition, the set of all automorphisms of constant portrait is a subgroup of Aut \mathcal{T}.

Theorem 2.16. Let G be a GGS-group with defining vector $\mathbf{e}=\left(e_{1}, \ldots, e_{p-1}\right)$, and assume that $e_{k} \neq 0$. Then there exists $f \in \operatorname{Aut} \mathcal{T}$ of constant portrait such that $L=G^{f}$ is a GGS-group whose defining vector $\mathbf{e}^{\prime}=\left(e_{1}^{\prime}, \ldots, e_{p-1}^{\prime}\right)$ satisfies:
(i) \mathbf{e}^{\prime} is a permutation of the vector \mathbf{e} / e_{k}, that is, there exists $\alpha \in S_{p-1}$ such that $e_{i}^{\prime}=e_{\alpha(i)} / e_{k}$ for all $i=1, \ldots, p-1$.
(ii) $\alpha(1)=k$, and so $e_{1}^{\prime}=1$.
(iii) If $\alpha(i)=j$, then $\alpha(p-i)=p-j$. In other words, two values which are placed in symmetric positions of \mathbf{e} are moved (after division by e_{k}) to symmetric positions of \mathbf{e}^{\prime}. Thus \mathbf{e}^{\prime} is symmetric if and only if \mathbf{e} is symmetric.
(iv) $\operatorname{rk} C(\mathbf{e}, 0)=\operatorname{rk} C\left(\mathbf{e}^{\prime}, 0\right)$.

Furthermore, we have $\left|G_{n}\right|=\left|L_{n}\right|$ for every n, and $\operatorname{dim}_{\Gamma} \bar{G}=\operatorname{dim}_{\Gamma} \bar{L}$.
Proof. Observe that there exists a permutation $\beta \in S_{p}$, in fact only one, that normalizes the subgroup $\langle\sigma\rangle$ and such that $\beta(k)=1$ and $\beta(p)=p$. Indeed, since $\sigma^{\beta}=(\beta(1) \ldots \beta(p))$ and the positions of 1 and p are already fixed in this last tuple, there is only one way to choose the rest of the images of β if we want to obtain a power of σ. Let r be defined by the condition $\sigma^{\beta}=\sigma^{r}$, and set $\alpha=\beta^{-1}$. Note that $\alpha(1)=k$ and that, by Lemma 2.15, if $\alpha(i)=j$, then $\alpha(p-i)=p-j$.

Now we define an automorphism f of \mathcal{T} by choosing the labels at all vertices of \mathcal{T} equal to β. We claim that $L=G^{f}$ satisfies the properties of the statement of the theorem. We have

$$
\left(g^{f}\right)_{(v)}=\beta^{-1} g_{\left(f^{-1}(v)\right)} \beta
$$

for every $g \in G$ and every vertex v of the tree. It readily follows that $a^{f}=a^{r}$. We now consider $c=b^{f}$. Let S be the set of all vertices of the form $p .{ }^{n}$.pi, where $n \geq 0$ and $1 \leq i \leq p-1$. If $v \in S$, then we have $f(v)=p \cdot n \cdot p \beta(i)$, and consequently $f^{-1}(v)=p \cdot \stackrel{n}{n} \cdot p \alpha(i)$. Thus

$$
c_{(v)}=\beta^{-1} b_{(p \ldots p \alpha(i))} \beta=\left(\sigma^{e_{\alpha(i)}}\right)^{\beta}=\sigma^{r e_{\alpha(i)}}
$$

in this case. On the other hand, if $v \notin S$, then also $f^{-1}(v) \notin S$, and so we have $b_{\left(f^{-1}(v)\right)}=1$ and $c_{(v)}=1$. Thus c is the automorphism given by the recursive relation

$$
\psi(c)=\left(a^{r e_{\alpha(1)}}, \ldots, a^{r e_{\alpha(p-1)}}, c\right) .
$$

Now, let ℓ be the inverse of $r e_{\alpha(1)}$ modulo p, and put $b^{\prime}=c^{\ell}$. Then $L=\left\langle a, b^{\prime}\right\rangle$, where b^{\prime} is the automorphism defined by

$$
\psi\left(b^{\prime}\right)=\left(a^{e_{1}^{\prime}}, \ldots, a^{e_{p-1}^{\prime}}, b^{\prime}\right)
$$

i.e. L is the GGS-group with defining vector \mathbf{e}^{\prime}. This proves (i), (ii), and (iii).

Let us now check (iv). If $C=C(\mathbf{e}, 0), C^{\prime}=C\left(\mathbf{e}^{\prime}, 0\right)$ and we define $e_{p}=0$, then

$$
c_{i j}^{\prime}=e_{\alpha(j-i+1)} / e_{k}=e_{\alpha(j)-\alpha(i)+\alpha(1)} / e_{k}=c_{\alpha(i)-\alpha(1)+1, \alpha(j)} / e_{k},
$$

since we know that α is a homomorphism by the proof of Lemma 2.15. (Here, all indices are taken modulo p between 1 and p.) By observing that the maps $i \mapsto \alpha(i)-\alpha(1)+1$ and $j \mapsto \alpha(j)$ are permutations of \mathbb{F}_{p}, we conclude that $\operatorname{rk} C=\operatorname{rk} C^{\prime}$.

Finally, note that, since G and L are conjugate, we clearly have $\left|G_{n}\right|=\left|L_{n}\right|$, and then by (2), also $\operatorname{dim}_{\Gamma} \bar{G}=\operatorname{dim}_{\Gamma} \bar{L}$.

We want to stress the fact that the automorphism f conjugating G to L in the previous theorem has constant portrait. This has nice consequences, such as the following one.

Proposition 2.17. Let J and K be two subgroups of Aut \mathcal{T}, where J is contained in $\operatorname{Stab}(1)$. If $f \in \operatorname{Aut} \mathcal{T}$ has constant portrait, then we have

$$
K \times \stackrel{p}{\cdots} \times K \subseteq \psi(J)
$$

if and only if

$$
K^{f} \times \stackrel{p}{\cdots} \times K^{f} \subseteq \psi\left(J^{f}\right) .
$$

Proof. Since f^{-1} is also an automorphism of constant portrait, it suffices to prove the 'only if' part. Let β be the permutation appearing at all labels of f. Then we can write $f=c h$, where c is the rooted automorphism corresponding to β and $h \in \operatorname{Stab}(1)$ is such that $\psi(h)=(f, \ldots, f)$.

Let us now consider an arbitrary tuple $\left(k_{1}, \ldots, k_{p}\right)$, with $k_{i} \in K$ for every $i=$ $1, \ldots, p$. By hypothesis, there exists $j \in J$ such that $\psi(j)=\left(k_{1}, \ldots, k_{p}\right)$. Then $\psi\left(j^{c}\right)=\left(k_{\beta^{-1}(1)}, \ldots, k_{\beta^{-1}(p)}\right)$, and consequently

$$
\psi\left(j^{f}\right)=\psi\left(j^{c}\right)^{\psi(h)}=\left(k_{\beta^{-1}(1)}, \ldots, k_{\beta^{-1}(p)}\right)^{(f, \ldots, f)}=\left(k_{\beta^{-1}(1)}^{f}, \ldots, k_{\beta^{-1}(p)}^{f}\right) .
$$

Clearly, this implies that $K^{f} \times \cdots \times K^{f} \subseteq \psi\left(J^{f}\right)$.
The previous proposition will be useful when we want to find a branch structure in a GGS-group. The same can be said about the following result.

Proposition 2.18. Let G be a GGS-group, and let L and N be two normal subgroups of G. If $L=\langle X\rangle^{G}$ for a subset X of G, and $(x, 1, \ldots, 1) \in \psi(N)$ for every $x \in X$, then

$$
L \times \stackrel{p}{\cdots} \times L \subseteq \psi(N) .
$$

Proof. By Proposition [2.2, if $g \in G$ there exists $h \in \operatorname{Stab}_{G}(1)$ such that the first component of $\psi(h)$ is g. Since $(x, 1, \ldots, 1) \in \psi(N)$ and N is normal in G, it follows that $\left(x^{g}, 1, \ldots, 1\right) \in \psi(N)$ for every $x \in X$ and $g \in G$. Hence

$$
L \times\{1\} \times \stackrel{p-1}{\cdots} \times\{1\} \subseteq \psi(N)
$$

since $L=\left\langle x^{g} \mid x \in X, g \in G\right\rangle$.
Now, if $\psi(n)=\left(\ell_{1}, \ell_{2}, \ldots, \ell_{p}\right)$, then $\psi\left(n^{a}\right)=\left(\ell_{p}, \ell_{1}, \ldots, \ell_{p-1}\right)$. As a consequence,

$$
\{1\} \times \cdots \times\{1\} \times L \times\{1\} \times \cdots \times\{1\} \subseteq \psi(N)
$$

where L may appear at any position. The result follows.

3. GGS-Groups with non-Constant defining vector

In this section we prove Theorems A and B in the case that the defining vector e of the GGS-group G is not constant. As it turns out, the key is to prove that G has a certain branch structure. We begin by recalling the concepts that we will need about branching in Aut \mathcal{T}.

Definition 3.1. Let G be a self-similar spherically transitive group of automorphisms of a regular tree, and let K be a non-trivial subgroup of $\operatorname{Stab}_{G}(1)$. We say
that G is weakly regular branch over K if

$$
K \times \cdots \times K \subseteq \psi(K)
$$

If furthermore K has finite index in G, we say that G is regular branch over K.
It is well known (and an immediate consequence of Proposition (2.2) that every GGS-group G is self-similar and spherically transitive. We next see that, if \mathbf{e} is not constant, then G is regular branch over $\gamma_{3}(G)$.
Lemma 3.2. Let G be a GGS-group with non-constant defining vector. Then

$$
\psi\left(\gamma_{3}\left(\operatorname{Stab}_{G}(1)\right)\right)=\gamma_{3}(G) \times \stackrel{p}{\cdots} \times \gamma_{3}(G) .
$$

In particular,

$$
\gamma_{3}(G) \times \stackrel{p}{\cdots} \times \gamma_{3}(G) \subseteq \psi\left(\gamma_{3}(G)\right),
$$

and G is a regular branch group over $\gamma_{3}(G)$.
Proof. Since $\psi\left(\operatorname{Stab}_{G}(1)\right)$ is contained in $G \times \cdots{ }^{p} \times G$, it clearly suffices to prove the inclusion \supseteq. By Theorem 2.16 and Proposition 2.17 we may assume that $\mathbf{e}=\left(1, e_{2}, \ldots, e_{p-1}\right)$. If $e_{p-1}=0$, then

$$
\psi(b)=\left(a, \ldots, a^{e_{p-2}}, 1, b\right),
$$

and consequently

$$
\psi\left(\left[b_{0}, b_{1}, b_{0}\right]\right)=([a, b, a], 1, \ldots, 1)
$$

and

$$
\psi\left(\left[b_{0}, b_{1}, b_{1}\right]\right)=([a, b, b], 1, \ldots, 1)
$$

Since $G=\langle a, b\rangle$, it follows that $\gamma_{3}(G)=\langle[a, b, a],[a, b, b]\rangle^{G}$, and then by Proposition 2.18, we have $\gamma_{3}(G) \times \cdots \times \gamma_{3}(G) \subseteq \psi\left(\gamma_{3}\left(\operatorname{Stab}_{G}(1)\right)\right)$. Thus we may assume that $e_{p-1} \neq 0$.

Now we consider the following two cases separately:
(i) There exists $k \in\{2, \ldots, p-2\}$ such that $\left(e_{k-1}, e_{k}\right)$ and $\left(e_{k}, e_{k+1}\right)$ are not proportional.
(ii) $\left(e_{k-1}, e_{k}\right)$ and $\left(e_{k}, e_{k+1}\right)$ are proportional for all $k=2, \ldots, p-2$.

Observe that if $p=3$, then case (ii) vacuously holds.
(i) Let us put

$$
g_{k}=b_{p-k+1}^{e_{k}} b_{p-k}^{-e_{k-1}}
$$

for $2 \leq k \leq p-2$, so that

$$
\psi\left(g_{k}\right)=\left(a^{e_{k}^{2}-e_{k-1} e_{k+1}}, \ldots, 1\right) .
$$

(The intermediate values represented by the dots are not necessarily 1 in this case.) Since $\left(e_{k-1}, e_{k}\right)$ and $\left(e_{k}, e_{k+1}\right)$ are not proportional, we have $e_{k}^{2}-e_{k-1} e_{k+1} \neq 0$. Hence there is a power g of g_{k} such that

$$
\psi(g)=(a, \ldots, 1)
$$

On the other hand, since

$$
\psi\left(b_{1} b_{p-1}^{-e_{p-1}}\right)=\left(b a^{-e_{2} e_{p-1}}, \ldots, 1\right),
$$

with the help of g we can get an element $h \in \operatorname{Stab}_{G}(1)$ such that

$$
\psi(h)=(b, \ldots, 1) .
$$

Consequently,

$$
\psi\left(\left[b_{0}, b_{1}, g\right]\right)=([a, b, a], 1, \ldots, 1)
$$

and

$$
\psi\left(\left[b_{0}, b_{1}, h\right]\right)=([a, b, b], 1, \ldots, 1),
$$

and the result follows as before from Proposition 2.18,
(ii) Since $e_{1}=1$, it follows that $e_{i}=e_{2}^{i-1}$ for every $i=1, \ldots, p-1$. (Note that this is valid all the same if $p=3$.) Hence $\mathbf{e}=\left(1, m, m^{2}, \ldots, m^{p-2}\right)$ with $m \neq 1$, because \mathbf{e} is not constant. Since $e_{p-1} \neq 0$, we also have $m \neq 0$, and consequently $m^{p-1}=1$. Then

$$
\psi\left(b_{0} b_{1}^{-m}\right)=\left(a b^{-m}, 1, \ldots, 1, b a^{-1}\right)
$$

and

$$
\psi\left(b_{1} b_{2}^{-m}\right)=\left(b a^{-1}, a b^{-m}, 1, \ldots, 1\right) .
$$

Hence

$$
\psi\left(\left[b_{0}, b_{1}, b_{1} b_{2}^{-m}\right]\right)=\left(\left[a, b, b a^{-1}\right], 1, \ldots, 1\right)
$$

and

$$
\psi\left(\left[b_{2}^{m}, b_{1}, b_{0} b_{1}^{-m}\right]\right)=\left(\left[a, b, a b^{-m}\right], 1, \ldots, 1\right)
$$

Now, since $G^{\prime}=\langle[a, b]\rangle^{G}$ and $\left\langle a b^{-m}, b a^{-1}\right\rangle=\left\langle b^{1-m}, b a^{-1}\right\rangle$ is the whole of G (at this point, it is essential that $m \neq 1$), it follows that

$$
\gamma_{3}(G)=\left\langle\left[a, b, a b^{-m}\right],\left[a, b, b a^{-1}\right]\right\rangle^{G} .
$$

Thus the result is again a consequence of Proposition 2.18.
As a consequence of the previous lemma, we can show that, for e non-constant and $n \geq 3$, there is a close relation between $\operatorname{Stab}_{G}(n)$ and $\operatorname{Stab}_{G}(n-1)$ in a GGS-group G.

Lemma 3.3. Let G be a GGS-group with non-constant defining vector \mathbf{e}. Then, for every $n \geq 3$ we have

$$
\psi\left(\operatorname{Stab}_{G}(n)\right)=\operatorname{Stab}_{G}(n-1) \times \stackrel{p}{\cdots} \times \operatorname{Stab}_{G}(n-1)
$$

and

$$
\psi_{n+1}\left(\operatorname{Stab}_{G_{n+1}}(n)\right)=\operatorname{Stab}_{G_{n}}(n-1) \times \stackrel{p}{\cdots} \times \operatorname{Stab}_{G_{n}}(n-1) .
$$

Proof. Clearly, it suffices to prove the first equality. By using Corollary 2.5 and Lemma 3.2 we have

$$
\operatorname{Stab}_{G}(2) \times \stackrel{p}{\cdots} \times \operatorname{Stab}_{G}(2) \subseteq \gamma_{3}(G) \times \stackrel{p}{\cdots} \times \gamma_{3}(G)=\psi\left(\gamma_{3}\left(\operatorname{Stab}_{G}(1)\right)\right) .
$$

Thus $\operatorname{Stab}_{G}(n-1) \times \cdots \times \operatorname{Stab}_{G}(n-1)$ is contained in the image of $\operatorname{Stab}_{G}(1)$ under ψ for all $n \geq 3$, and the result follows.

If the vector \mathbf{e} is non-symmetric, we can improve Lemma 3.2 as follows.
Lemma 3.4. Let G be a GGS-group with non-symmetric defining vector. Then

$$
\begin{equation*}
\psi\left(\operatorname{Stab}_{G}(1)^{\prime}\right)=G^{\prime} \times \stackrel{p}{\cdots} \times G^{\prime} \tag{9}
\end{equation*}
$$

In particular,

$$
G^{\prime} \times \stackrel{p}{\cdots} \times G^{\prime} \subseteq \psi\left(G^{\prime}\right),
$$

and G is a regular branch group over G^{\prime}.

Proof. Observe that we only need to care about the inclusion \supseteq. By Theorem 2.16 and Proposition 2.17 we may assume that $e_{1}=1$ and $e_{p-1} \neq 1$, since \mathbf{e} is non-symmetric. Let us write m for e_{p-1}.

By using (3), we get

$$
\begin{aligned}
\psi\left(\left[b_{0}, b_{1}\right]\right) & =\left([a, b], 1, \ldots, 1,\left[b, a^{m}\right]\right) \\
& \equiv\left([a, b], 1, \ldots, 1,[a, b]^{-m}\right) \quad\left(\bmod \gamma_{3}(G) \times \stackrel{p}{\cdots} \times \gamma_{3}(G)\right), \\
\psi\left(\left[b_{p-1}, b_{0}\right]^{m}\right) & =\left(1, \ldots, 1,\left[b, a^{m}\right]^{m},[a, b]^{m}\right) \\
& \equiv\left(1, \ldots, 1,[a, b]^{-m^{2}},[a, b]^{m}\right) \quad\left(\bmod \gamma_{3}(G) \times \cdots \cdots \times \gamma_{3}(G)\right), \\
& \vdots \\
\psi\left(\left[b_{1}, b_{2}\right]^{m^{p-1}}\right) & =\left(\left[b, a^{m}\right]^{m^{p-1}},[a, b]^{m^{p-1}}, 1, \ldots, 1\right) \\
& \equiv\left([a, b]^{-m^{p}},[a, b]^{m^{p-1}}, 1, \ldots, 1\right) \quad\left(\bmod \gamma_{3}(G) \times \cdots \cdots \gamma_{3}(G)\right) .
\end{aligned}
$$

Since $m^{p}=m$ (recall that $m \in \mathbb{F}_{p}$), if we multiply together all the expressions above, we obtain that

$$
\begin{aligned}
\psi\left(\left[b_{0}, b_{1}\right]\left[b_{p-1}, b_{0}\right]^{m} \ldots\left[b_{1}, b_{2}\right]^{m^{p-1}}\right) \equiv\left([a, b]^{1-m}, 1,\right. & \ldots, 1) \\
& \left(\bmod \gamma_{3}(G) \times \stackrel{p}{\cdots} \times \gamma_{3}(G)\right) .
\end{aligned}
$$

If we use the inclusion

$$
\gamma_{3}(G) \times \stackrel{p}{\cdots} \times \gamma_{3}(G) \subseteq \psi\left(\operatorname{Stab}_{G}(1)^{\prime}\right),
$$

which is a consequence of Lemma 3.2, we get

$$
\left([a, b]^{1-m}, 1, \ldots, 1\right) \in \psi\left(\operatorname{Stab}_{G}(1)^{\prime}\right)
$$

Now, since $G=\langle a, b\rangle$ and $m \neq 1$, it follows that G^{\prime} is the normal closure of $[a, b]^{1-m}$. By Proposition [2.18, we conclude that $G^{\prime} \times \cdots \times G^{\prime} \subseteq \psi\left(\operatorname{Stab}_{G}(1)^{\prime}\right)$.

If \mathbf{e} is symmetric non-constant, then equality (9) does not hold, but we are able to measure how far $G^{\prime} \times \stackrel{p}{\cdots} \times G^{\prime}$ is from $\psi\left(\operatorname{Stab}_{G}(1)^{\prime}\right)$.

Lemma 3.5. Let G be a GGS-group with symmetric non-constant defining vector. Then

$$
\left|G^{\prime} \times \stackrel{p}{2}^{p} \times G^{\prime}: \psi\left(\operatorname{Stab}_{G}(1)^{\prime}\right)\right|=p .
$$

Proof. Since $\operatorname{Stab}_{G}(1)=\left\langle b_{0}, b_{1}, \ldots, b_{p-1}\right\rangle$, it follows that

$$
\begin{equation*}
\operatorname{Stab}_{G}(1)^{\prime}=\left\langle\left[b_{i}, b_{j}\right]^{h} \mid 0 \leq i, j \leq p-1, h \in \operatorname{Stab}_{G}(1)\right\rangle . \tag{10}
\end{equation*}
$$

Let $\bar{\psi}$ be the map from $\operatorname{Stab}_{G}(1)^{\prime}$ to $G^{\prime} / \gamma_{3}(G) \times \stackrel{p}{\cdots} \times G^{\prime} / \gamma_{3}(G)$ which is obtained by first applying ψ and then reducing every component modulo $\gamma_{3}(G)$. Observe that $G^{\prime} / \gamma_{3}(G) \times \stackrel{p}{x}^{p} \times G^{\prime} / \gamma_{3}(G)$ can be seen as a vector space of dimension p over \mathbb{F}_{p}, since $\left|G^{\prime}: \gamma_{3}(G)\right|=p$. Since we may assume that $e_{1}=1$, and since $e_{p-1}=e_{1}$, we have

$$
\psi\left(\left[b_{i}, b_{i+1}\right]\right)=(1, \ldots, 1,[b, a],[a, b], 1, \ldots, 1), \quad \text { for } i=1, \ldots, p-1,
$$

where $[b, a]$ appears at the i th position. Now, $G^{\prime} / \gamma_{3}(G)$ is generated by the image of $[b, a]$, and so it readily follows that the dimension of $\bar{\psi}\left(\operatorname{Stab}_{G}(1)^{\prime}\right)$ is at least $p-1$.

Hence

$$
\left|G^{\prime} \times \cdots \times G^{\prime}: \psi\left(\operatorname{Stab}_{G}(1)^{\prime}\right)\left(\gamma_{3}(G) \times \cdots \times \gamma_{3}(G)\right)\right|=1 \text { or } p .
$$

Since $\gamma_{3}(G) \times \cdots \times \gamma_{3}(G) \leq \psi\left(\operatorname{Stab}_{G}(1)^{\prime}\right)$ by Lemma 3.2, we get

$$
\left|G^{\prime} \times \cdots \times G^{\prime}: \psi\left(\operatorname{Stab}_{G}(1)^{\prime}\right)\right|=1 \text { or } p
$$

Thus it suffices to see that $([a, b], 1, \ldots, 1) \notin \psi\left(\operatorname{Stab}_{G}(1)^{\prime}\right)$ in order to conclude that $\left|G^{\prime} \times \cdots \times G^{\prime}: \psi\left(\operatorname{Stab}_{G}(1)^{\prime}\right)\right|=p$, as desired.

Let $\lambda: \operatorname{Stab}_{G}(1) \longrightarrow \mathbb{F}_{p}$ be the homomorphism given by

$$
g \longmapsto \sum_{i=0}^{p-1} i r_{i}
$$

where $\left(r_{0}, \ldots, r_{p-1}\right)$ is the weight vector of g. If $g \in \operatorname{Stab}_{G}(1)$, then the weight vector of g^{b} is also $\left(r_{0}, \ldots, r_{p-1}\right)$, and the weight vector of g^{a} is $\left(r_{p-1}, r_{0}, \ldots, r_{p-2}\right)$. Hence $\lambda\left(g^{b}\right)=\lambda(g)$, and if $g \in G^{\prime}$, then furthermore

$$
\lambda\left(g^{a}\right)=\sum_{i=0}^{p-1} i r_{i-1}=\sum_{i=0}^{p-1} r_{i-1}+\sum_{i=0}^{p-1}(i-1) r_{i-1}=\lambda(g),
$$

since $r_{0}+\cdots+r_{p-1}=0$ by Theorem 2.11. It follows that $\lambda\left(g^{h}\right)=\lambda(g)$ for every $g \in G^{\prime}$ and $h \in G$.

Now we define $\Lambda: G^{\prime} \times \cdots \times G^{\prime} \longrightarrow \mathbb{F}_{p}$ by means of

$$
\Lambda\left(g_{1}, \ldots, g_{p}\right)=\lambda\left(g_{1}\right)+\cdots+\lambda\left(g_{p}\right)
$$

By the preceding paragraph, we have

$$
\Lambda\left(g^{h}\right)=\Lambda(g), \quad \text { for all } g \in G^{\prime} \times \cdots \times G^{\prime} \text { and } h \in G \times \cdots \times G
$$

Hence ker Λ is a normal subgroup of $G \times \cdots \times G$.
For every $1 \leq i<j \leq p$, we have

$$
\begin{aligned}
\psi\left(\left[b_{i}, b_{j}\right]\right)=\left(1, \ldots, 1,\left[b, a^{e_{i-j}}\right],\right. & \left.1, \ldots, 1,\left[a^{e_{j-i}}, b\right], 1, \ldots, 1\right) \\
& =\left(1, \ldots, 1, b_{0}^{-1} b_{e_{i-j}}, 1, \ldots, 1, b_{e_{j-i}}^{-1} b_{0}, 1, \ldots, 1\right)
\end{aligned}
$$

where the non-trivial components are at positions i and j. Since \mathbf{e} is symmetric, we have $e_{i-j}=e_{j-i}$, and consequently

$$
\Lambda\left(\psi\left(\left[b_{i}, b_{j}\right]\right)\right)=e_{i-j}-e_{j-i}=0
$$

Hence $\psi\left(\left[b_{i}, b_{j}\right]\right) \in \operatorname{ker} \Lambda$, and since $\operatorname{ker} \Lambda$ is a normal subgroup of $G \times \cdots \times G$, it follows from (10) that $\psi\left(\operatorname{Stab}_{G}(1)^{\prime}\right) \leq \operatorname{ker} \Lambda$. Since

$$
\Lambda([a, b], 1, \ldots, 1)=\Lambda\left(b_{1}^{-1} b_{0}, 1, \ldots, 1\right)=-1
$$

we deduce that $([a, b], 1, \ldots, 1) \notin \psi\left(\operatorname{Stab}_{G}(1)^{\prime}\right)$, which completes the proof.
Now we can proceed to calculate the order of G_{n} for every $n \geq 1$, and the Hausdorff dimension of \bar{G} in Γ, provided that the defining vector \mathbf{e} is not constant. We will use the following result of Šunić (see [18, Proposition 6]).

Theorem 3.6. Let G be an infinite self-similar subgroup of Γ, and assume that, for some $m \geq 1$, we have

$$
\psi\left(\operatorname{Stab}_{G}(n)\right)=\operatorname{Stab}_{G}(n-1) \times \stackrel{p}{\cdots} \times \operatorname{Stab}_{G}(n-1)
$$

for every $n>m$. If $\left|G_{m}\right|=p^{r /(p-1)}$ and $\left|G \times \stackrel{p}{\cdots} \times G: \psi\left(\operatorname{Stab}_{G}(1)\right)\right|=p^{s}$, then

$$
\log _{p}\left|G_{n}\right|=\frac{r-s+1}{p-1} p^{n-m}+\frac{s-1}{p-1}
$$

for every $n \geq m$, and the Hausdorff dimension of \bar{G} in Γ is $(r-s+1) / p^{m}$.
We first deal with the case when \mathbf{e} is not symmetric, and then we consider GGS-groups with e symmetric but not constant.

Theorem 3.7. Let G be a GGS-group with non-symmetric defining vector \mathbf{e}. Then

$$
\log _{p}\left|G_{n}\right|=t p^{n-2}+1, \quad \text { for every } n \geq 2
$$

where t is the rank of $C(\mathbf{e}, 0)$, and

$$
\operatorname{dim}_{\Gamma} \bar{G}=\frac{(p-1) t}{p^{2}}
$$

Proof. We apply Theorem [3.6, Let m, r, and s be as in the statement of that theorem. By Lemma 3.3, we can take $m=2$. On the other hand, by Theorem [2.4, we have $r=(t+1)(p-1)$. Finally, observe that

$$
\begin{aligned}
\left|G \times \stackrel{p}{9} \times G: \psi\left(\operatorname{Stab}_{G}(1)\right)\right| & =\frac{\left|G \times \cdot \stackrel{p}{\cdot} \times G: \psi\left(\operatorname{Stab}_{G}(1)^{\prime}\right)\right|}{\left|\psi\left(\operatorname{Stab}_{G}(1)\right): \psi\left(\operatorname{Stab}_{G}(1)^{\prime}\right)\right|} \\
& =\frac{\left|G \times \stackrel{p}{\cdot} \times G: G^{\prime} \times \stackrel{p}{\cdot} \times G^{\prime}\right|}{\left|\operatorname{Stab}_{G}(1): \operatorname{Stab}_{G}(1)^{\prime}\right|}=\frac{p^{2 p}}{p^{p}}=p^{p}
\end{aligned}
$$

by using (9) and Theorem 2.14. Consequently $s=p$, and the result follows.
We can similarly prove the following theorem, by using Lemma 3.5 instead of (9).

Theorem 3.8. Let G be a GGS-group with non-constant symmetric defining vector e. Then

$$
\log _{p}\left|G_{n}\right|=t p^{n-2}+1-\frac{p^{n-2}-1}{p-1}, \quad \text { for every } n \geq 2
$$

where t is the rank of $C(\mathbf{e}, 0)$, and

$$
\operatorname{dim}_{\Gamma} \bar{G}=\frac{(p-1) t-1}{p^{2}} .
$$

4. GGS-Groups with constant defining vector

In this section, we deal with the case where the defining vector is constant, say $\mathbf{e}=(e, \ldots, e)$, where $e \in \mathbb{F}_{p}^{\times}$. Let m be the inverse of e in \mathbb{F}_{p}^{\times}, and $b^{*}=b^{m}$. Then $G=\left\langle a, b^{*}\right\rangle$, and $\psi\left(b^{*}\right)=\left(a, \ldots, a, b^{*}\right)$. For this reason, we may assume in the remainder of this section that $\mathbf{e}=(1, \ldots, 1)$.

We begin by defining a sequence of elements of G that will be fundamental in the sequel. We put $y_{0}=b a^{-1}$ and, more generally, $y_{i}=y_{0}^{a^{i}}$ for every integer i. Thus $y_{i}^{a^{j}}=y_{i+j}$ for all $i, j \in \mathbb{Z}$. Also,

$$
\begin{equation*}
y_{i}^{b}=y_{i}^{a a^{-1} b}=y_{i+1}^{y_{1}} . \tag{11}
\end{equation*}
$$

Observe that $y_{i}=y_{j}$ if $i \equiv j(\bmod p)$, so that the set $\left\{y_{0}, \ldots, y_{p-1}\right\}$ already contains all the y_{i}. In the following lemma, we collect some important properties of the elements y_{i}. We adopt the following convention: given a vector v of length
p and an integer i, not lying in the range $\{1, \ldots, p\}$, the i th position of v is to be understood as the j th position, where $j \in\{1, \ldots, p\}$ and $i \equiv j(\bmod p)$.
Lemma 4.1. Let G be a GGS-group with constant defining vector. Then:
(i) $y_{p-1} y_{p-2} \ldots y_{1} y_{0}=1$.
(ii) If z_{i} is the tuple of length p having y_{2} at position $i-2, y_{1}^{-1}$ at position $i-1$, and 1 elsewhere, then

$$
\begin{equation*}
\psi\left(\left[y_{i}, y_{j}\right]\right)=z_{i} z_{j}^{-1}, \quad \text { for every } i \text { and } j \tag{12}
\end{equation*}
$$

(iii) We have

$$
\begin{equation*}
\left[y_{i}, y_{j}\right]=\left[y_{i}, y_{i-1}\right]\left[y_{i-1}, y_{i-2}\right] \ldots\left[y_{j+1}, y_{j}\right], \quad \text { for every } i>j \tag{13}
\end{equation*}
$$

Proof. (i) We have

$$
\begin{aligned}
& y_{p-1} y_{p-2} \ldots y_{1} y_{0}=a^{-(p-1)} b a^{p-2} \cdot a^{-(p-2)} b a^{p-3} \ldots a^{-1} b \cdot b a^{-1} \\
& \quad=a^{-(p-1)} b^{p} a^{-1}=1
\end{aligned}
$$

(ii) Clearly, it is enough to see the result for $i>j$. On the other hand, since both sequences $\left\{y_{i}\right\}$ and $\left\{z_{i}\right\}$ are periodic of period p, we may assume that i and j lie in the set $\{3, \ldots, p+2\}$. If $r=j-3$ and $k=i-r$, then

$$
\left[y_{i}, y_{j}\right]=\left[y_{k}^{a^{r}}, y_{3}^{a^{r}}\right]=\left[y_{k}, y_{3}\right]^{a^{r}}
$$

and so $\psi\left(\left[y_{i}, y_{j}\right]\right)$ is the result of applying to $\psi\left(\left[y_{k}, y_{3}\right]\right)$ the permutation which moves every element r positions to the right. It readily follows that it suffices to prove (12) for $\left[y_{k}, y_{3}\right]$ with $4 \leq k \leq p+2$.

Since $y_{i}=a^{-i} b a^{i-1}=a^{-1} b_{i-1}$ for every i, we have

$$
\begin{equation*}
\left[y_{k}, y_{3}\right]=b_{k-1}^{-1} a b_{2}^{-1} b_{k-1} a^{-1} b_{2}=b_{k-1}^{-1} b_{1}^{-1} b_{k-2} b_{2}=\left(b_{1}^{-1} b_{k-2}\right)^{b_{k-1}}\left(b_{k-1}^{-1} b_{2}\right) \tag{14}
\end{equation*}
$$

Now, it follows from (3) that

$$
\begin{aligned}
\psi\left(\left(b_{1}^{-1} b_{k-2}\right)^{b_{k-1}}\right)=\left(y_{1}^{-1}, 1,\right. & \left.\stackrel{k-4}{\ldots}, 1, y_{1}, 1, \ldots, 1\right)^{(a, \ldots-2, a, b, a, \ldots, a)} \\
& = \begin{cases}\left(y_{2}^{-1}, 1, k-4,1, y_{2}, 1, \ldots, 1\right), & \text { if } 4 \leq k \leq p+1 \\
\left(y_{1}^{-1} y_{2}^{-1} y_{1}, 1, \ldots, 1, y_{2}\right), & \text { if } k=p+2\end{cases}
\end{aligned}
$$

Here, we have used the fact that $y_{1}^{b}=y_{2}^{y_{1}}$ by (11). Similarly,

$$
\psi\left(b_{k-1}^{-1} b_{2}\right)= \begin{cases}\left(1, y_{1}, 1, k-4,1, y_{1}^{-1}, 1, \ldots, 1\right), & \text { if } 4 \leq k \leq p+1 \\ \left(y_{1}^{-1}, y_{1}, 1, \ldots, 1\right), & \text { if } k=p+2\end{cases}
$$

By taking these values to (14), we obtain that $\psi\left(\left[y_{k}, y_{3}\right]\right)=z_{k} z_{3}^{-1}$, as desired.
(iii) This follows immediately from (ii), since

$$
\begin{aligned}
\psi\left(\left[y_{i}, y_{j}\right]\right) & =\left(z_{i} z_{i-1}^{-1}\right)\left(z_{i-1} z_{i-2}^{-1}\right) \ldots\left(z_{j+1} z_{j}^{-1}\right) \\
& =\psi\left(\left[y_{i}, y_{i-1}\right]\right) \psi\left(\left[y_{i-1}, y_{i-2}\right]\right) \ldots \psi\left(\left[y_{j+1}, y_{j}\right]\right) \\
& =\psi\left(\left[y_{i}, y_{i-1}\right]\left[y_{i-1}, y_{i-2}\right] \ldots\left[y_{j+1}, y_{j}\right]\right)
\end{aligned}
$$

Next we introduce a maximal subgroup K of G that will play a key role in the determination of the order of G_{n} in the case that \mathbf{e} is constant.

Lemma 4.2. Let G be a GGS-group with constant defining vector, and let $K=$ $\left\langle b a^{-1}\right\rangle^{G}$. Then:
(i) $G^{\prime} \leq K$ and $|G: K|=p$.
(ii) $K=\left\langle y_{0}, y_{1}, \ldots, y_{p-1}\right\rangle$ and $K^{\prime}=\left\langle\left[y_{1}, y_{0}\right]\right\rangle^{G}$.
(iii) $K^{\prime} \times \stackrel{p}{\cdots} \times K^{\prime} \subseteq \psi\left(K^{\prime}\right) \subseteq \psi\left(G^{\prime}\right) \subseteq K \times \stackrel{p}{\bullet} \times K$. In particular, G is a weakly regular branch group over K^{\prime}.
(iv) If $L=\psi^{-1}\left(K^{\prime} \times \stackrel{p}{\cdots} \times K^{\prime}\right)\left(\right.$ which, by (iii), is contained in $\left.K^{\prime}\right)$, then the conjugates $\left[y_{i+1}, y_{i}\right]^{b^{j}}$, where $0 \leq i, j \leq p-1$, generate K^{\prime} modulo L.

Proof. (i) Since $\left[a, b a^{-1}\right]=[a, b]^{a^{-1}} \in K$ and K is normal in G, it follows that G^{\prime} is contained in K. Then $|G: K|=\left|G / G^{\prime}: K / G^{\prime}\right|=p$.
(ii) Let us first prove that $K=\left\langle y_{0}, y_{1}, \ldots, y_{p-1}\right\rangle$. For this purpose, it suffices to see that $N=\left\langle y_{0}, y_{1}, \ldots, y_{p-1}\right\rangle$ is a normal subgroup of G. This is clear, since $y_{i}^{a}=y_{i+1}$ and $y_{i}^{b}=y_{i+1}^{y_{1}}$ for every i.

It follows that

$$
K^{\prime}=\left\langle\left[y_{i}, y_{j}\right] \mid 0 \leq j<i \leq p-1\right\rangle^{K}=\left\langle\left[y_{i}, y_{j}\right] \mid 0 \leq j<i \leq p-1\right\rangle^{G},
$$

where the second equality holds because K^{\prime} is normal in G. By (13), every commutator [y_{i}, y_{j}] with $0 \leq j<i \leq p-1$ can be expressed in terms of the [y_{k}, y_{k-1}] with $k=1, \ldots, p-1$. Since $\left[y_{k}, y_{k-1}\right]=\left[y_{1}, y_{0}\right]^{a^{k-1}}$, we conclude that $K^{\prime}=\left\langle\left[y_{1}, y_{0}\right]\right\rangle^{G}$.
(iii) Let us first prove the inclusion $\psi\left(G^{\prime}\right) \subseteq K \times \stackrel{p}{\cdots} \times K$. We have

$$
\begin{aligned}
\psi([b, a])=\psi\left(b^{-1} b^{a}\right)=\left(a^{-1}, a^{-1}, \ldots, a^{-1}\right. & \left., b^{-1}\right)(b, a, \ldots, a, a) \\
& =\left(a^{-1} b, 1, \ldots, 1, b^{-1} a\right) \in K \times \stackrel{p}{p} \times K .
\end{aligned}
$$

Now, since K is normal in G, it readily follows that

$$
\psi\left([b, a]^{g}\right) \in K \times \stackrel{p}{\cdots} \times K, \quad \text { for every } g \in G
$$

This proves the desired inclusion.
Now we focus on proving that $K^{\prime} \times \stackrel{p}{\cdots} \times K^{\prime} \subseteq \psi\left(K^{\prime}\right)$. By Proposition 2.18 and (ii), it suffices to see that

$$
\left(\left[y_{1}, y_{0}\right], 1, \ldots, 1\right) \in \psi\left(K^{\prime}\right) .
$$

We consider the cases $p \geq 5$ and $p=3$ separately.
Suppose first that $p \geq 5$. By using (12), we have

$$
\psi\left(\left[y_{1}, y_{2}\right]\right)=\left(y_{1}, 1, \ldots, 1, y_{2}, y_{1}^{-1} y_{2}^{-1}\right)
$$

and

$$
\psi\left(\left[y_{3}, y_{4}\right]\right)=\left(y_{2}, y_{1}^{-1} y_{2}^{-1}, y_{1}, 1, \ldots, 1\right) .
$$

If $k=\left[\left[y_{3}, y_{4}\right],\left[y_{1}, y_{2}\right]\right]$, it follows that

$$
\psi(k)=\left(\left[y_{2}, y_{1}\right], 1, \ldots, 1\right),
$$

since $p \geq 5$. Hence

$$
\left(\left[y_{1}, y_{0}\right], 1, \ldots, 1\right)=\psi\left(k^{b^{-1}}\right) \in \psi\left(K^{\prime}\right)
$$

as desired.
Assume now that $p=3$. We have

$$
\psi\left(\left[y_{1}, y_{0}\right]\right)=\left(y_{1} y_{0}, y_{0}^{-1}, y_{1}^{-1}\right),
$$

since $y_{2} y_{1} y_{0}=1$, by (i) of Lemma 4.1. Hence

$$
\begin{aligned}
\psi\left(\left[y_{0}, y_{1}\right]^{b}\right) & =\left(y_{0}^{-1} y_{1}^{-1}, y_{0}, y_{1}\right)^{(a, a, b)}=\left(y_{1}^{-1} y_{2}^{-1}, y_{1}, y_{1}^{b}\right) \\
& =\left(\left(y_{2} y_{1}\right)^{-1}, y_{1}, y_{2}^{y_{1}}\right)=\left(y_{0}, y_{1},\left(y_{0}^{-1} y_{1}^{-1}\right)^{y_{1}}\right) \\
& =\left(y_{0}, y_{1}, y_{1}^{-1} y_{0}^{-1}\right),
\end{aligned}
$$

and

$$
\left(\left[y_{1}, y_{0}\right], 1,1\right)=\psi\left(\left[y_{0}, y_{1}\right]^{b a}\left[y_{1}, y_{0}\right]\right) \in \psi\left(K^{\prime}\right)
$$

which completes the proof.
(iv) Let us consider an arbitrary element $g \in G$, and let us write $g=h a^{i} b^{j}$, for some $i, j \in \mathbb{Z}, h \in G^{\prime}$. Then

$$
\left[y_{1}, y_{0}\right]^{g}=\left(\left[y_{1}, y_{0}\right]\left[y_{1}, y_{0}, h\right]\right)^{a^{i} b^{j}} \equiv\left[y_{1}, y_{0}\right]^{a^{i} b^{j}}=\left[y_{i+1}, y_{i}\right]^{b^{j}} \quad(\bmod L)
$$

since $\psi\left(\left[y_{1}, y_{0}, h\right]\right) \in \psi\left(G^{\prime \prime}\right) \subseteq K^{\prime} \times \stackrel{p}{\cdots} \times K^{\prime}$ by (iii). Now, since the conjugates $\left[y_{1}, y_{0}\right]^{g}$ generate K^{\prime} by (ii), the result follows.

In the following results, we consider the action of an element of G by conjugation as an endomorphism of K / K^{\prime}, which allows us to multiply several conjugates of an element of K, modulo K^{\prime}, by adding the elements by which we are conjugating. This gives a meaning to expressions like $g^{1+a+\cdots+a^{p-1}} \in K^{\prime}$ for an element $g \in K$.
Lemma 4.3. Let G be a $G G S$-group with constant defining vector, and let $K=$ $\left\langle b a^{-1}\right\rangle^{G}$. If $g \in K$, then

$$
g^{1+a+\cdots+a^{p-1}} \in K^{\prime} .
$$

Proof. The map R sending $g \in K$ to $g^{1+a+\cdots+a^{p-1}} K^{\prime}$ is a well-defined homomorphism from K to K / K^{\prime}, and we want to see that R is the trivial homomorphism. Since $K=\left\langle y_{0}, \ldots, y_{p-1}\right\rangle$ by (ii) of Lemma 4.2, it suffices to check that $y_{i} \in \operatorname{ker} R$ for every i. Now,

$$
R\left(y_{i}\right)=y_{i} y_{i+1} \ldots y_{p-1} y_{0} \ldots y_{i-1} K^{\prime}=y_{p-1} y_{p-2} \ldots y_{1} y_{0} K^{\prime}=K^{\prime}
$$

by (i) of Lemma 4.1, and we are done.
Lemma 4.4. Let G be a GGS-group with constant defining vector, and let $K=$ $\left\langle b a^{-1}\right\rangle^{G}$. If $g \in K^{\prime}$ and we write $\psi(g)=\left(g_{1}, \ldots, g_{p}\right)$, then:
(i) $g_{p} g_{p-1} \ldots g_{1} \in K^{\prime}$.
(ii) $\prod_{i=1}^{p-1} g_{i}^{a+a^{2}+\cdots+a^{i}} \in K^{\prime}$.

Similarly, if

$$
g \in K^{\prime} \operatorname{Stab}_{G}(n)
$$

for some $n \geq 1$, then $g_{p} g_{p-1} \ldots g_{1}$ and $\prod_{i=1}^{p-1} g_{i}^{a+a^{2}+\cdots+a^{i}}$ lie in $K^{\prime} \operatorname{Stab}_{G}(n-1)$.
Proof. We first deal with the case that $g \in K^{\prime}$. Let us consider the following two maps:

$$
\begin{aligned}
& P: K \times \stackrel{p}{\cdots} \times K \quad \longrightarrow \quad K / K^{\prime} \\
& \left(g_{1}, \ldots, g_{p}\right) \longmapsto g_{p} \ldots g_{1} K^{\prime},
\end{aligned}
$$

and

$$
\begin{array}{rllc}
Q: K \times \stackrel{p}{2}^{2} \times K & \longrightarrow & K / K^{\prime} \\
& \left(g_{1}, \ldots, g_{p}\right) & \longmapsto & \prod_{i=1}^{p-1} g_{i}^{a+a^{2}+\cdots+a^{i}} K^{\prime} .
\end{array}
$$

Clearly, P and Q are homomorphisms. By (iii) of Lemma 4.2, $\psi\left(K^{\prime}\right)$ is contained in the domain of P and Q, and our goal is to prove that it is actually in the kernels
of these maps. Since the image of $K^{\prime} \times{ }^{p} \times K^{\prime}$ is trivial, it suffices to see that $\psi(g) \in \operatorname{ker} P$ and $\psi(g) \in \operatorname{ker} Q$ for every g in a system of generators of K^{\prime} modulo L, where $L=\psi^{-1}\left(K^{\prime} \times \stackrel{p}{\cdots} \times K^{\prime}\right)$. By (iv) of Lemma4.2, the conjugates $\left[y_{i+1}, y_{i}\right]^{b^{j}}$, for $i, j=0, \ldots, p-1$, constitute such a set of generators.

Let $c \in \Gamma$ be defined by means of $\psi(c)=(a, a, \ldots, a)$. We claim that

$$
\begin{equation*}
g^{b} \equiv g^{c} \quad(\bmod L), \quad \text { for every } g \in K^{\prime} \tag{15}
\end{equation*}
$$

Indeed, we have $\psi(b)=\psi(c)\left(1, \ldots, 1, a^{-1} b\right)$, and so

$$
\begin{aligned}
& \psi\left(g^{b}\right)=\psi\left(g^{c}\right)^{\left(1, \ldots, 1, a^{-1} b\right)}=\psi\left(g^{c}\right)\left[\psi\left(g^{c}\right),\left(1, \ldots, 1, a^{-1} b\right)\right] \\
& \equiv \psi\left(g^{c}\right)\left(\bmod K^{\prime} \times \cdots \stackrel{p}{\cdots} \times K^{\prime}\right)
\end{aligned}
$$

As a consequence of (15), it suffices to see that $\psi\left(\left[y_{i+1}, y_{i}\right]^{j}\right)$ lies in both ker P and $\operatorname{ker} Q$. Since

$$
P\left(\psi\left(\left[y_{i+1}, y_{i}\right]^{c^{j}}\right)\right)=P\left(\psi\left(\left[y_{i+1}, y_{i}\right]\right)\right)^{a^{j}}
$$

and

$$
Q\left(\psi\left(\left[y_{i+1}, y_{i}\right]^{c^{j}}\right)\right)=Q\left(\psi\left(\left[y_{i+1}, y_{i}\right]\right)\right)^{a^{j}}
$$

we have reduced ourselves to proving that $\psi\left(\left[y_{i+1}, y_{i}\right]\right)$ is in the kernel of P and Q for every i. According to (12), we have $\psi\left(\left[y_{i+1}, y_{i}\right]\right)=z_{i+1} z_{i}^{-1}$, with z_{i} as defined in Lemma 4.1. Now, one can easily check that

$$
P\left(z_{i}\right)=y_{1}^{-1} y_{2} K^{\prime} \quad \text { and } \quad Q\left(z_{i}\right)=y_{2}^{-1} K^{\prime} \quad \text { for every } i
$$

where in the case of Q and $i=1$ we need to use the fact that

$$
y_{2}^{a+a^{2}+\cdots+a^{p-1}} \equiv y_{2}^{-1} \quad\left(\bmod K^{\prime}\right),
$$

by Lemma 4.3. It readily follows that $\psi\left(\left[y_{i+1}, y_{i}\right]\right)$ lies in both $\operatorname{ker} P$ and $\operatorname{ker} Q$, as desired.

Assume now that $g \in K^{\prime} \operatorname{Stab}_{G}(n)$, and let us write $g=f h$, with $f \in K^{\prime}$ and $h \in \operatorname{Stab}_{G}(n)$. Put $\psi(f)=\left(f_{1}, \ldots, f_{p}\right)$ and $\psi(h)=\left(h_{1}, \ldots, h_{p}\right)$. Since $h_{1}, \ldots, h_{p} \in$ $\operatorname{Stab}_{G}(n-1)$, which is a normal subgroup of G, we have

$$
g_{p} \ldots g_{1}=f_{p} h_{p} \ldots f_{1} h_{1}=f_{p} \ldots f_{1} h^{*}
$$

for some $h^{*} \in \operatorname{Stab}_{G}(n-1)$. Since $f \in K^{\prime}$, we already know that $f_{p} \ldots f_{1} \in K^{\prime}$, and so we conclude that $g_{p} \ldots g_{1} \in K^{\prime} \operatorname{Stab}_{G}(n-1)$, as desired. The second assertion can be proved in a similar way.

Theorem 4.5. Let G be a GGS-group with constant defining vector, and let $K=$ $\left\langle b a^{-1}\right\rangle^{G}$ and $L=\psi^{-1}\left(K^{\prime} \times \stackrel{p}{\cdots} \times K^{\prime}\right)$. Then the following isomorphisms hold:

$$
K^{\prime} / L \cong K / K^{\prime} \times \stackrel{p-2}{\cdots} \times K / K^{\prime}
$$

and

$$
K^{\prime} \operatorname{Stab}_{G}(n) / L \operatorname{Stab}_{G}(n) \cong K / K^{\prime} \operatorname{Stab}_{G}(n-1) \times \stackrel{p-2}{\cdots} \times K / K^{\prime} \operatorname{Stab}_{G}(n-1)
$$

for every $n \geq 3$.

Proof. Let π be the map given by

$$
\begin{aligned}
& K \times \stackrel{p}{2} \times K \longrightarrow \\
&\left(g_{1}, \ldots, g_{p}\right) \longmapsto \\
& \hline\left(g_{1} K^{\prime}, \ldots,{ }_{p}^{\prime} \times g_{p-2} K^{\prime}\right)
\end{aligned}
$$

and let R be the composition of $\psi: K^{\prime} \longrightarrow K \times \stackrel{p}{\cdots} \times K$ with π. If we see that R is surjective, and that ker $R=L$, then the first isomorphism of the statement follows.

Let $g \in K^{\prime}$ be an element lying in ker R. If $\psi(g)=\left(g_{1}, \ldots, g_{p}\right)$, then we have $g_{1}, \ldots, g_{p-2} \in K^{\prime}$. By (ii) of Lemma 4.4, it follows that

$$
g_{p-1}^{a+\cdots+a^{p-1}} \in K^{\prime}
$$

and by applying Lemma4.3, we get $g_{p-1} \in K^{\prime}$. Now, (i) of Lemma 4.4immediately yields that also $g_{p} \in K^{\prime}$. This proves that $\operatorname{ker} R=L$.

Now we prove that

$$
\begin{equation*}
K / K^{\prime} \times\{\overline{1}\} \times \cdots \times\{\overline{1}\} \subseteq R\left(K^{\prime}\right) \tag{16}
\end{equation*}
$$

Then, by arguing as in the proof of Proposition 2.18, it follows that R is surjective. By (12), we have

$$
\psi\left(\left[y_{1}, y_{2}\right]\right)=\left(y_{1}, 1, \ldots, 1, h_{p-1}, h_{p}\right)
$$

for some elements $h_{p-1}, h_{p} \in K$. Hence

$$
\psi\left(\left[y_{1}, y_{2}\right]^{]^{i-1}}\right)=\left(y_{i}, 1, \ldots, 1, h_{p-1}^{*}, h_{p}^{*}\right)
$$

for every i, and we are done, since $K=\left\langle y_{0}, \ldots, y_{p-1}\right\rangle$.
The second isomorphism can be proved in a similar way. Observe that the condition $n \geq 3$ guarantees that $\operatorname{Stab}_{G}(n-1) \leq G^{\prime} \leq K$, so that it makes sense to write $K / K^{\prime} \operatorname{Stab}_{G}(n-1)$. This time consider the homomorphism

$$
\begin{aligned}
\pi_{n}: K \times \stackrel{p}{\cdots} \times K & \longrightarrow K / K^{\prime} \operatorname{Stab}_{G}(n-1) \times \stackrel{p-2}{\cdots} \times K / K^{\prime} \operatorname{Stab}_{G}(n-1) \\
\left(g_{1}, \ldots, g_{p}\right) & \longmapsto\left(g_{1} K^{\prime} \operatorname{Stab}_{G}(n-1), \ldots, g_{p-2} K^{\prime} \operatorname{Stab}_{G}(n-1)\right)
\end{aligned}
$$

and let R_{n} be the composition of $\psi: K^{\prime} \longrightarrow K \times \stackrel{p}{.} \times K$ with π_{n}. Observe that the surjectiveness of R already implies that R_{n} is surjective. Let us prove that ker $R_{n}=L \operatorname{Stab}_{G}(n) \cap K^{\prime}$. The same proof as above, but using the last part of Lemma 4.4 shows that

$$
\begin{aligned}
\psi\left(\operatorname{ker} R_{n}\right)= & \left(K^{\prime} \operatorname{Stab}_{G}(n-1) \times \stackrel{p}{\cdots} \times K^{\prime} \operatorname{Stab}_{G}(n-1)\right) \cap \psi\left(K^{\prime}\right) \\
& =\left(K^{\prime} \times \stackrel{p}{\cdots} \times K^{\prime}\right)\left(\operatorname{Stab}_{G}(n-1) \times \stackrel{p}{\cdots} \times \operatorname{Stab}_{G}(n-1)\right) \cap \psi\left(K^{\prime}\right)
\end{aligned}
$$

$$
\psi\left(\operatorname{ker} R_{n}\right)=\left(K^{\prime} \times \stackrel{p}{\cdots} \times K^{\prime}\right)\left(\left(\operatorname{Stab}_{G}(n-1) \times \cdots \stackrel{p}{\cdots} \times \operatorname{Stab}_{G}(n-1)\right) \cap \psi\left(K^{\prime}\right)\right)
$$

Now, since $n \geq 3$, we have

$$
\begin{aligned}
&\left(\operatorname{Stab}_{G}(n-1) \times \stackrel{p}{\cdots} \times \operatorname{Stab}_{G}(n-1)\right) \cap \psi\left(K^{\prime}\right)=\psi\left(\operatorname{Stab}_{G}(n)\right) \cap \psi\left(K^{\prime}\right) \\
&=\psi\left(\operatorname{Stab}_{G}(n) \cap K^{\prime}\right)
\end{aligned}
$$

and it follows that

$$
\begin{aligned}
\psi\left(\operatorname{ker} R_{n}\right)=\left(K^{\prime} \times \stackrel{p}{\cdots} \times K^{\prime}\right) \psi\left(\operatorname{Stab}_{G}(n) \cap K^{\prime}\right)=\psi(L) & \psi\left(\operatorname{Stab}_{G}(n) \cap K^{\prime}\right) \\
& =\psi\left(L\left(\operatorname{Stab}_{G}(n) \cap K^{\prime}\right)\right) .
\end{aligned}
$$

Hence

$$
\operatorname{ker} R_{n}=L\left(\operatorname{Stab}_{G}(n) \cap K^{\prime}\right)=L \operatorname{Stab}_{G}(n) \cap K^{\prime}
$$

as claimed.
Now, we can readily obtain the desired isomorphism:

$$
\begin{aligned}
K^{\prime} \operatorname{Stab}_{G}(n) / L & \operatorname{Stab}_{G}(n) \cong K^{\prime} /\left(L \operatorname{Stab}_{G}(n) \cap K^{\prime}\right)=K^{\prime} / \operatorname{ker} R_{n} \\
& \cong R_{n}\left(K^{\prime}\right)=K / K^{\prime} \operatorname{Stab}_{G}(n-1) \times \stackrel{p-2}{\cdots} \times K / K^{\prime} \operatorname{Stab}_{G}(n-1)
\end{aligned}
$$

Theorem 4.6. Let G be a GGS-group with constant defining vector, and let $K=$ $\left\langle b a^{-1}\right\rangle^{G}$. Then, for every $n \geq 2$, the quotient $G / K^{\prime} \operatorname{Stab}_{G}(n)$ is a p-group of maximal class of order p^{n+1}.

Proof. For simplicity, let us write $T_{n}=K^{\prime} \operatorname{Stab}_{G}(n), Q_{n}=G / T_{n}$ and $A_{n}=K / T_{n}$ (take into account that $\operatorname{Stab}_{G}(2) \leq G^{\prime} \leq K$). Since $\left|Q_{n}: Q_{n}^{\prime}\right|=\left|G: G^{\prime}\right|=p^{2}$ and A_{n} is an abelian maximal subgroup of Q_{n}, it follows from Lemma 2.3 that Q_{n} is a p-group of maximal class. As a consequence, if we want to prove that $\left|Q_{n}\right|=p^{n+1}$, it suffices to see that the nilpotency class of Q_{n} is n.

We need an auxiliary result. Let $\left\{x_{i}\right\}_{i \geq 1}$ be a sequence of elements of G such that $\left\{x_{1}, x_{2}\right\}=\{a, b\}$ and $x_{i} \in\{a, b\}$ for every $i \geq 3$. We claim that, for every $i \geq 2$, the section $\gamma_{i}\left(Q_{n}\right) / \gamma_{i+1}\left(Q_{n}\right)$ is generated by the image of the commutator $\left[x_{1}, x_{2}, \ldots, x_{i}\right]$. We argue by induction on i. If $i=2$, then we have to show that the image of $[a, b]$ generates $\gamma_{2}\left(Q_{n}\right) / \gamma_{3}\left(Q_{n}\right)$. This follows immediately from (i) in Lemma 2.3, since $[a, b]=\left[a, a^{-1} b\right]$, where $b T_{n} \in Q_{n} \backslash A_{n}$ and $a^{-1} b T_{n}=\left(b a^{-1} T_{n}\right)^{a} \in$ $A_{n} \backslash \gamma_{2}\left(Q_{n}\right)$. Now, if we assume that the result holds for $i-1$, we get it for i by using (ii) of Lemma 2.3

Let us now prove that the class of Q_{n} is n, by induction on n. Assume first that $n=2$. We have

$$
\psi([b, a])=\left(a^{-1} b, 1, \ldots, 1, b^{-1} a\right)
$$

and

$$
\psi([b, a, b])=\left(\left[a^{-1} b, a\right], 1, \ldots, 1,\left[b^{-1} a, b\right]\right)=([b, a], 1, \ldots, 1,[a, b]),
$$

so that $[b, a, b] \in \operatorname{Stab}_{G}(2)$. It follows that the image of $[b, a, b]$ in Q_{2} is trivial. By the previous paragraph, we necessarily have $\gamma_{3}\left(Q_{2}\right)=\gamma_{4}\left(Q_{2}\right)$. Hence $\gamma_{3}\left(Q_{2}\right)=1$, and the class of Q_{2} is at most 2. If Q_{2} is of class 1 , then $[b, a] \in K^{\prime} \operatorname{Stab}_{G}(2)$ and, by Lemma 4.4, $a^{-1} b \in K^{\prime} \operatorname{Stab}_{G}(1)$. Hence $a^{-1} \in \operatorname{Stab}_{G}(1)$, which is a contradiction. Thus Q_{2} is of class 2.

Now we assume the result for $n-1$, and we prove it for n. We have

$$
\psi([b, a, b, \stackrel{n-1}{\because}, b])=([b, a, \stackrel{n-1}{\because \cdot}, a], 1, \ldots, 1,[a, b, \stackrel{n-1}{\because}, b])
$$

and

$$
[b, a, \stackrel{n-1}{-}, a],[a, b, \stackrel{n-1}{\cdots}, b] \in K^{\prime} \operatorname{Stab}_{G}(n-1)
$$

since Q_{n-1} has class $n-1$ by the induction hypothesis. Thus

$$
\begin{equation*}
\psi([b, a, b, \stackrel{n-1}{\cdot}, b]) \in K^{\prime} \operatorname{Stab}_{G}(n-1) \times \stackrel{p}{9}_{\cdots} \times K^{\prime} \operatorname{Stab}_{G}(n-1) \tag{17}
\end{equation*}
$$

Now,

$$
\begin{aligned}
\left(K^{\prime} \operatorname{Stab}_{G}\right. & \left.(n-1) \times \stackrel{p}{9} \times K^{\prime} \operatorname{Stab}_{G}(n-1)\right) \cap \psi(G) \\
& =\left(K^{\prime} \times \stackrel{p}{\cdots} \times K^{\prime}\right)\left(\operatorname{Stab}_{G}(n-1) \times \stackrel{p}{\cdots} \times \operatorname{Stab}_{G}(n-1)\right) \cap \psi(G) \\
& \subseteq \psi\left(K^{\prime}\right)\left(\operatorname{Stab}_{G}(n-1) \times \stackrel{p}{ } \times \operatorname{Stab}_{G}(n-1)\right) \cap \psi(G) \\
& =\psi\left(K^{\prime}\right)\left(\operatorname{Stab}_{G}(n-1) \times \stackrel{p}{p} \times \operatorname{Stab}_{G}(n-1) \cap \psi(G)\right) \\
& =\psi\left(K^{\prime}\right) \psi\left(\operatorname{Stab}_{G}(n)\right)=\psi\left(K^{\prime} \operatorname{Stab}_{G}(n)\right) .
\end{aligned}
$$

It follows that $[b, a, b, \stackrel{n-1}{-}, b] \in K^{\prime} \operatorname{Stab}_{G}(n)$, and so this commutator becomes trivial in Q_{n}. Since the image of this commutator generates the quotient $\gamma_{n+1}\left(Q_{n}\right) /$ $\gamma_{n+2}\left(Q_{n}\right)$, we have $\gamma_{n+1}\left(Q_{n}\right)=1$. Hence the class of Q_{n} is at most n.

If Q_{n} has class strictly less than n, then since the image of $[b, a, b, \stackrel{n-2}{-}, b]$ generates $\gamma_{n}\left(Q_{n}\right) / \gamma_{n+1}\left(Q_{n}\right)$, it follows that

$$
[b, a, b, \stackrel{n-2}{-}, b] \in K^{\prime} \operatorname{Stab}_{G}(n)
$$

Since

$$
\psi([b, a, b, \stackrel{n-2}{\because}, b])=([b, a, \stackrel{n-2}{\because}, a], 1, \ldots, 1,[a, b, \stackrel{n-2}{\because}, b]),
$$

it follows from Lemma 4.4 that

$$
[b, a, \stackrel{n-2}{\bullet}, a] \in K^{\prime} \operatorname{Stab}_{G}(n-1) .
$$

This is a contradiction, since Q_{n-1} is of class $n-1$, and $\gamma_{n-1}\left(Q_{n-1}\right) / \gamma_{n}\left(Q_{n-1}\right)$ is generated by the image of $[b, a, \stackrel{n-2}{-}, a]$. Thus we conclude that the nilpotency class of Q_{n} is n, which completes the proof of the theorem.

Theorem 4.7. Let G be a GGS-group with constant defining vector. Then

$$
\log _{p}\left|G_{n}\right|=p^{n-1}+1-\frac{p^{n-2}-1}{p-1}-\frac{p^{n-2}-(n-2) p+n-3}{(p-1)^{2}},
$$

for every $n \geq 2$, and

$$
\operatorname{dim}_{\Gamma} \bar{G}=\frac{p-2}{p-1} .
$$

Proof. As on previous occasions, the formula for the Hausdorff dimension of \bar{G} is immediate once we obtain $\log _{p}\left|G_{n}\right|$. For that purpose, we argue by induction on n. If $n=2$, then by Theorem [2.4, we have $\log _{p}\left|G_{2}\right|=t+1$, where t is the rank of the matrix $C=C(1, \stackrel{p-1}{\sim}, 1,0)$. By Lemma 2.7, $p-t$ is the multiplicity of 1 as a root in \mathbb{F}_{p} of the polynomial $X^{p-2}+\cdots+X+1$. Thus $t=p$ and $\log _{p}\left|G_{2}\right|=p+1$, as desired.

Assume now that $n \geq 3$. Let $K=\left\langle b a^{-1}\right\rangle^{G}$, and $L=\psi^{-1}\left(K^{\prime} \times \stackrel{p}{\cdots} \times K^{\prime}\right)$. Then we have the following decomposition of the order of G_{n} :

$$
\begin{equation*}
\left|G_{n}\right|=\left|G: K^{\prime} \operatorname{Stab}_{G}(n)\left\|K^{\prime} \operatorname{Stab}_{G}(n): L \operatorname{Stab}_{G}(n)\right\| L \operatorname{Stab}_{G}(n): \operatorname{Stab}_{G}(n)\right| \tag{18}
\end{equation*}
$$

By Theorem4.6, we know that $\left|G: K^{\prime} \operatorname{Stab}_{G}(n)\right|=p^{n+1}$. On the other hand, since

$$
K^{\prime} \operatorname{Stab}_{G}(n) / L \operatorname{Stab}_{G}(n) \cong K / K^{\prime} \operatorname{Stab}_{G}(n-1) \times \stackrel{p-2}{\cdots} \times K / K^{\prime} \operatorname{Stab}_{G}(n-1)
$$

by Theorem 4.5, and since $\left|K / K^{\prime} \operatorname{Stab}_{G}(n-1)\right|=p^{n-1}$ (again by Theorem4.6), it follows that

$$
\left|K^{\prime} \operatorname{Stab}_{G}(n): L \operatorname{Stab}_{G}(n)\right|=p^{(n-1)(p-2)} .
$$

Finally,

$$
\begin{aligned}
\mid L \operatorname{Stab}_{G}(n) & : \operatorname{Stab}_{G}(n)\left|=\left|L: \operatorname{Stab}_{L}(n)\right|=\left|\psi(L): \psi\left(\operatorname{Stab}_{L}(n)\right)\right|\right. \\
& =\left|K^{\prime} \times \stackrel{p}{\cdots} \times K^{\prime}: \operatorname{Stab}_{K^{\prime}}(n-1) \times \stackrel{p}{\cdot} \times \operatorname{Stab}_{K^{\prime}}(n-1)\right| \\
& =\left|K^{\prime}: \operatorname{Stab}_{K^{\prime}}(n-1)\right|^{p}=\left|K^{\prime} \operatorname{Stab}_{G}(n-1): \operatorname{Stab}_{G}(n-1)\right|^{p} \\
& =\left|G / \operatorname{Stab}_{G}(n-1)\right|^{p} /\left|G / K^{\prime} \operatorname{Stab}_{G}(n-1)\right|^{p} \\
& =\left|G_{n-1}\right|^{p} p^{-n p} .
\end{aligned}
$$

Now, from (18) we get

$$
\begin{aligned}
\log _{p}\left|G_{n}\right|=p \log _{p}\left|G_{n-1}\right|+n+1+(n-1)(p-2) & -n p \\
& =p \log _{p}\left|G_{n-1}\right|-n-p+3,
\end{aligned}
$$

and the result follows by applying the induction hypothesis to G_{n-1}.

References

[1] A. G. Abercrombie, Subgroups and subrings of profinite rings, Math. Proc. Cambridge Philos. Soc. 116 (1994), no. 2, 209-222, DOI 10.1017/S0305004100072522. MR.1281541 (95h:11078)
[2] Miklós Abért and Bálint Virág, Dimension and randomness in groups acting on rooted trees, J. Amer. Math. Soc. 18 (2005), no. 1, 157-192 (electronic), DOI 10.1090/S0894-0347-04-00467-9. MR2114819 (2005m:20058)
[3] Yiftach Barnea and Aner Shalev, Hausdorff dimension, pro-p groups, and Kac-Moody algebras, Trans. Amer. Math. Soc. 349 (1997), no. 12, 5073-5091, DOI 10.1090/S0002-9947-97-01918-1. MR1422889 (98b:20041)
[4] Laurent Bartholdi and Rostislav I. Grigorchuk, On parabolic subgroups and Hecke algebras of some fractal groups, Serdica Math. J. 28 (2002), no. 1, 47-90. MR1899368(2003c:20027)
[5] L. Bartholdi, R.I. Grigorchuk, Z. Šunik, Branch groups, in Handbook of Algebra, Vol. 3, 989-1112, North-Holland, 2003. MR2035113 (2005f:20046)
[6] Yakov Berkovich, Groups of prime power order. Vol. 1, de Gruyter Expositions in Mathematics, vol. 46, Walter de Gruyter GmbH \& Co. KG, Berlin, 2008. With a foreword by Zvonimir Janko. MR2464640 (2009m:20026a)
[7] David A. Cox, Galois theory, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley \& Sons], Hoboken, NJ, 2004. MR2119052 (2006a:12001)
[8] Jacek Fabrykowski and Narain Gupta, On groups with sub-exponential growth functions, J. Indian Math. Soc. (N.S.) 49 (1985), no. 3-4, 249-256 (1987). MR942349 (90e:20029)
[9] Gustavo A. Fernández-Alcober and Amaia Zugadi-Reizabal, Spinal groups: semidirect product decompositions and Hausdorff dimension, J. Group Theory 14 (2011), no. 4, 491-519, DOI 10.1515/JGT.2010.060. MR2818947 (2012g:20053)
[10] R. I. Grigorčuk, On Burnside's problem on periodic groups, Funktsional. Anal. i Prilozhen. 14 (1980), no. 1, 53-54 (Russian). MR565099 (81m:20045)
[11] R. I. Grigorchuk, Just infinite branch groups, New horizons in pro-p groups, Progr. Math., vol. 184, Birkhäuser Boston, Boston, MA, 2000, pp. 121-179. MR 1765119 (2002f:20044)
[12] Narain Gupta and Saïd Sidki, On the Burnside problem for periodic groups, Math. Z. 182 (1983), no. 3, 385-388, DOI 10.1007/BF01179757. MR696534 (84g:20075)
[13] E. Pervova, Profinite topologies in just infinite branch groups, preprint 2002-154 of the Max Planck Institute for Mathematics, Bonn, Germany.
[14] Ekaterina Pervova, Profinite completions of some groups acting on trees, J. Algebra 310 (2007), no. 2, 858-879, DOI 10.1016/j.jalgebra.2006.11.023. MR2308183 (2008k:20056)
[15] A.V. Rozhkov, Finiteness conditions in groups of tree automorphisms, Habilitation thesis, Chelyabinsk, 1996. (In Russian.)
[16] Said Sidki, On a 2-generated infinite 3-group: subgroups and automorphisms, J. Algebra 110 (1987), no. 1, 24-55, DOI 10.1016/0021-8693(87)90035-4. MR 904180 (89b:20081b)
[17] Olivier Siegenthaler, Hausdorff dimension of some groups acting on the binary tree, J. Group Theory 11 (2008), no. 4, 555-567, DOI 10.1515/JGT.2008.034. MR2429355 (2009g:20046)
[18] Zoran Šunić, Hausdorff dimension in a family of self-similar groups, Geom. Dedicata 124 (2007), 213-236, DOI 10.1007/s10711-006-9106-8. MR2318546 (2008d:20046)
[19] Taras Vovkivsky, Infinite torsion groups arising as generalizations of the second Grigorchuk group, Algebra (Moscow, 1998), de Gruyter, Berlin, 2000, pp. 357-377. MR 1754681 (2001e:20021)

Matematikaren eta Zientzia Esperimentalen Didaktika Saila, Euskal Herriko Unibertsitatea UPV/EHU, 48080 Bilbao, Spain

E-mail address: gustavo.fernandez@ehu.es
Matematikaren eta Zientzia Esperimentalen Didaktika Saila, Euskal Herriko Unibertsitatea UPV/EHU, 48080 Bilbao, Spain

E-mail address: amaia.zugadi@ehu.es

[^0]: Received by the editors August 17, 2011 and, in revised form, June 29, 2012.
 2010 Mathematics Subject Classification. Primary 20E08.
 The authors were supported by the Spanish Government, grant MTM2008-06680-C02-02, partly with FEDER funds, and by the Basque Government, grant IT-460-10.

 The second author was also supported by grant BFI07.95 of the Basque Government.

