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ABSTRACT
Graph similarity search aims to find the most similar graphs to

a query in a graph database in terms of a given proximity mea-

sure, say Graph Edit Distance (GED). It is a widely studied yet still

challenging problem. Most of the studies are based on the pruning-

verification framework, which first prunes non-promising graphs

and then conducts verification on the small candidate set. Existing

methods are capable of managing databases with thousands or tens

of thousands of graphs, but fail to scale to even larger databases,

due to their exact pruning strategy. Inspired by the recent success

of deep-learning-based semantic hashing in image and document

retrieval, we propose a novel graph neural network (GNN) based

semantic hashing, i.e. GHashing, for approximate pruning. We

first train a GNN with ground-truth GED results so that it learns to

generate embeddings and hash codes that preserve GED between

graphs. Then a hash index is built to enable graph lookup in constant

time. To answer a query, we use the hash codes and the continuous

embeddings as two-level pruning to retrieve the most promising

candidates, which are sent to the exact solver for final verification.

Due to the approximate pruning strategy leveraged by our graph

hashing technique, our approach achieves significantly faster query

time compared to state-of-the-art methods while maintaining a high

recall. Experiments show that our approach is on average 20× faster
than the only baseline that works on million-scale databases, which

demonstrates GHashing successfully provides a new direction in

addressing graph search problem for large-scale graph databases.

CCS CONCEPTS
• Information systems → Nearest-neighbor search; • Com-
puting methodologies→ Supervised learning by regression; Neu-
ral networks.
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1 INTRODUCTION
Graph similarity search is an important problem in graph databases,

which is critical to various real-world problems including drug

design, program analysis, and business process management [11, 16,

22, 26, 27]. For example, one might want to search a drug database

for a query chemical compound, with the hope to find drugs with

similar structures and thus similar properties as desired.

In this paper, we consider range query, which aims to retrieve

graphs from the database similar enough to a query. Different prox-

imity measures can be used for such search task. Without loss of

generality, we consider Graph Edit Distance (GED) [5] as the prox-

imity measure, which is among the most popular ones, as many

graph similarity measures are just its special cases [16]. Note that

the exact GED computation is NP-hard.

The major bottleneck for graph similarity search lies in the large

size of the graph databases, as the naive solution requires the scan

of the whole database and GED computation is expensive. For

example, the Alchemy molecule database provided in [7] contains

119, 487 graphs. Most of the existing graph search algorithms adopt

a pruning-verification framework [22] to reduce unnecessary GED

computations by pruning non-promising graphs. In the pruning

stage, a lower bound for GED between the query graph and every

data graph is computed. Graphs with GED lower bounds larger

than the given threshold are pruned. In the verification stage, exact

GED computation is performed between the query graph and the

remaining candidates, and the graphs with the distance below the

specified range will be returned.

Most of the existing pruning strategies are exact, ensuring all

positive results are included, which becomes the bottleneck to han-

dle large-scale graph databases. In one category, such as Inves [11]
and BSS_GED [8], GED lower bound is computed for every graph,

which is much cheaper than the exact GED computation but the

whole database needs to be scanned. In contrast, methods such as

ML-Index [16], Pars [26] and 𝑘-AT [22] build a database index to

avoid the need of going through every data graph. However, these

methods in practice suffer from long query latency and cannot scale

well for two reasons: First, it can be slow to check if a particular

substructure in the index exists in the query graph, which requires

subgraph isomorphism check (NP-hard); Second, their GED lower

bounds are often too loose, which leads to too many candidates

being included and makes verification stage very slow.

In order to further scale graph similarity search to even larger

databases, we propose an approximate pruning strategy which al-

lows false negative. Specifically, inspired by the recent success of
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deep-learning-based semantic hashing in image retrieval [13, 17]

and information retrieval [23, 25], we adopt and extend the idea

of supervised hashing to graph data by learning the hash func-

tion from graph pairs labeled with true GEDs. The GNN-based

hash function and index are both fast and adaptive to different

graph similarity metrics. Unlike traditional index which involves

subgraph isomorphism checking as described previously, the hash

index avoids graph comparison in real graph space and is much

faster to be built. Additionally, since GNN is agnostic to graph simi-

larity metrics, the whole model can be trained on other metrics such

as Maximum Common Subgraph (MCS) [6]. For the online search

stage, we prune graphs that are not close enough to the query in

terms of their hash codes and embeddings, and verify the remain-

ing candidates using exact GED solver. The pruning procedure is

super fast as the hash code-based retrieval is constant time, and the

embedding-based GED approximation is easy to compute, at the

cost of introducing false negative error, due to the approximate na-

ture of these GED preserving representations. Experimental results

on both real-world and synthetic graph databases have shown that

our GHashing-based pruning strategy is very effective, with a signif-

icant speedup in terms of query processing time while maintaining

a relative high recall.

To summarize, we make the following contributions.

(1) We provide a first attempt to use a neural-network-based

approach to address the similarity search problem for graph

databases via graph hashing.

(2) We propose a novel methodGHashing, a GNN-based graph
hashing approach, which can automatically learn a hash

function that maps graphs into binary vectors, to enhance

the pruning-verification framework by providing a fast and

accurate pruner.

(3) We conduct extensive experiments to show that our method

not only has an average F1-score of 0.80 on databases with 5

million graphs but also on average 20× faster than the only

state-of-the-art baseline on million-scale datasets.

2 PRELIMINARIES AND PROBLEM
DEFINITION

In this work, we consider undirected graphs with node labels. Such

a graph can be denoted as a triplet (𝑉 , 𝐸, 𝐿), where 𝑉 is a set of

vertices, 𝐸 ⊆ 𝑉 × 𝑉 is a set of edges and 𝐿 is a labeling function

that maps nodes to labels.

Graph Edit Distance. The graph edit distance (GED) between

two graphs 𝑔1 and 𝑔2, denoted as 𝑔𝑒𝑑 (𝑔1, 𝑔2), is defined as the

minimum number of edit operations to make 𝑔1 isomorphic to 𝑔2.

An edit operation can be one of the following: (1) insert an isolated

vertex with any label; (2) delete an isolated vertex; (3) change the

label of a vertex; (4) insert an edge; (5) delete an edge.

Hamming Distance. Given two binary codes with length 𝐵,

c1, c2 ∈ {−1, 1}𝐵 , the hamming distance between c1 and c2, denoted
as ∥c1 − c2∥𝐻 , is defined as the number of dimensions they differ,

i.e.

∑𝐵
𝑖=1 𝐼 {𝑐1 (𝑖)≠𝑐2 (𝑖) } , where 𝑐1 (𝑖) and 𝑐2 (𝑖) are the 𝑖th dimension

of c1 and c2 respectively, and 𝐼 {·} is the indicator function.
Graph Similarity Search under GED. Given a graph database

with 𝑁 graphs, 𝐷 = {𝑔1, 𝑔2, · · · , 𝑔𝑁 }, and a query graph 𝑞 and a

threshold 𝜏 ∈ N, the graph similarity search under GED measure

aims to find {𝑔|𝑔 ∈ 𝐷 ∧ 𝑔𝑒𝑑 (𝑔, 𝑞) ≤ 𝜏}.

3 RELATEDWORK
3.1 Graph Similarity Search
Since the exact computation for GED is NP-hard, existing solutions

for graph similarity search typically adopt a pruning-verification

framework. In the pruning phase, a lower bound for GED between

𝑞 and 𝑔 is computed. If it is already larger than 𝜏 , then 𝑔 can be

filtered out. Then in the verification phase, GED solvers are used

for verifying the remaining graphs.

3.1.1 Pruning. Most of the pruning algorithms are inspired by the

𝑞-gram concept for string edit distance computation [21]. These

methods decompose each data graph 𝑔 into a multiset of 𝑞-grams

and compute a lower bound for GED by counting the mismatched

𝑞-grams between 𝑔 and 𝑞. To speed up the pruning, they build an

inverted index with 𝑞-grams being the keys so that they only need

to go through every key of the index, instead of every data graph,

to find mismatched 𝑞-grams for the entire database. The earliest

methods use special sub-structures of graphs as 𝑞-grams.𝐾-AT [22]

extracts sub-trees of 𝑔 encompassing the 𝑘-hop neighborhood of a

given vertex as 𝑞-grams. In contrast, GSimSearch [27] proposes

path-based𝑞-grams. However, the GED lower bounds of these meth-

ods are loose due to the fact that decomposed𝑞-gramsmight overlap

and their inability to handle large-degree nodes [16]. To overcome

their limitations, Pars [26] proposes using non-overlapping graph

partitions as 𝑞-grams. Inspired by Pars,ML-Index [16] proposes

partitioning data graphs multiple times with different granularity in

a selectivity-aware way, which makes Pars a special, degraded case
of ML-Index. So far,ML-Index is the state-of-the-art index-based

pruning algorithm for graph similarity search.

There are also pruning algorithms without index. Instead, they

compare the query graph with every data graph so that they have

tighter bounds for GED than index-based algorithms. For example,

BSS_GED [8] and Inves [11] propose both pruning algorithms and

verification algorithms. BSS_GED proposes a lower bound based

on the degrees of vertices of 𝑔 and 𝑞. And Inves incrementally

partitions a data graph based on the query graph and uses the

results to compute a lower bound of their distance. In this paper,

we call this type of pruning algorithm pair-wise pruning since the

pruning phase is conducted pair by pair.

However, none of the existing algorithms are scalable enough to

deal with databases with millions of graphs. AlthoughML-Index is

better than the earlier methods, its pruning ability is still tooweak to

handle massive databases since its bounds for GED tend to be loose.

As for pair-wise pruning, they have to scan the entire database

and compute a lower bound for every data graph. Thus they are

inefficient when the number of data graphs is large. Also, existing

pruning algorithms always require complicated computation. For

example,GSimSearch needs to compute an exponential number of

paths. ML-Index and Pars need to do sub-graph matching, which

is NP-hard. As a result, their pruning phases, although faster than

exact GED computation, are still slow.

3.1.2 Verification. In the verification phase, exact algorithms are

used to verify if the GED between the query graph and a candidate



graph is indeed within the threshold. The most classical algorithm

for exact GED computation is A* search algorithm [19]. But recently

faster algorithms have been proposed [8, 11]. In our experiments,

the verification algorithm in BSS_GED is more efficient than A*

and the verification algorithm in Inves, so we adopt it to be the

verification algorithm in our implementation.

In addition, since getting approximate answers within a shorter

time is far more ideal than waiting for a long time to get exact ones

inmany real-life applications, manymethods have been proposed to

compute GED approximately. [18, 20] treats the GED computation

as a linear sum assignment problem and get an estimation of GED

in polynomial time. GBDA [15] introduces a probabilistic graphic

model to predict GED and has better effectiveness than [18, 20].

There have also been studies trying to use graph neural network to

estimate the similarity between a pair of graphs. UGraphEmb [3]

learns a function that generates a continuous embedding for each

input graph, and the L2 distance of two embeddings approximates

the similarity between two graphs. SimGNN [1] generates an em-

bedding for a graph and input two graphs’ embeddings into a neural

tensor network to get the similarity score. It also designs a pair-

wise vertex comparison method to enhance performance. GMN
[14] jointly reasons on the pair through a cross-graph attention-

based matchingmechanism to compute the similarity score.Graph-
Sim [2] produces a similarity matrix for the graph pair which is

fed into CNNs for similarity score computation.

Although these approximate verification algorithms are faster, it

is not wise to use them alone to handle massive graph databases,

as they have to scan the entire database. Instead, combining them

with index-based pruning algorithms is more efficient, which will

be considered as future work.

3.2 Semantic Hashing for Similarity Search
Hashing methods for approximate nearest neighbor has been pop-

ular due to its promising performance in both efficiency and ef-

fectiveness [23]. These methods use hash functions to map input

data to a discrete code space called Hamming Space, and hamming

distance between hash codes reflects the similarity between input

items. Then hash codes are stored in a hash index so that retrieving

items with a specific hash code only takes constant time.

Semantic hashing uses deep neural networks to learn the em-

beddings or embedding functions [13, 17]. However, so far existing

semantic hashing methods only focus on extending the hashing

methods to images and documents and applying semantic hashing

to graph similarity search is challenging for several reasons.

First, semantic hashing typically treats similarity search as a

classification task, so they only need the hamming distance between

hash codes of two similar items smaller than a constant threshold

and vice versa. But as the threshold for graph similarity search may

vary from query to query, it is more appropriate to treat it as a

regression problem, which requires estimating GED by hamming

distance. As a result, a more powerful hash function is needed.

Second, semantic hashing predicts the similarity between items

by the hamming distance between hash codes. But, as hamming

distance is upper-bounded while the GED is not, how to establish a

relationship between hamming distance and GED is a problem.

Third, the goal of graph similarity search is to identify those

similar graph pairs, but in real datasets, similar graph pairs are

extremely rare. For example, in AIDS dataset only 0.5‰ graph pairs

have GED smaller than 7. The lack of positive examples makes it

difficult to train the hash function. Besides, while the similarity

between images and documents can be easily computed by count-

ing the number of common tags, computing GED is extremely

slow, which makes it even harder to sample positive examples from

datasets. Therefore, how to efficiently handle the scarcity of positive

examples, i.e. similar graph pairs, is another important problem.

4 APPROACH
As illustrated in Figure 1, our approach is divided into two stages:

the offline stage and the online stage. In the offline stage, we train a

GNN based hash function and then use it to construct a hash index.

The value of the hash index is a list of graph IDs. The algorithm to

construct the hash index with learned hash function is described in

appendix A. For the online stage, we follow the pruning-verification

framework. When a query graph comes in, we first compute its

hash code and embedding. Then based on the query threshold and

the hash code, we retrieve all data graphs stored in a hamming ball.

Next, an optional second-level pruning can be done by computing

the L2 distance between the query and every retrieved graph via

their embeddings. Finally the remained graphs are sent to final

verification.

4.1 Offline Stage
4.1.1 GNN Architecture for Hash Function. Our hash function re-

lies on GNN to extract features from graphs, which has proven

to be effective in previous studies. As illustrated in Figure 1, our

hash function 𝐻 (·) can be divided into three components: graph

feature extraction, embedding and, binarization, and the embedding

function 𝐹 (·) is composed of the first two components.

In the graph feature extraction stage, we use three graph convo-

lution layers [12] and a graph attention pooling layer [3] to extract

features from graphs. The details of the two types of layers are

described in appendix D. In the embedding stage, fully connected

layers generate continuous embeddings such that the L2 distance

between embeddings approximates GED. Finally, binarization stage

converts embeddings into hash codes (binary vectors) with several

fully connected layers. The output layer uses tanh as the activation

function so that the outputs are within (−1, 1), which is further

binarized by a threshold 0. We also design a special loss (Section

4.1.2) for binarization to force the binary constraint to the outputs.

As mentioned earlier, the first two parts compose a graph em-

bedding function 𝐹 (·). It is trained so that ∥𝐹 (𝑔1) − 𝐹 (𝑔2)∥2
2
≈

𝑔𝑒𝑑 (𝑔1, 𝑔2). There are two benefits of learning such an embedding

function compared to learning a hash function directly. First, it

helps the training of hash function. The intuition is that a graph’s

hash code and continuous embedding should be generated based

on the same features because both of them aim to preserve GED

between graphs. 𝐹 and 𝐻 are jointly learned so that the GCN layers

and pooling layers can learn to extract those common features. Be-

sides, training continuous embedding is easier than training binary

codes because of the discrete nature of the latter. Therefore, it is

likely that the neural network can generate continuous embedding

with good quality after a short time of training and then learns to

compress and binarize the embedding into binary code gradually.
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Figure 1: Overview illustration of GHashing. GHashing consists of an offline stage and an online stage. In the offline stage we
learn the hash function and build a hash index where graph IDs are stored. The hash function (GNN) 𝐻 (·) can be divided into
three components: graph feature extraction, embedding, and binarization. The first two components compose the embedding
function 𝐹 (·). The training loss consists of two components, one for continuous embeddings (𝐿𝑜𝑠𝑠𝑒𝑚𝑏 ) and the other for hash
codes (𝐿𝑜𝑠𝑠𝑐𝑜𝑑𝑒 ). After training, the output hash codes for all data graphs are used to construct the hash index. Then in the
online stage, when a query graph 𝑞 comes in, we first compute its hash code 𝐻 (𝑞) = 010 and continuous embedding 𝐹 (𝑞) with
GNN. After retrieving graphs whose hash codes are within a hamming ball of small radius around 010 (000, 010, 011, 110), we use
their embeddings and 𝐹 (𝑞) to estimate their GED for a second-level pruning. The graphs remained are sent to the verification
phase where exact GED are computed.

Second, the continuous embedding can be exploited to explicitly

improve the efficiency and pruning ability for our pruning method.

Specifically, after we use hash code and hash index to retrieve all

candidate graphs, we propose using the continuous embedding of

them for a second-level filtering, where we compute ∥𝐹 (𝑔) −𝐹 (𝑞)∥2
2

for each 𝑔 in the candidates and remove ones whose corresponding

results are larger than a threshold. Since computing L2-distance

between vectors is far faster than computing GED between graphs,

this second-level filtering could save lots of unnecessary verification

time, at the cost that a few more correct results may be falsely

filtered. So whether to use it is, in fact, a trade-off and is optional

according to a user’s demand.

4.1.2 Loss Function. As illustrated in Figure 1, the loss function of

GHashing has two components: the loss for continuous embed-

dings (𝐿𝑒𝑚𝑏 ) and the loss for hash codes (𝐿𝑐𝑜𝑑𝑒 ), and the integrated

loss can be expressed as

𝜆𝐿𝑐𝑜𝑑𝑒 (𝑔1, 𝑔2) + (1 − 𝜆)𝐿𝑒𝑚𝑏 (𝑔1, 𝑔2) (1)

where 𝜆 ∈ (0, 1) is a hyperparameter to control the trade-off be-

tween the two tasks.

Design of 𝐿𝑐𝑜𝑑𝑒 . A natural option for 𝐿𝑐𝑜𝑑𝑒 (𝑔1, 𝑔2) is to measure

the difference between the predicted distance𝑦 and the ground truth

GED 𝑦:

𝐿𝑐𝑜𝑑𝑒 (𝑔1, 𝑔2) = 𝐿(𝑦,𝑦), (2)

where 𝑦 = |𝐻 (𝑔1) − 𝐻 (𝑔2)∥𝐻 , 𝑦 = 𝑔𝑒𝑑 (𝑔1, 𝑔2), and 𝐿(·, ·) can be

any loss function for regression, 𝑒.𝑔. 𝐿2 loss. However, a problem

is that while GED can be arbitrarily large, the hamming distance

between two 𝐵-bit hash codes can not be larger than 𝐵. Therefore,

dissimilar graph pairs with GED far more larger than 𝐵 will have

more influence on the training than the similar graph pairs which

we actually care about. Besides, as𝐵 cannot be too large for semantic

hashing to work efficiently, such dissimilar graph pairs are common

in real datasets. Therefore, a simple loss such as 𝐿2 loss will not

serve the purpose, and a more sophisticated loss design is needed.

Specifically, we argue that a good loss function 𝐿(𝑦,𝑦) in 𝐿𝑐𝑜𝑑𝑒
should satisfy the following properties:

(1) Small punishment when both values are large. In real

world applications, the threshold 𝜏 in the range query is often

small. In this case, if both predicted distance 𝑦 and ground

truth distance 𝑦 are very big, we should consider the loss as

small, as we can correctly prune those graphs based on 𝑦.

Therefore, we define a truncated loss with the form 𝐿(𝑦,𝑦) =
𝐿′(min{𝛾,𝑦},min{𝛾,𝑦}), where 𝛾 is the hyperparameter to

control the maximum GED we are interested in.

(2) Asymmetric, i.e., 𝐿(𝑦,𝑦) ≠ 𝐿(𝑦,𝑦). Once a correct result is
falsely pruned, there is no way to recover it. That is to say,

the case that the hamming distance is larger than the GED

(over-estimation) is worse than the case that the hamming

distance is smaller (under-estimation), and the former should

be punished more severely, e.g., 𝐿(3, 5) < 𝐿(5, 3).
(3) Minimized when 𝑦 = 𝑦.When the predicted GED distance

is the same as the ground truth, the loss should give us the

minimum value.



(4) Convex. The loss function should be convex to reduce the

difficulty of optimization.

To that end, we propose the following exponential-weighted 𝐿2

loss, which satisfies all the properties mentioned above:

𝐿(𝑦,𝑦) = 𝐿′(𝑦′, 𝑦′) = 𝑒𝑎 (�̂�
′−𝑦′) (𝑦′ − 𝑦′)2 (3)

where 𝑎 > 0 is a hyperparameter related to convexity property,

which will be discussed in Theorem 1; and 𝑦′ = min{𝛾,𝑦} and
𝑦′ = min{𝛾,𝑦} are called clipped hamming distance and clipped
GED, which are designed for Property (1).

The additional benefit for clipping GED and hamming distance

by an upper bound 𝛾 is for efficiency concern. Computing GED is

extremely slow, so it will take too long for the training to complete

if we compute the exact GED for every training pair. Comput-

ing clipped GED, i.e. min{𝛾, 𝑔𝑒𝑑 (𝑔1, 𝑔2)}, is much faster due to the

search-based nature for GED solvers. We can either compute a

lower bound for GED in a short time and see if it is already larger

than 𝛾 to avoid the exact GED computation, or we can ignore all the

search paths with lengths longer than 𝛾 , to accelerate the search

algorithm for exact GED computation.

For the exponential-weighted 𝐿2 loss, we have the following

theorem. (The details of proof is in appendix E.)

Theorem 1. The exponential-weighted L2 loss defined in (3) is
minimized when 𝑦′ = 𝑦′. Besides, assume |𝑦′ − 𝑦′ | ≤ 𝛾 , then the loss

is convex if 𝑎 ∈ (0, 2−
√
2

𝛾 ).

Based on (3), Theorem 1 and the fact that |𝑦′ − 𝑦′ | ≤ 𝛾 , it is
easy to verify that our loss satisfies requirement (2), (3), and (4), if

𝑎 ∈ (0, 2−
√
2

𝛾 ). Besides, when the hamming distance and GED are

both larger than 𝛾 , the loss becomes 0, which satisfies requirement

(1). The loss being zero is reasonable because, asmentioned before, if

both the hamming distance and GED are larger than𝛾 , our approach

can always correctly prune it.

Handling discrete constraints. So far, we still face another

challenge regarding optimization, as it is infeasible to directly opti-

mize the loss because each dimension of𝐻 (𝑔) is binary and the func-
tion is non-differentiable. A common trick is to drop the binary con-

straint and replace the hamming distance with the L2 norm, since

under the constraint that 𝐻 (·) ∈ {−1, 1}𝐵 , ∥𝐻 (𝑔1) − 𝐻 (𝑔2)∥H =
1

4
∥𝐻 (𝑔1) − 𝐻 (𝑔2)∥2

2
[13].

It is, however, inappropriate to completely ignore the binary con-

straint due to the discrepancy between the Euclidean space and the

Hamming space. Thus we still need a way to encourage the output

of GNN close to ±1. To this end, we add a binary regularization

proposed in [17] to the loss, which is ∥ |𝐻 (𝑔1) |−1∥1+∥|𝐻 (𝑔2) |−1∥1,
where ∥ · ∥1 is the L1-norm, 1 is a vector of all ones and | · | is the
absolute value operation.

To sum up, the loss function of the output hash codes is

𝐿𝑐𝑜𝑑𝑒 (𝑔1, 𝑔2) = 𝑒𝑎 (�̂�
′−𝑦′) (𝑦′−𝑦′)2+𝛽 ∥ |𝐻 (𝑔1) |−1∥1+𝛽 ∥ |𝐻 (𝑔2) |−1∥1

(4)

where 𝑦′ = min{𝛾, ( 1
4
∥𝐻 (𝑔1) −𝐻 (𝑔2)∥2

2
}, 𝑦′ = min{𝛾, 𝑔𝑒𝑑 (𝑔1, 𝑔2)},

𝑎 ∈ (0, 2−
√
2

𝛾 ) and 𝛽 is a hyper-parameter.

Design of 𝐿𝑒𝑚𝑏 . As for 𝐿𝑒𝑚𝑏 , we use MSE as the loss function.

Besides, as computing exact GED is too slow, we also use clipped

GED as the training label. Since graph similarity search does not

care about graph pairs with large GED, it should not affect the

effectiveness of our approach. So the loss for embeddings is

𝐿𝑒𝑚𝑏 (𝑔1, 𝑔2) = (min{𝛾, ∥𝐹 (𝑔1) − 𝐹 (𝑔2)∥22 } − 𝑦
′)2 (5)

where 𝑦′ = min{𝛾, 𝑔𝑒𝑑 (𝑔1, 𝑔2)}.
In addition, to minimize the binary regularization’s influence on

learning 𝐹 , we suggest that the weight for 𝐿𝑒𝑚𝑏 should be far larger

than the weight for 𝐿𝑐𝑜𝑑𝑒 , which means 𝜆 in Eq. 1 should be small.

4.1.3 Training Data Preparation. Another challenge for training
the hash function is that similar graph pairs are scarce in most of

the real-world datasets. For example, AIDS is a commonly used

dataset for graph similarity search. On average, only 0.5‰ graph

pairs in AIDS have GED smaller than 7. However, as our goal is to

identify similar graphs, similar graph pairs are important during

training, and the scarcity of similar graph pairs during training will

result in sub-optimal performance of the graph neural network. A

naive solution is to first compute the GED between every pair of

graphs and then split them into similar graph pairs and dissimilar

graph pairs for sampling. However, unlike the similarity between

images and documents, which can be easily computed by counting

the number of common tags, computation for GED is extremely

slow. Therefore, such a method can only handle small databases.

Instead, we propose generating synthetic similar graph pairs

to augment data during training, since it helps GNN to identify

which graphs are similar, and thus increases the performance of

the hash function. In addition, generating synthetic graph pairs is

much faster than computing GED. Therefore it is more efficient

when training on massive datasets.

Algorithm 2 in appendix B illustrates how to generate synthetic

similar graph pairs. Given Algorithm 2, we obtain our training

samples for each iteration following the steps below. First, we ran-

domly sample𝑚 graphs from the datasets and compute the GED

between each two of them. Then for each sampled graph, we use

Algorithm 2 to generate 𝑘 similar graphs and corresponding labels,

where 𝑘 is a hyper-parameter. Therefore, for each iteration we have

𝑚 (𝑚−1)
2
+𝑚𝑘 training graph pairs in total.

4.2 Online Stage
The online stage consists of pruning phase and verification phase.

In the pruning phase, we first compute the query graph 𝑞’s hash

code 𝐻 (𝑞) and continuous embedding 𝐹 (𝑞) with the trained GNN,

i.e. GHashing. Then we search the keys of the index to find hash

codes whose hamming distance to 𝐻 (𝑞) is smaller than 𝜏 + 𝑡 . The
value of 𝑡 provides a trade-off between efficiency and effectiveness.

In this work we set 𝑡 = 1, and it will be further studied in future

work. Based on the hash codes obtained in last step, we retrieve all

data graphs mapped to these codes as well as their embedding with

the hash index. Recall that the square of the L2-distance between

continuous embeddings approximates the GED between graphs. So

we can do an optional pruning by excluding every graph whose

embedding, say 𝐹 (𝑔), satisfies that ∥𝐹 (𝑔) − 𝐹 (𝑞)∥2
2
> 𝜏 + 0.5. The

threshold 𝜏+0.5 is set heuristically and will be studied further. Since
computing L2-norm of a vector is far more faster than computing

exact GED, this further filtering will reduce some more unnecessary

GED computation and shorten the time to respond a query.



Table 1: Properties of baselines. "FP" means if it has false
positives. "FN" means if it has false negatives. "I" means if it
builds index. "M" means if it can complete tests on datasets
with 5 million graphs in two days.

Name FP FN I M

ML-Index[16] N N Y N

Inves[11] N N N N

BSS_GED[8] N N N Y

Naive N Y Y Y

GH N Y Y Y

In the verification phase, after getting the final candidates, we

verify every graph remained with exact verification algorithm. In

our implementation, we adopt BSS_GED as the verification algo-

rithm. More details about the algorithm for the query are described

in appendix C.

5 EXPERIMENTS
The details of experiment settings are introduced in appendix G.

5.1 Datasets and Baselines
Weuse three real-world datasets, AIDS

1
, LINUX [24], ALCHEMY [7],

and two synthetic datasets in the experiments. The graphs of syn-

thetic datasets are generated using the ER [9] and BA model [4]

respectively, and the node labels are sampled from multinomial

distributions. The details of datasets are described in appendix F.

From each dataset, we randomly select 100 graphs to be the query

graphs.

When evaluating effectiveness, as other pruning methods are all

exact, we compareGHwith a naive version of our approach, which

is simply learning continuous embedding and then binarizing it by

threshold 0. We denote it as Naive. When evaluating efficiency, we

choose ML-Index, Inves and BSS_GED as baselines. ML-Index
is the state-of-the-art index-based pruning algorithm, so we do not

compare GH with other index-based algorithms. For independent

pruning algorithm (GH,Naive,ML-Index), we use the verification
algorithm in BSS_GED in verification phase due to its efficiency.

The detailed properties of each method are listed in Table 1.

Table 2: Recall/|𝐶 | ratio (×10−5) for GHashing and Naive

𝜏
AIDS LINUX ALCHEMY

GH GH- Naive GH GH- Naive GH GH- Naive

1 690 30 7.0 23 15 16 11 3.5 4.2

2 270 19 5.5 20 12 12 4.9 2.4 2.7

3 150 15 4.8 16 10 10 2.8 1.7 1.9

4 98 11 4.3 14 8.8 8.6 1.9 1.4 1.4

5 69 7.3 3.8 13 7.9 7.7 1.5 1.0 1.2

6 52 6.2 3.6 11 6.7 6.6 1.2 1.0 1.0

5.2 Effectiveness Analysis
We evaluate the effectiveness of GHwith 𝜏 = {1, 2, 3, 4, 5, 6}, which
are commonly used in [11, 16, 27].

1
https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+Antiviral+Screen+Data

Table 3: Recall/|𝐶 | ratio (×10−5) for different code lengths on
AIDS dataset

𝜏 24 bit 32 bit 48 bit

1 28 30 70

2 18 19 43

3 13 15 30

4 9.6 11 21

5 7.5 8.8 15

6 6.1 7.1 12

First we evaluate the average candidate set size (|𝐶 |), precision,
recall and F1-score of GH, GH without the second-level pruning

(denoted as GH-) and Naive on three real datasets. The average

candidate set size is an important metric for effectiveness because

if a pruning method lets every data graph pass, the precision and

recall will both be 1 but the pruning is not effective at all. Besides,

the verification time, which takes up most of the response time, is

linear to the candidate set size, so it is also an indicator of efficiency.

The results in Figure 2 (a)-(d) show that GH achieves F1-score of

at least 0.85 under different 𝜏 onAIDS. Its average candidate number

is 42× smaller thanNaive’s, while its F1-score is only 0.05 less. Also,
results in Figure 2 (e)-(h) show that on LINUX, GH is not only able

to return candidate sets on average 40% smaller than Naive’s, it
also achieves better recall and F1-score. In fact, GH’s recall is at

least 0.92 and its precision is at least 0.99 on LINUX. In addition,

Figure 2 (k), (l) show that on ALCHEMY, while Naive’s average
recall and F1-score are only 0.60 and 0.73, GH’s average recall and

F1-score are 0.77 and 0.86, which are significantly larger. Besides,

Figure 2 (i) show that the average candidate set sizes between GH
and Naive are close on ALCHEMY.

What is more, we emphasize that the recall and candidate set

size are the most important metrics about effectiveness. This is

because, after verification, all false positives will be discarded so

the precision is always 1 (unless all correct results are falsely pruned,

in which case the precision is 0). So the recall reveals the possibility

of a correct result being included in returned results and the ratio

between recall and candidate set size reveals the cost to retrieve

one correct result. Higher ratio suggests better trade-off between

efficiency and effectiveness. So in Table 2, we report the recall/|𝐶 |
ratio of GH and Naive. The ratio of GH is significantly higher

than Naive’s, proving that GH provides a better pruning power

than Naive.
In addition, comparing GH and GH- in Figure 2 (a), (e), (i), we

observe that |𝐶 | of GH are an order of magnitude smaller than

GH-’s, which helps shorten the response time. On the other hand,

results in Figure (c), (d), (g), (h), (k), (l) show that second-level

pruning slightly decreases the recall and F1-score of our approach.

In Table 2, the recall/|𝐶 | ratio of GH is always larger than GH-’s,
suggesting better effectiveness. But the second level pruning will

also introduce extra query latency. Therefore, we conclude that the

second level pruning provides a trade-off between efficiency and

effectiveness.

We also show the violin plot of the predicted GED by the clipped

hamming distance between hash codes under different real GEDs on

the AIDS dataset in Figure 3. The results in Figure 3 show that the

hamming distance is usually smaller than the real GED. It matches

https://wiki.nci.nih.gov/display/NCIDTPdata/AIDS+ Antiviral+Screen+Data
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Figure 2: Candidate set size (|𝐶 |), precision (𝑃), recall (𝑅) and F1-score (𝐹1) of our approach (GH), our approach without optional
second-level pruning (GH-) and naive semantic graph hashing (Naive) on three real datasets.
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Figure 3: Violin plots of predicted GED given real GED on
AIDS dataset. A violin plot is an extension of the box plot,
where each “violin” is a plot of the density function of a his-
togram produced from the data.

our goal to design the exponential-weighted L2 loss and is ideal

for a non-exact pruning algorithm, as it suggests that only a small

number of correct results will be falsely pruned.

Finally, we evaluate how the length of the hash codes affect the

effectiveness of GH. We run the experiments on AIDS with the

length of hash codes being {24, 32, 48} bits. We exclude the second-

level pruning so that the returned results are solely determined by

hash codes. We report the recall/|𝐶 | ratio in Table 3. As the length

of hash codes increases from 24 to 48, the recall/|𝐶 | ratio increases

steadily by 2.2×. It means that longer hash codes provide a better

trade-off between efficiency and effectiveness, which fits intuition.

5.3 Efficiency Analysis
In this subsection, we evaluate the efficiency and scalability of GH
and three competitors, ML-Index, Inves and BSS_GED.
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Figure 4: Average query time (𝑇 ), recall/time ratio for GH
and three baselines on three real datasets. The truncated bar
means the total running time exceeds 1000 minutes.

Table 4: Costs of offline stage for GHashing and ML-Index

Dataset AIDS ALCHEMY LINUX ER BA

GH

Time 759s 443s 1143s 3172s 3544s

Space 56M 136M 52M 5.1G 5.1G

ML-I Time 696s 248s N/A N/A N/A

ndex Space 678M 960M N/A N/A N/A

5.3.1 Evaluating Offline Stage. Wefirst compare the time and space

costs of the offline stage in GH and ML-Index. The results are

shown in Table 4. The offline stage of GH includes training GNN

and building index. The reported space costs include the costs for

neural networks and the hash index. As forML-Index, since it has
to build different indices for different query thresholds, we report

the sum of the time and space costs of it for 𝜏 = {1, 2, 3, 4, 5, 6}.



In our experiments,ML-Index runs out of memory when build-

ing indices for the LINUX dataset and does not finish building after

24 hours for ER and BA datasets, which proves it is not scalable

enough to handle massive databases. As for AIDS and ALCHEMY

datasets, the space costs of our approach is significantly less than

ML-Index. It is because our approach only needs one index for

different thresholds while ML-Index builds different indices for

different thresholds. Besides, our index only stores hash code, con-

tinuous embedding, and ID of each graph, while ML-Index has to

store the unique partitions of all the graphs. In addition, the time

costs of our approach are within a reasonable range for all datasets.

5.3.2 Evaluating Online Stage. Then we compare the efficiency of

the online stage of GH with three baselines. We conduct exper-

iments on three real-world datasets with 𝜏 = {1, 2, 3, 4, 5, 6}. We

consider the average query time as the principal indicator of search

efficiency. We also report the recall/time ratio for each method.

Similar to the recall/|𝐶 | ratio, recall/time ratio reveals the time cost

to retrieve a correct results. During experiments, we terminate the

process if the total query time exceeds 1000 minutes.

Figure 4 (a)-(c) shows the average query time𝑤.𝑟 .𝑡 𝜏 , for different

methods on three real datasets. The results show that our approach

is the fastest in all datasets where 𝜏 = {2, 3, 4, 5, 6} and is the fastest
in two out of three datasets where 𝜏 = 1. On average, our approach is

9.07× faster than the fastest baseline BSS_GED where 𝜏 = {1, 2, 3}
and 5.45× faster where 𝜏 = {1, 2, 3, 4, 5, 6}. Figure 4 (d)-(e) shows the
recall/time ratio for different methods.GH achieves the highest R/T

ratio in all datasets where 𝜏 = {2, 3, 4, 5, 6} and in two out of three

datasets where 𝜏 = 1. Therefore, GH provides the best trade-off

between efficiency and effectiveness compared to all the baselines.
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Figure 5: Average query time of GH and BSS_GED on two
million-scale synthetic datasets, ER and BA

To demonstrate the scalabilityGH, we test it on synthetic datasets

with 100M, 200M, 300M, 400M and 500M graphs and 𝜏 = {1, 2, 3}.
As neitherML-Index nor Inves can complete the test in two days,

we only compare GH with BSS_GED. Figure 5 gives the average
query time of two methods. Compared to BSS_GED, our approach
is on average 20× faster, showing that GH is an efficient tool for

graph similarity search on million-scale databases.

We also report the precision and recall of GH on two synthetic

datasets with 5 million graphs where 𝜏 = {1, 2, 3, 4, 5, 6} in Figure 6.

We observe that the average F1-score of our approach is 0.746 on the

ER dataset and 0.854 on the BA dataset. In addition, Table 5 shows

the recall/time ratio of GH andBSS_GED on two synthetic datasets

where 𝜏 = {1, 2, 3}. The ratio of GH is significantly higher than the

ratio of BSS_GED, proving that our approach is not only efficient

but also achieves high effectiveness on million-scale databases.
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Figure 6: Precion, recall and F1-score of GHashing on two
synthetic datasets, ER and BA

Table 5: Recall/time ratio (×10−2) for GHashing and
BSS_GED on synthetic datasets with 5 million graphs

𝜏
BA ER

GH BSS_GED GH BSS_GED

1 23.3 2.7 110.6 2.5

2 9.9 2.6 37.6 2.4

3 5.8 2.4 15.9 2.2

(a) AIDS (b) LINUX (c) ALCHEMY
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Figure 7: Running time of different stages for GHashing

Figure 7 shows the percentage of time of different stages to the

total time for GH. The encoding time is the time to compute the

query graph’s embedding and hash code. It’s constant𝑤.𝑟 .𝑡 𝜏 and

only takes up a small fraction of query time. The pruning time is the

time for the first level and second level pruning. The absolute value

of pruning time slightly increases with 𝜏 , while its percentage keeps

dropping. This is because the verification time increases rapidly

with 𝜏 , and takes up most of the query time, as shown in Figure 7.

So the bottleneck of GH is still the verification stage.

5.4 Ablation Studies of GHashing

Table 6: Recall/|𝐶 | ratio (×10−5) for GH- against 3 alternatives
of our approach on AIDS dataset

𝜏 GH- NoExp NoEmb NoAug

1 30 27 8.8 23

2 19 16 6.7 15

3 15 11 5.5 12

4 11 8.5 4.8 9.1

5 8.8 6.8 4.1 7.4

6 7.1 5.6 3.7 6.2

To investigate if the techniques proposed in Section 4 help to

learn better hash codes, we conduct several ablation studies on

AIDS dataset. In this series of experiments, we exclude second-level

pruning so that the results are only determined by hash codes.

There are three alternatives.



(1) NoExp. We replace the exponential-weighted L2 loss with

ordinary L2 loss to evaluate the effect of our proposed loss

function;

(2) NoEmb. We train a hash function with 𝜆 in (1) equal to 1 to

test if learning extra continuous embeddings helps to learn

better hash codes;

(3) NoAug. We train the hash function without data augmen-

tation to test if generating similar graph pairs helps the

learning process.

We report the recall/|𝐶 | ratio of each method in Table 6. We observe

that GH- achieves the highest ratio where 𝜏 = {1, 2, 3, 4, 5, 6}. It
suggests that GH- has the best effectiveness and thus proves our

techniques useful. Besides, the gap between GH- and NoEmb is

most significant, suggesting the importance of learning continuous

embeddings that preserves proximity between graphs.

6 CONCLUSION AND FUTURE WORK
In this work, we propose GHashing, a scalable GNN-based super-

vised hashing for graph similarity search, which exploits both the

learning ability of DNN and the efficiency of hashing methods for

approximate nearest neighbors. We extend the power of semantic

hashing so that it can predict distances between graphs instead of

only binary labels. We describe an algorithm to use it as a pruning

method for graph similarity search, which is more efficient and scal-

able than previous approaches at the cost of missing a small number

of correct results. The experimental results show that GHashing
is on average 20× faster than the fastest baseline on million-scale

databases while maintaining a high recall. In practice, GHashing
strikes excellent trade-off between speed and accuracy and thus

can be the ideal choice when approximate retrieval is acceptable.

One topic for future work is to revise it for different similarity

metrics. Given the powerful ability of GNN and the generality of

GED,GHashing has the potentials to retrieve similar graphs under

different metrics and even the ideal similar graphs. Another topic

is to explore how to use GHashing for similarity search with large

graphs. As computing GED between large graphs is slow, how

to efficiently compute the training labels becomes a problem. One

possible solution is to compute approximate GED instead, but it will

affect the quality of training data. Last but not least, it is important

to improve the accuracy of predicting GED by hash codes and

embeddings. So far, the candidate sets of GHashing usually contain
many false positive results, which makes verification necessary. But

as verification is slow, reducing the false positives in candidate sets

so that we could exclude the verification stage would be ideal.
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A INDEX CONSTRUCTION

Algorithm 1 Build Hash Index 𝐼

Input: GNN hash function 𝐻 , GNN embedding function 𝐹 , graph

database 𝐷

Output: inverted index 𝐼

1: Initialize an empty index 𝐼

2: for 𝑔 ∈ 𝐷 do
3: 𝑒𝑚𝑏 ← 𝐹 (𝑔)
4: 𝑐𝑜𝑑𝑒 ← 𝐻 (𝑔)
5: if 𝑐𝑜𝑑𝑒 ∉ 𝐼 .𝑘𝑒𝑦𝑠 then
6: Add 𝑐𝑜𝑑𝑒 into 𝐼 .𝑘𝑒𝑦𝑠

7: 𝐼 [𝑐𝑜𝑑𝑒] ← ∅
8: 𝐼 [𝑐𝑜𝑑𝑒] ← 𝐼 [𝑐𝑜𝑑𝑒]⋃{(𝑔, 𝑒𝑚𝑏)}
9: return 𝐼

The pseudocode of building the index with trained GNN is illus-

trated in Algorithm 1. The index consists of key-value pairs, where

the key is the hash code and the value is a set of graph-embedding

pairs. At first, the index is empty, which means its key set is empty

(line 1). For each data graph 𝑔, we first compute its embedding

and hash code (line 3-4). Then, we initialize an empty set if the

hash code wasn’t in 𝐼 ’s key set (line 5-7). Then we add the graph,

as well as its embedding into the value set 𝐼 [𝑐𝑜𝑑𝑒] (line 8). In our

implementation, we store the values consecutively and we record

the position where a key’s value starts and ends in an array sorted

by the lexicographical order of keys. In this way, given a hash code,

it takes 𝑂 (log |𝐼 .𝑘𝑒𝑦𝑠 |) time to find where its value is stored and

𝑂 (1) time to retrieve the values. Notice that the number of differ-

ent hash codes, i.e. |𝐼 .𝑘𝑒𝑦𝑠 |, can’t be larger than |𝐷 |. In fact in our

experiments the number of different hash codes is far less than |𝐷 |.

B SIMILAR GRAPH PAIRS GENERATION
Algorithm 2 illustrates how to generate synthetic simiar graph

pairs for training. There are two inputs, a graph 𝑔 sampled from

the database and a parameter𝑀 , which is the upper bound of GED

between synthetic graph pairs. Initially, it makes a copy of 𝑔 to be

𝑔′. Then it randomly samples an integer 𝑛, which is the number of

edit operations it is going to take (line 2). Next it randomly chooses

𝑛 valid operations step by step and performs them on 𝑔′ (line 3-6).
Finally, we return the synthetic similar graph pairs and 𝑛 as an

approximation of 𝑔𝑒𝑑 (𝑔,𝑔′). Although 𝑛 is an upper bound for the

real GED, they should be close when𝑀 is small. In our experiments,

we found that the value of𝑀 had little impact on the algorithm as

long as it is small (≤ 3). So we set𝑀 = 1 for efficiency.

Algorithm 2 Generate Synthetic Similar Graph Pairs

Input: graph 𝑔,𝑀

Output: graph pair (𝑔,𝑔′) and an upper bound 𝑔𝑒𝑑 (𝑔,𝑔′)
1: 𝑔′ ← 𝑔

2: 𝑛 ← Random(1, 𝑀)
3: for 𝑖 = 1→ 𝑛 do
4: Randomly select a valid edit operation

5: Perform the edit operation on 𝑔′

6: return (𝑔,𝑔′), 𝑛

C QUERYWITH GHASHING
Algorithm 3 gives the details about the online stage of GHashing.

Algorithm 3 Graph Similarity Search

Input: query graph 𝑞, threshold 𝜏 , embedding function 𝐹 , hash

function 𝐻 , hash index 𝐼

Output: {𝑔 ∈ 𝐷 |𝑔𝑒𝑑 (𝑔, 𝑞) ≤ 𝜏}
1: // Pruning Stage
2: 𝑐𝑞 ← 𝐻 (𝑞)
3: 𝑒𝑞 ← 𝐹 (𝑞)
4: 𝐶 ← ∅
5: 𝑆 ← {𝑐𝑜𝑑𝑒 ∈ 𝐼 .𝑘𝑒𝑦𝑠 | ∥𝑐𝑜𝑑𝑒 − 𝑐𝑞 ∥H ≤ 𝜏 + 1}
6: for 𝑐𝑜𝑑𝑒 ∈ 𝑆 do
7: for (𝑔, 𝑒) ∈ 𝐼 [𝑐𝑜𝑑𝑒] do
8: if ∥𝑒 − 𝑒𝑞 ∥2

2
≤ 𝜏 + 0.5 then

9: 𝐶 ← {𝑔}⋃𝐶

10: // Verification Stage
11: 𝑟𝑒𝑡 ← ∅
12: for 𝑔 ∈ 𝐶 do
13: if 𝑔𝑒𝑑 (𝑔, 𝑞) ≤ 𝜏 then
14: 𝑟𝑒𝑡 ← {𝑔}⋃ 𝑟𝑒𝑡

15: return (𝑟𝑒𝑡 )

Given a query graph 𝑞, we first compute the hash code and

continuous embedding for 𝑞 (line 2-3). Then we search the keys

of the index to find hash codes whose hamming distance to 𝑐𝑞 is

smaller than 𝜏 + 1 (line 5). Notice that for 𝑆 in line 5 of Algorithm

3) we have

|𝑆 | ≤ min

(
|𝐼 .𝑘𝑒𝑦𝑠 |,

𝜏+1∑
𝑖=0

(
𝐵

𝑖

))
(6)

where 𝐵 is the length of hash codes. The inequality above suggests

that when 𝜏+1 is small, it is efficient to just enumerate all the binary

codes whose hamming distance to𝐻 (𝑞) is within the threshold and

check if they are in 𝐼 .𝑘𝑒𝑦𝑠 . However, if 𝜏 +1 is large,∑𝜏+1
𝑖=0

(𝐵
𝑖

)
might

be too large and it would be more efficient to scan every key of the

hash index and compute its hamming distance to 𝐻 (𝑞). Therefore,
to obtain 𝑆 , we first compute if |𝐼 .𝑘𝑒𝑦𝑠 | > ∑𝜏+1

𝑖=0

(𝐵
𝑖

)
. If so, we would

use breadth first search to enumerate all valid codes. Otherwise,

we simply scan every hash keys of index. Once 𝑆 is obtained, we

retrieve all candidates graphs as well as their embedding from the

index. Then we use the continuous embedding of the candidates to

conduct a secondary pruning step (line 6-9). After getting the final

candidates, we verify every graph remained with exact verification

algorithm(line 10-14). In our implementation, we adopt BSS_GED
as the verification algorithm.

D GRAPH CONVOLUTION LAYER AND
GRAPH POOLING LAYER

According to [10], most of GNNs can be expressed in the following

form.

𝑚
(𝑙+1)
𝑣 =

∑
𝑤∈𝑁 (𝑣)

𝑀𝑙 (ℎ
(𝑙)
𝑣 , ℎ

(𝑙)
𝑤 , 𝑒𝑣𝑤) (7)

ℎ
(𝑙+1)
𝑣 = 𝑈 (𝑙) (ℎ

(𝑙)
𝑣 ,𝑚

(𝑙+1)
𝑣 ) (8)



ℎ
(𝑙)
𝑔 = 𝑅({ℎ (𝑙)𝑣 |𝑣 ∈ 𝑔}) (9)

Here 𝑁 (𝑣) is 𝑣 ’s neighbors, so𝑚 (𝑙+1)𝑣 is the message passing from

𝑣 ’s neighbors to 𝑣 at layer 𝑙 + 1. ℎ (𝑙+1)𝑣 is the hidden representation

of 𝑣 at layer 𝑙 + 1 and it is determined by 𝑣 ’s hidden representation

at layer 𝑙 as well as 𝑚
(𝑙+1)
𝑣 . ℎ

(𝑙)
𝑔 is the hidden representation of

graph 𝑔 at layer 𝑙 which is computed by aggregating the vertex

representations at layer 𝑙 together via reduction function 𝑅(·). To
sum up, (7), (8) define a convolution layer and (9) defines a pooling

layer.

The convolution layer used in our implementation is based on

graph convolutional network (GCN) [12]. Following the form given

above, GCN can be expressed as𝑚
(𝑙+1)
𝑣 =

∑
𝑤∈𝑁 (𝑣)𝑊

(𝑙)ℎ (𝑙)𝑤 and

ℎ
(𝑙+1)
𝑣 = 1

|𝑁 (𝑣) |+1 (ℎ
(𝑙)
𝑣 +𝑚

(𝑙+1)
𝑣 ), where𝑊 (𝑙) is the parameters of

layer 𝑙 .

And We adopt the attention mechanism proposed in [3] as the

graph pooling layer, which is

ℎ
(𝑙)
𝑔 =

|𝑉 |∑
𝑛=1

𝜎

(
(ℎ (𝑙)𝑣 )𝑇 ReLU(𝑊 𝑎

𝑙
( 1

|𝑉 |
∑
𝑢∈𝑉

ℎ
(𝑙)
𝑢 ))

)
ℎ
(𝑙)
𝑣 (10)

where 𝜎 (·) is any activation function,𝑊 𝑎
𝑙
is trainable parameters

and 𝑅𝑒𝐿𝑈 (𝑋 ) = max(𝑋, 0).

E PROOF OF THEOREM 1
It is obvious that (3) is minimized when 𝑦′ = 𝑦′. To prove its

convexity, we compute its Hessian matrix, which is

𝑒𝑎 (�̂�
′−𝑦′) {[𝑎(𝑦′ − 𝑦′) + 2]2 − 2}

(
1 −1
−1 1

)
Since

(
1 −1
−1 1

)
is positive semi-definite, the Hessian matrix is

positive semi-definite if and only if 𝑒𝑎 (�̂�
′−𝑦′) {[𝑎(𝑦′−𝑦′)+2]2−2} ≥

0. Notice that

𝑒𝑎 (�̂�
′−𝑦′) {[𝑎(𝑦′ −𝑦′) + 2]2 − 2} ≥ 0⇐⇒ [𝑎(𝑦′ −𝑦′) + 2]2 − 2 ≥ 0

And

[𝑎(𝑦′ − 𝑦′) + 2]2 − 2 < 0⇐⇒ 𝑎(𝑦′ − 𝑦′) + 2 ∈ (−
√
2,
√
2)

which means

𝑦′ − 𝑦′ ∈ ( −
√
2 − 2
𝑎

,

√
2 − 2
𝑎
)

Since |𝑦′ − 𝑦′ | ≤ 𝑀 , if −𝑀 >

√
2−2
𝑎 , then 𝑦′ − 𝑦′ is always larger

than

√
2−2
𝑎 , which means 𝑒𝑎 (�̂�

′−𝑦′) {[𝑎(𝑦′ − 𝑦′) + 2]2 − 2} ≥ 0 and

the Hessian matrix is positive semi-definite. Therefore, the loss is

convex, if 𝑎 <
2−
√
2

𝑀
.

F DATASETS
Some important statistics of the datasets are illustrated in Table

7. Besides, we illustrate our procedure to generate two synthetic

datasets.

ER dataset. Generating a graph under ER model requires two

parameters: the number of nodes (𝑛) and the probability for edge

creation (𝑝). When generating a graph, we sample 𝑛 from a poisson

distribution with expectation equal to 10 and the constraint that

0 < 𝑛 < 30. The upper bound for 𝑛 is to prevent that it takes too

Table 7: Statistics of datasets

Dataset |𝐷 | ave |𝑉 | ave |𝐸 | |𝐿𝑣 | |𝐿𝑒 |
AIDS 42, 687 25 55 62 1

LINUX 38, 661 16 34 1 1

ALCHEMY 119, 487 21 44 7 1

ER 5, 000, 000 10 66 5 1

BA 5, 000, 000 10 40 5 1

long to compute the ground truth, since exact GED computation is

NP-hard. And 𝑝 is sample from a uniform distribution 𝑈 (0.3, 0.1).
After generating an unlabeled graph with ER model, we sample

the label for each node under a multinomial distribution (0.6 : 0.2 :
0.1 : 0.05 : 0.05). The multinomial distribution is intended to mimic

the common skewness of label’s distribution in real world.

BA dataset. Generating a graph under BA model requires two

parameters: the number of nodes (𝑛) and the number of edges to

attach from a new node to existing nodes (𝑚), with the constraint

that 1 ≤ 𝑚 < 𝑛. We sample 𝑛 in the same way as generating graphs

under ER model, and we sample 𝑚 from 1 to 𝑛 − 1 with equal

probability. After generating an unlabeled graph with BA model,

we sample the label for each node under a multinomial distribution

(0.8 : 0.1 : 0.05 : 0.025 : 0.025), with the intention to mimic the

common skewness of distributions of labels in real world.

G EXPERIMENT CONFIGURATION
We implement all the baselines and the majority of our algorithm

in c++, except the neural network of our approach is implemented

in python with tensorflow
2
. All our experiments are carried out on

a linux server with eighty 2.20GHz Intel(R) Xeon(R) CPUs, 528 GB

main memory and eight Nvidia Tesla v100 GPUs.

In our experiments, hyper-parameters are not carefully chosen

for any particular datasets. We use one-hot encoding scheme to get

the initial node representations. The output dimensions for the 1st,

2nd and 3rd layer of GCN are 256, 128, 64, respectively. After getting

the graph representation from the graph attention pooling layer, we

use two fully connected layers to get the continuous embeddings

of the graphs as shown in Figure 1 and the output dimensions

of both layers are 256. Then we use another two fully connected

layers to get the hash codes. The output dimensions are 128 and 32

respectively. One thing to note is that the output dimension of the

last layer is also the length of the hash codes (32 by default, unless

otherwise noted). All the layers except the last one use ReLU as

activation function and the last one uses tanh as activation function

so that the output is within [−1, 1].
We set the slope of exponential-weighted L2 loss, i.e. 𝑎 in (3), to

0.05, the clipping threshold 𝛾 to 11, the weight for hash code’s loss,

i.e. 𝜆 in (1), to
1
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and the weight for binary regularizer, i.e. 𝛽 in (4),

to 0.2. Besides,𝑀 = 1, 𝑘 = 1 when generating synthetic graphs.

For each dataset, we train ourmodel with at most 15000 iterations

and stop training when we detect the training loss stop decreasing.

Specifically, for every 50 iterations, we compute the average training

loss of last 50 iterations (𝑙50) and of last 500 iterations (𝑙500). If

𝑙500 − 𝑙50 < 0.1, then we stop the training.

2
The code is available on github https://github.com/ZongyueQin/Graph-Hashing

https://github.com/ZongyueQin/Graph-Hashing
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