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Glycerol-3-phosphate acyltransferases (GPATs), critical for multiple biological processes

like male fertility, have been extensively characterized. However, their precise functions

and underlying regulatory mechanism in cotton anther development are unclear.

This research demonstrated the importance of GhGPAT12/25 (a paralogs pair on

A12/D12 sub-chromosome of cotton) to regulate the degradation of tapetum, anther

cuticle formation, and pollen exine development. GhGPAT12 and GhGPAT25 exhibited

specifically detected transcripts in tapetum and pollen exine during the early anther

developmental stages. GhGPAT12/25 are sn-2 glycerol-3-phosphate acyltransferases

and can transfer the acyl group of palmitoyl-CoA to glycerol-3-phosphate (G3P).

CRISPR/Cas9-mediated knockout identified the functional redundancy of GhGPAT12

and GhGPAT25. Knockout of both genes caused completely male sterility associated

with abnormal anther cuticle, swollen tapetum, and inviable microspores with defective

exine and irregular unrestricted shape. RNA-seq analysis showed that the loss of

function of GhGPAT12/25 affects the processes of wax metabolic, glycerol monomer

biosynthesis, and transport. Consistently, cuticular waxes were dramatically reduced in

mutant anthers. Yeast one-hybrid system (Y1H), virus-induced gene silencing (VIGS),

and dual-luciferase (LUC) assays illustrated that GhMYB80s are likely to directly activate

the expression of GhGPAT12/25. This study provides important insights for revealing the

regulatory mechanism underlying anther development in cotton.

Keywords: GhGPAT12/25, cotton, CRISPR/Cas9, male sterility, anther cuticle, pollen exine

INTRODUCTION

In flowering plants, male reproductive development is a complex biological process involving
the differentiation of stamen primordium to produce anther, the transition from sporophytic to
gametophytic generation, and the formation of pollen grains (Scott et al., 2004). The formed anther
consists of four somatic layers (from the surface to the interior): the epidermis, endothecium,
middle layer, and the tapetum (Goldberg et al., 1995). Microspore mother cells localized at the
center of the anther lobes will differentiate and undergo meiosis to produce microspores, which
then give rise to pollen grains. Pollen development is intimately linked to the morphogenesis
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of anther and requires the synergistic interaction between
sporophytic and gametophytic genes (Goldberg et al., 1995;
Scott et al., 2004).

To ensure the biological processes of microspore development
and pollen grainmaturation, plants establish two barriers in order
to resist various environmental stresses. One of the barriers is
the anther cuticle continuously coating the outermost surface
of anther epidermis (Piffanelli et al., 1998). Similarly to the
epidermal cuticle of vegetative organs, anther cuticle is a complex
biopolymer composed of two types of lipophilic materials: cutin
and waxes (Kolattukudy, 2001). The hydrophobic cutin matrix is
synthesized by hydroxyl and epoxy fatty acids, and it determines
the framework of the anther cuticle (Kolattukudy, 2001; Heredia,
2003). Waxes contain different substances generated from (very)-
long-chain fatty acids through alcohol/alkane-forming pathways,
and they are embedded or/and overloaded on the surface
of cutic matrix (Kunst and Samuels, 2003). The synthetic
pathway of the cuticle involves the synthesis, transport, and
polymerization of cutin monomers. Genetic and biochemical
evidences have demonstrate that C16 and C18 fatty acids are
the main substrates for cutin formation, and they are firstly
esterified to produce (fatty) acyl-CoA (Kunst and Samuels,
2003; Zhang et al., 2018). This formation process is catalyzed
by long-chain acyl-CoA synthetases (LACS), like LACS1 and
LACS2 in Arabidopsis (Lu et al., 2009). Then, the products
are oxidized by CYP86 and CYP77 subfamilies members, such
as the CYP703A2/CYP703A3 and CYP704B1/CYP704B2 in
Arabidopsis/rice (Morant et al., 2007; Dobritsa et al., 2009; Li
et al., 2010; Yang et al., 2014). Furthermore, the acyl group of
acyl-CoA is transferred to glycerol-3-phosphate (G3P) under
the catalysis of glycerol-3-phosphate acyltransferase (GPAT),
thus yielding monoacylglycerol cutin monomers (Li-Beisson
et al., 2013). OsGPAT3 and ZmMS33 were reported to be
genes involved in this aspect for anther cutin formation (Men
et al., 2017; Zhang et al., 2018). ATP-binding cassette (ABC)
transporters (i.e., ABCG11 and ABCG12) are then recruited
for the channeling of glycerol monomers through the plasma
membrane (Pighin et al., 2004; Panikashvili et al., 2007).
Subsequently, the hydrophobic polymer compounds will pass
through the apoplastic compartment or cell wall; lipid transfer
proteins (LTPs) collaborate in the completion of this process
(Edstam and Edqvist, 2014). Pollen wall, especially the exine,
is the second barrier practically for pollen grain maturation
and it is also indispensable for pollen-stigma communication
(Piffanelli et al., 1998). The main component of the exine
is sporopollenin (an extremely chemically inert biopolymer),
which was reported to be likely synthesized by polyvinyl alcohol
units and 7-O-p-coumaroylated C16 aliphatic units in pine
(Li et al., 2019a). The synthesis and secretion of the major
lipidic precursors of cutin and sporopollenin largely rely on
the developing tapetum. Mutations in genes responsible for
the formation or transport of these lipid components usually
cause abnormal programmed cell death (PCD) in the tapetum.
Examples of such genes are AMS/TDR, MYB80, MS1/PTC1,
MS2/DPW, CYP703A2/CYP703A3, and CYP704B1/CYP704B2
(Wilson et al., 2001; Sorensen et al., 2003; Li et al., 2006, 2010,
2011; Morant et al., 2007; Dobritsa et al., 2009; Chen et al., 2011;

Phan et al., 2011; Shi et al., 2011; Yang et al., 2014;
Pan et al., 2020).

In plants, the development of sporophytic anthers and internal
pollen grains is considered to be a complex biological process that
is controlled by a precisely transcriptional regulatory network
involving a series of genes (Feng et al., 2012). Based on mutant
and interaction analysis, a number of principal genes controlling
this process have been identified in Arabidopsis. Such genes
include DYT1, AMS, TDF1, MYB80, MS1, MS2, LAP5, LAP6,
CYP703A2, and CYP704B1 (Wilson et al., 2001; Sorensen et al.,
2003; Zhang et al., 2006; Morant et al., 2007; Zhu et al., 2008a;
Dobritsa et al., 2009; Kim et al., 2010; Chen et al., 2011; Phan
et al., 2011). With homologous genes characterized in rice
or/and other plants, further studies implied that these genes are
evolutionarily conserved. MYB80 is a key transcription factor
located downstream of AMS to control the tapetum development
and pollen exine formation. MYB80 was reported to directly or
indirectly regulate the expression of many functional genes being
responsible for the synthesis or transport of lipidic components
required for anther development (Phan et al., 2011; Xiong et al.,
2016; Lu et al., 2020). Genes, such as CYP703A2, MS2, LAP5,
and LAP6, show a significant down-regulation in the MYB80
mutant. Further research has found that MYB80 protein could
induce the expression of these genes, thereby supporting the
proposal that MYB80 acts as a pivotal connector for upstream
TFs and downstream enzyme genes during anther development
(Phan et al., 2011). Notably, GhMYB80 can rescue the male
sterile phenotype of AtMYB80 in Arabidopsis (Xu et al., 2014),
indicating its potential role for anther development in cotton.

The sn-Glycerol-3-phosphate O-acyltransferase (GPAT,
EC2.3.1.15) is a key enzyme responsible for the synthesis of
glycerophospholipids and triacylglycerol (TAG) (Zheng et al.,
2003). Previous studies revealed that diverse GPATs may catalyze
the transfer of an acyl group from acyl-CoA/acyl-ACP to the
different positions (sn-1 or sn-2) of glycerol-3-phosphate (G3P)
(Zheng and Zou, 2001). In Arabidopsis, 10 GPATs (ATS1 and
AtGPAT1-9) have been identified. ATS1 and AtGPAT9 possess
sn-1 acyltransferase activity and they have been reported to
contribute to the synthesis of storage oil (Nishida et al., 1993;
Gidda et al., 2009). AtGPAT1-8 are sn-2 acyltransferases likely
involved in the biosynthesis of extracellular lipids barrier
polyesters, such as cutin and suberin (Yang et al., 2012).
AtGPAT4 and AtGPAT8 are required for the accumulation of
cutin monomers in leaves and stems (Li et al., 2007). AtGPAT5/7
predominantly contribute to the synthesis of suberin, while,
AtGPAT7 has also a unique role in wounding response (Yang
et al., 2012). AtGPAT1 and AtGPAT6 have been reported to be
essential for pollen development and largely redundant in tapetal
development. Both gpat1 and gpat6 mutants exhibit abnormal
tapetal cells and reduced mature pollen grains, while the gpat1
gpat6 double mutant shows short filaments and a complete male
sterility (Zheng et al., 2003; Li et al., 2012). Moreover, OsGPAT3
was found to play a crucial role in anther cuticle formation
and pollen exine development in rice (Men et al., 2017). Its
homologous gene in maize, ZmMS33, also benefits male fertility
(Zhang et al., 2018; Zhu et al., 2019). Despite the importance
of understanding the roles of GPATs, few relative researches
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have been performed in cotton. To date, the GPAT family
members have been identified in four species: G. raimondii,
G. arboreum, G. hirsutum, and G. barbadense. Several probably
storage oil-related genes have also been found (Cui et al., 2019).
However, the contribution of GPAT genes in cotton male sterility
has not been investigated.

In this study, the pivotal role of GhGPAT12/25 in synthesizing
the glycerol monomers for anther cuticle formation and
pollen exine development in cotton has been investigated.
GhGPAT12/25 are sn-2 glycerol-3-phosphate acyltransferases
and can transfer the acyl group of palmitoyl-CoA to G3P. As
paralogs pair, GhGPAT12 and GhGPAT25 have similar temporal
expression pattern and are restricted in tapetum and pollen
exine during the early anther developmental stages. Moreover,
CRISPR/Cas9-mediated knockout of GhGPAT12/25 caused a
male sterile phenotype. Then, it was shown that GhMYB80s are
likely to directly activate the expression of GhGPAT12/25. This
work determined that GhGPAT12/25 participate in the conserved
pathway to synthesize lipidic monomers required for anther
cuticle formation and pollen exine development in cotton.

MATERIALS AND METHODS

Plant Materials
The upland cotton TM-1 was used in this study. The plants for
DNA or RNA extraction were cultivated in conventional fields of
the Institute of Cotton Research, Chinese Academic Agricultural
Sciences (ICR, CAAS) (Anyang, 35◦120N, 113◦370E). The plants
for virus-induced gene silencing (VIGS) assay were cultivated in
a phytotron with 16 h:8 h light:dark photoperiod.

DNA, RNA, and cDNA
Total DNA of TM-1 anthers was extracted using the CTAB
method (Porebski et al., 1997). Total RNA of various tissues and
anthers of different developmental stages were isolated using the
RNAprep Pure Plant Kit (Tiangen, Beijing, China). The first-
strand cDNA was prepared using the PrimeScript RT reagent
kit with a gDNA Eraser (Takara, Dalian, China), following the
manufacturer’s instructions.

Heterologous Expression of
GhGPAT12/25 and Enzyme Assays
For heterologous expression of GhGPAT12/25 proteins, a
pYES2 vector (Miaoling Bio1) was used for expression vector
construction. The recombinant pYES2 plasmids were then
transformed into yeast strain gat11 (BY4742, Matα, his3C1,
leu2C0, lys2C0, ura3C0, and YKR067w:kanMX4). The induction
of GPAT expression was as described by Zheng et al. (2003) with
an induction time of 30 h. After centrifugation (1500 × g for
5 min), the cell pellets were resuspended in buffer [20 mM Tris-
HCl (pH 7.9), 10 mMMgCl2, 1 mM EDTA, 5% (vol/vol) glycerol,
1 mM DTT, and 0.3 M ammonium sulfate]. The homogenates
were prepared following the procedure established by Yang et al.

1www.miaolingbio.com

(2010). The GPAT activity of GhGPAT12/25 was determined
using Tissue GPAT Assay Kit (GenMed, Shanghai, China).

qRT-PCR
qRT-PCR analyses were carried out using SYBR Premix Ex Taq
(Tli RNaseH Plus) (Takara, Dalian, China). Gene-specific primers
were directly obtained from qPrimerDB2. The cotton ACTIN 7
was used to as an internal control gene. The11Ct algorithm was
used for calculating relative gene expression. All primers used in
this study are presented in Supplementary Table 3.

RNA in situ Hybridization
TM-1 anthers at various developmental stages were sampled
and fixed in formalin/acetic acid/alcohol fixative solution for
12 h at 4◦C. After being dehydrated through the ethanol series,
anther samples were embedded in paraffin and sectioned to a
thickness of ∼7 µm using a rotary microtome (RM2016, Leica).
The 29-bp specific fragment corresponding to the GhGPAT12/25
cDNA was used to design the antisense and sense probes.
Digoxigenin-labeled RNA probes were labeled using DIG-UTP
(Roche). Details of RNA hybridization and signal detection of the
hybridized probes are described by Kouchi and Hata (1993).

Bioinformatic Analysis of GhGPAT12/25
The DNA and CDS sequences of GhGPAT12/25 were cloned
from TTP stage anthers of TM-1. The basic characters of
GhGPAT12/25 proteins were analyzed using ProtParam3.
Their conserved domains were predicted using Pfam4.
The 26 corresponding amino acid homologous sequences
from 10 different species were obtained from NCBI5 and
TAIR6. Multiple sequence alignment of GhGPAT12/25 and
homologous sequences of other species were performed
using DNAMAN. A neighbor-joining phylogenetic tree was
constructed using MEGA 6.07 and 1000 repetitions of bootstrap
analysis were performed.

CRISPR/Cas9-Mediated Knockout
The full-length DNA sequences of GhGPAT12/25 were analyzed
using CRISPR-P software8, and two sgRNA targets were selected
to assemble into the pRGEB32-GhU6.7-NPT II expression
vector. Then, the recombinant vector was transferred to
Agrobacterium tumefaciens (GV3101). Upland cotton cv. HM-1
was used as the transformation receptor. The transgenic plants
were obtained following the method described by Li et al.
(2019b). TheHI-TOManalysis described by Liu et al. (2019b) was
used to check the sequences of transgenic plants.

Cytological Observation
A 1% iodine/potassium iodide solution (I2-KI) was used to check
the pollen viability. Anthers in various developmental stages of

2https://biodb.swu.edu.cn/qprimerdb
3https://web.expasy.org/protparam/
4http://pfam.xfam.org/
5http://www.ncbi.nlm.nih.gov/
6http://www.Arabidopsis.org/
7http://www.megasotware.net/
8http://crispr.hzau.edu.cn/CRISPR/
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WT and mutant were sampled for paraffin section, SEM, TEM,
and TUNEL. The detailed methods were as described by Uzair
et al. (2020), Zhang et al. (2020).

Wax Determination
WT and mutant anthers were collected during the mature
stage. The surface areas of cotton anthers in WT and mutant
were determined using microscopy. For waxes quantification,
100 mg of freeze-dried anther was submersed in 10 ml of
chloroform (55◦C) for 1 min. Extraction was repeated once,
and the chloroform extracts were spiked with 100 µg of C24
Alkan. The solvents were evaporated under nitrogen gas. The
remaining compounds were incubated with 200 µl of BSTFA
(Sigma-Aldrich) and 200 µl of pyridine for 40 min at 70◦C.
These derivatized samples were then analyzed using GC-MS
and GC-FID.

Yeast One-Hybrid Assay
The promoter sequences of GhGPAT12/25 were analyzed
using New PLACE9 to identify specific cis-element motifs
bound by upstream genes. Two specific promoter segments
were synthesized for three copies and constructed into
the pHIS2 vector. The CDS sequences of GhDYT1-A
(GH_A10G0179), GhAMS-A (GH_A12G0356), GhMYB80-A
(GH_A04G0015), GhTDF1-A (GH_A13G1049), and GhbHLH91-
A (GH_A06G1836), potential upstream transcription factors
that showed similar expression pattern with GhGPAT12/25,
were cloned into the pGADT7 vector. Each pHIS2 bait vector
was co-transformed with recombinant pGADT7 prey vector to
Y187 yeast strain. The co-transformed yeasts were incubated
on SD/-Leu/-Trp selective medium and further identified on
SD/-Leu/-Trp/-His selective medium with 200 mM 3-amino-
1,2,4-triazole (3-AT). The combinations of pGADT7 empty
vector and recombinant pHIS2 vectors were employed as
negative controls.

Dual-Luciferase Assay
A transient dual-luciferase assay in tobacco leaves was carried out
to confirm the activation effect of GhMYB80s on GhGPAT12/25.
The promoter sequence of GhGPAT12 was amplified and cloned
into the pGreenII0800-LUC vector as the reporter plasmid.
The CDS of GhMYB80-A was cloned into the pGreenII 62-SK
vector as effecter plasmid. The recombinant vectors were then
transformed into the GV3101 (pSoup-p19) strain. Subsequently,
equal A. tumefaciens cells that carried the reporter and effector
vectors were co-infiltrated into tobacco leaves. Two days later, the
infected tobacco leaves were sampled for LUC and REN luciferase
activity analysis. To achieve this, the Dual-Luciferase Reporter
Assay System (Promega, Madison, WI, United States) and
GloMax 20/20 Luminometer (Promega) were used.Moreover, the
pGreenII0800-LUC-pGhGPAT12 and pGreenII 62-SK (empty)
vectors were used as a negative control, and each combination
was replicated six times.

9http://bioinformatics.psb.ugent.be/webtools/plantcare/html/

VIGS Assay
To further illustrate the potential function of GhMYB80 in
cotton anther development, a VIGS assay was performed using
upland cotton TM-1 as receptor. Briefly, a 300-bp fragment
of the GhMYB80-A CDS located outside of the conserved
region was cloned and constructed into the pCLCrVA vector.
The specific primers are listed in Supplementary Table 3. The
empty pCLCrVA and pCLCrVA-PDS were used as negative and
positive controls, respectively. These plasmids were transferred
into A. tumefaciens (strain GV3101). The A. tumefaciens cultures
containing the helper vector (pCLCrVB) and pCLCrVA or its
derivative (pCLCrVA-PDS and pCLCrVA-GhMYB80s) vectors
were mixed at ratio of 1:1 and then co-injected into the fully
expanded cotyledons of c. 10-day-old TM-1 seedlings. The plants
were cultivated at a 23◦C phytotron with 16 h:8 h light:dark
photoperiod. At the flowering stage, the phenotype of pCLCrVA-
GhMYB80s individuals were observed for the identification of
male sterile plants, and the TTP stage anthers of different plants
were collected for qRT-PCR analysis.

RNA-Seq
A total of eight libraries, comprising two cotton groups
(ghgpat12/25 and WT) at two stages (TTP and early UNP
stage) and two biological replicates, were sequenced using
Illumina NovaSeq 6000 to generate paired-end reads. Low-
quality reads were first removed, and the resulting clean reads
were aligned with the G. hirsutum (TM-1) genome (Hu et al.,
2019). StringTie was used to accurately quantify the fragments
per kilobase of transcript per million mapped reads (FPKM)
for calculating gene expression levels. Differential expression
genes were obtained using the DESeq R package. Genes with
the | log2 fold change| ≥ 1 and FDR ≤ 0.01 were considered
to be differentially expressed. Gene Ontology (GO) enrichment
analysis of DEGs was performed using OmicShare tools10 and
the ClueGO plugin in Cytoscape 3.3.0. STRING11 was used to
identify the known and predicted interactions in DEGs. Then,
the ClueGO plugin was used for the enrichment analysis of PPI
network-containing genes. RNA-seq raw data are accessible in the
NCBI Sequence Read Archive (SRA) database under Accession
Number PRJNA698752.

RESULTS

GhGPAT12/25 Have Early Anther
Stage-Specific Expression in Cotton
Previous RNA-seq data of anther samples at the tetrad pollen
(TTP), uninucleate pollen (UNP), and binucleate pollen (BNP)
stages are important references to identify crucial genes for
anther development (Zhang et al., 2020). Public expression
data provide an additional rich resource of information on
multiple tissues expression of cotton genes (Zhang et al., 2015).
Based on the combination analysis of these data, GhGPAT12/25
(glycerol-3-phosphate acyltransferase genes located on A12/D12

10www.omicshare.com/tools
11https://string-db.org/
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FIGURE 1 | Expression pattern of GhGPAT12/25. (A) Expression levels of GhGPAT12/25 based on RNA-seq data. Error bars indicate ± S.D. (n = 3 biological

replicates). (B) qRT-PCR analysis of GhGPAT12/25 in different developmental stage anthers and other tissues. Error bars indicate ± S.D. (n = 3 biological replicates).

(C–G) RNA in situ hybridization assay of GhGPAT12/25 in WT anthers of panel (C) microspore mother cell (MMC) stage, (D) meiosis cell (MC) stage, (E) tetrad pollen

(TTP) stage, (F) uninucleate pollen (UNP) stage, and (G) binucleate pollen (BNP) stage. (H) Anther of uninucleate pollen (UNP) stage hybridized with sense probe.

MMC, microspore mother cell; MC, meiosis cell; Msp, microspore; T, tapetum; Tds, tetrads. The red arrows show positive signal in anthers. Bar = 50 µm.

chromosomes) were found expressed in anthers but not in any
other tissues, and they also showed strict expression during TTP
stage (Figure 1A).

To confirm this, qRT-PCR analysis was performed using
anthers at the developmental stages of microspore mother cell
(MMC), meiosis cell (MC), tetrad pollen (TTP), early uninucleate
pollen (eUNP), late uninucleate pollen (lUNP), binucleate pollen
(BNP), mature pollen (MP), and vegetative tissue samples of
cotton plants. The results suggested that GhGPAT12/25 were
anther-specific expressed and showed negligible expression in
all the other tissues tested. In anther tissues, the expression
of GhGPAT12/25 was detectable as early as the MMC stage,
peaked at the MC stage, declined gradually at the TTP stage,
and showed a lower level after the eUNP stage. In addition,
GhGPAT12 showed a similar expression pattern to GhGPAT25,

but its expression levels were higher at MC and TTP stages than
those of GhGPAT25 (Figure 1B).

RNA in situ hybridization with anther sections was performed
to further precisely determine the spatial and temporal patterns
of GhGPAT12/25 transcripts. GhGPAT12/25 signal was initially
detected in tapetal layer at the MMC stage (Figure 1C), and
then a strong expression signal was detected predominantly
in the tapetum and microspores from the MC to the TTP
stage (Figures 1D,E). From the TTP stage onward, the
signal of GhGPAT12/25 transcripts decreased in the tapetum
but showed relatively high abundance in microspores exine,
especially on the spines (Figure 1F). Subsequently, the signal
was undetectable in the BNP stage (Figure 1G). Meanwhile,
no expression signals were detected by the sense probe
in anthers sections during the UNP stage (Figure 1H).
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This expression pattern implied that GhGPAT12/25 may
play specific roles in microspore development and pollen
wall formation.

GhGPAT12/25 Are Active sn-2
Glycerol-3-Phosphate Acyltransferases
Conserved in Land Plants
GhGPAT12/25 were cloned from the TTP stage anther
DNA/cDNA of upland cotton TM-1. The genomic DNA
sequence was 1976/1977 bp in length, containing two exons
and one intron (Figure 2A). The coding region was 1626 bp,
and the corresponding 541-aa protein had a molecular mass of
60.99/60.98 kDa and an isoelectric point of 9.12/9.29.

GhGPAT12/25 were glycerol-3-phosphate acyltransferases
and were predicted to contain a conserved acyltransferase
domain (Pfam: PF01553) at the C-terminal region. To
understand the evolutionary roles of GhGPAT12/25 and
gain information on their potential function, the full-length
proteins were used as queries to search their homologs in two
public databases: National Center for Biotechnology Information
(NCBI see text footnote 5) and The Arabidopsis Information
Resource (TAIR see text footnote 6). This search yielded a total
of 26 close homolog protein sequences from 10 different species.
Subsequently, a phylogenetic tree was constructed, and the 28
sequences were grouped into three main clades (Figure 2B).
AtGPAT1–8 were reported to belong to sn-2 GPATs, which
contribute to the formation of polyester, such as cutin and
suberin (Yang et al., 2012). The distribution of these Arabidopsis
members in three different groups of the phylogenetic tree
indicated that homologous proteins in these different species
may have similar functions with AtGPAT1–8.

GhGPAT12/25, together with their orthologs from Hibiscus
syriacus, Durio zibethinus, Theobroma cacao, Herrania
umbratical, Corchorus capsularis, Populus trichocarpa, Nicotiana
tabacum, Zea mays, and Arabidopsis, were grouped in clade I.
OsGPAT1 and all GPAT2/3 proteins were clustered in clade II,
while clade III included the remaining sequences (Figure 2B).
Sequence alignment showed that GhGPAT12 and GhGPAT25
share an acyltransferase (AT) domain with similar conserved
boxes (AT-1 to AT-IV) containing the corresponding catalytic
residues and binding residues with 26 other proteins (Figure 2C).
With the exception of the AT region, haloacid dehalogenase
(HAD)-like domains containing phosphohydrolases were
recognized at the N-terminal region of GPAT. According
to the protein sequence analysis, except for AtGPAT5 and
AtGPAT7, other proteins of clade III had the typical DXD
signature and GDXXXD motif required for phosphatase activity
(Figure 2C). However, other 20 proteins lacked these intact
residues (Figure 2C), indicating their absent phosphatase
activity. Furthermore, members of clade III, such as AtGPAT4–8,
were involved in the formation of polyester in vegetative organs
and the improvement of tolerance to environment stresses
(Yang et al., 2012). Proteins in clade I or II, like AtGPAT1,
OsGPAT3, and ZmMS33, have been shown to be essential for
pollen development (Zheng et al., 2003; Men et al., 2017; Zhang
et al., 2018; Zhu et al., 2019; Figure 2C). These analyses suggested

the functional differentiation of genes from different clades
in vegetative and reproductive development. Altogether, these
observations indicated a conserved structure of GhGPAT12/25
in sn-2 glycerol-3-phosphate acyltransferase and potential roles
in plant male reproductive development.

To determine whether GhGPAT12/25 have the activity to
acylate glycerol-3-phosphate, GhGPAT12 and GhGPAT25 were
cloned into pYES2 vector; both proteins were heterologously
expressed in the yeast strain gat11, which harbors a mutant ER-
bound GPAT gene with very low GPAT activity (Zheng and Zou,
2001). Under the control of the galactose-inducible promoter of
GAL1, the GhGPAT12 and GhGPAT25 proteins were expressed,
and total yeast homogenates were prepared for the detection
of glycerol-3-phosphate acyltransferase activities with palmitoyl-
CoA as the fatty acyl donor. Thus, overexpression of GhGPAT12
and GhGPAT25 resulted in an increase of about 617 and
470 pmol·min−1·mg−1 in glycerol-3-phosphate acyltransferase
activities, respectively (Figure 2D). The significant increases
of specific activities in yeast proved directly that GhGPAT12
and GhGPAT25 indeed encoded active glycerol-3-phosphate
acyltransferases.

CRISPR/Cas9-Mediated Knockout of
GhGPAT12/25 Leads to Male Sterility
CRISPR-Cas9 was performed in upland cotton “HM-1” to
knock out GhGPAT12/25 genes in order to validate their role
in reproductive development. Because of the high similarity
of sequence and temporal expression pattern of GhGPAT12/25
(Figure 1 and Supplementary Figure 1), both genes were
targeted for knockout. Two sgRNAs were designed targeting the
1st exons (323 bp away from each other) and cloned into a single
Cas9-sgRNA cassette (Figure 3A).

Eleven independent T0 transgenic lines were acquired. Hi-
TOM (Liu et al., 2019b) was performed to evaluate the editing
efficiency and to precisely analyze the nucleotide insertion
and deletion of GhGPAT12/25. The results showed that all
11 transgenic lines were positive plants with various types of
genome editing events precisely occurring at the examined gene,
GhGPAT12 or/and GhGPAT25 (Figure 3B and Supplementary

Figure 2). Among such transgenic lines, T0-2, T0-12, T0-15,
T0-23, T0-25, and T0-26 possessed both edited GhGPAT12
and GhGPAT25 sequences at the target site, but no normal
WT sequences (Figure 3B and Supplementary Figure 2). For
instance, T0-23 exhibited three types of indels at two target
sites in GhGPAT12 and two types of indels at sgRNA2 site in
GhGPAT25 (Supplementary Figure 2). However, T0-1, T0-6, T0-
7, T0-11, and T0-28 were incompletely edited lines that contained
WT sequences in either GhGPAT12 or GhGPAT25 (Figure 3B

and Supplementary Figure 2). Among these, the T0-1 and
T0-28 plants presented WT sequences of both GhGPAT12 and
GhGPAT25, while the T0-6 and T0-11 plants possessed several
types of indels on At and Dt sub-genes and held WT sequences
of GhGPAT12 (Figure 3B and Supplementary Figure 2). T0-7
showed a completely edited GhGPAT12 gene with three types of
indels, but incomplete GhGPAT25 with one type of indel and the
WT sequences (Figure 3B).
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FIGURE 2 | Gene and protein characterization of GhGPAT12/25. (A) Structure of GhGPAT12/25 genes. Black boxes and lines indicate exons and introns,

respectively. (B) Phylogenetic tree analysis of GhGPAT12/25 and their homologous sequences from other species. (C) Multiple sequence alignment of GPAT amino

acids from various species. DXDX[T/V][L/V] and K-[G/S][D/S]XXX[D/N] are important motif in the haloacid dehalogenase (HAD)-like domain. AT motifs I–IV are

conserved regions in acyltransferase domain. Asterisks indicate critical sites in the HAD-like domain that are indispensable for phosphatase activity of GPATs.

Binding and catalytic residues in acyltransferase domain are marked by dots and triangles, respectively. (D) GPAT activity in yeast homogenates of gat-11 mutants

transformed with either the empty pYES2 vector or the recombined plasmids containing the GhGPAT12/25 genes. Error bars indicate ± S.D. (n = 3 biological

replicates).

To evaluate the function of GhGPAT12/25, the T0 and T2 (F1
self-pollinated progeny of T0 × HM-1) transgenic lines were
planted in agronomic field formorphological analysis. The results
showed that the incompletely edited lines T0-1, T0-6, T0-7, T0-
11, and T0-28 had a normal phenotype with fertile anthers.
Whereas the completely edited lines, such as T0-15, exhibited
normal vegetative growth similar to HM-1 (Figures 3C,D), the
reproductive organs were defective (Figure 3F). The flower of T0-
15 displayed shorter filaments with shriveled anthers (Figure 3F).
The anthers did not dehisce and lacked mature pollen grains
at the late developmental stages when stained with 1% I2-KI
solution (Figures 3F,H). T2 plants of T0-15 showed fertility
segregation; according to the results of the Hi-TOM analysis,
the F2 progenies with homozygous or biallelic mutations of
GhGPAT12/25 were completely male sterile (Supplementary

Figure 3), while the genotypes of fertile plants were homozygous
wild type or heterozygous (Supplementary Figure 3). These
results clearly indicated that GhGPAT12 and GhGPAT25 play key
roles in the normal development of male organs in cotton and
appear to be functionally redundant.

GhGPAT12/25 Contribute to the
Assembly of Anther Cuticle and Pollen
Exine
To investigate the cytological effects of GhGPAT12/25,
histological transverse section analysis of WT and ghgpat12/25

(a T2 male sterile plant) anthers was employed. No significant
differences between ghgpat12/25 and WT were detected at the
MMC stage. Their anthers formed four typical anther wall layers
and their microsporocytes were located at the center of each
anther locule (Figures 4A,B).

Subsequently, ghgpat12/25 anthers displayed clear
morphological abnormalities. At the MC stage, WT tapetal
cells started to shrink and showed deep staining with toluidine
blue (Figure 4C), while the ghgpat12/25 tapetal cells did not
appear to condense and were weakly stained (Figure 4D).
At the TTP stage, anther wall layers of WT anthers became
thinner, tetrads of haploid microspores were formed in
anther locule, and the tapetal layer was more condensed
(Figure 4E). In contrast, the wall layers of ghgpat12/25
anthers seemed to be irregular and thicker, the microspores
in ghgpat12/25 tetrads exhibited an irregular shape, and the
tapetal layer was swollen and lightly stained (Figure 4F). At
the UNP stage, WT microspores covered with spines were
released from the tetrads. The tapetal layer underwent PCD
and apparently decayed into a thinner layer (Figure 4G).
However, the microspores of ghgpat12/25 showed an anomalous
appearance without spines (Figure 4H). Meanwhile, the
ghgpat12/25 tapetum was still pachytic (Figure 4H). At the
BNP stage, the WT anther locules continued to expand with
thinner wall layers, microspores became spherical with large
vacuoles, and the tapetum was almost completely degraded
into cellular debris (Figure 4I). By contrast, ghgpat12/25
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FIGURE 3 | Functional characterization of GhGPAT12/25 by CRISPR/Cas9-mediated knockout assay. (A) Gene structure of GhGPAT12/25 and the target sites of

sgRNAs in exon1. The GGG and AGG in red represent the PAM motifs. (B) Variation information of transgenic lines T0-1, 7, 11, and 15. The PAM sequence is shown

in red. Deletions are denoted with red dashes. Insertions are shown as red letters. The mutation types are shown on the right. L InDel indicates large InDel. (C–H)

Phenotypic characteristics of ghgpat12/25 and its wild-type HM-1. (C) Adult plant, (E) flower, and (G) pollen phenotypes of the wild-type HM-1; (D) adult plant, (F)

flower, and (H) pollen phenotypes of ghgpat12/25.

FIGURE 4 | Paraffin section of anthers in different developmental stages of ghgpat12/25 and HM-1. Transverse section images of HM-1 anthers shown in panels

(A,C,E,G,I,K) and those for ghgpat12/25 anthers shown in panels (B,D,F,H,J,L). BNP, binucleate pollen; MMC, microspore mother cell; MC, meiosis cell; MP,

mature pollen; Msp, microspore; T, tapetum; Tds, tetrads; TTP, tetrad pollen; UNP, uninucleate pollen. The red arrows show main differences in anthers.

Bar = 100 µm.

displayed narrow anther locules with thicker wall layers and
tapetum, as well as microspores without large vacuoles and
abnormal appearance despite the presence of the expansion
(Figure 4J). From the vacuolated pollen stage to the mature
pollen stage, the tapetum of the WT gradually degenerated and
vacuolated microspores turned to mature pollen grains with fully
accumulated nutrients (Figures 4I,K). However, the tapetum of
ghgpat12/25 seemed to undergo acute and abnormal degradation,

leaving only aborted pollen grains in the atrophic anther locules
(Figures 4J,L).

Scanning electron microscopy (SEM) was used to further
investigate the morphological differences of anthers and pollen
grains inWT and ghgpat12/25 at the late development stages. The
WT anther exhibited a plump and normal cuticle-covered surface
(Figures 5A,B). The pollen grains were covered by exine pattern
full of spines and apertures (Figures 5C,D). In ghgpat12/25, a
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FIGURE 5 | Scanning electron microscope (SEM) analysis of the anther surfaces and pollen grains in HM-1 and ghgpat12/25. Anthers of panels (A) HM-1 and

(E) ghgpat12/25 at maturation stage. The enlarged detailed view of the anther surfaces of panels (B) HM-1 and (F) ghgpat12/25. Pollen grain of panels (C) HM-1

and (G) ghgpat12/25 at maturation stage. The enlarged detailed views of the pollen surfaces of panels (D) HM-1 and (H) ghgpat12/25.

shriveled and relatively smooth anther epidermis (Figures 5E,F)
and shrunken pollen grains were produced as a result of the
disorganized cuticle structures and the anomalously assembled
exine (Figures 5G,H).

To more precisely characterize the defects in ghgpat12/25,
transmission electron microscopy (TEM) analysis was performed
on the anthers from the TTP stage to the BNP stage. At the
TTP stage, the tapetum showed a thin cell wall layer, the tapetal
cells became largely vacuolated, and the middle layer began to
degenerate (Figure 6A). Additionally, rounded microspores were
observed within the tetrad (Figure 6B). Unlike those tapetum of
WT plants, ghgpat12/25 tapetum was disordered and its middle
layer was much thicker (Figure 6C). At the same stage, although
the tetrads of ghgpat12/25 were also covered by callose, the
microspores seemed to develop abnormally with irregular surface
(Figure 6D). At the early UNP stage and within the tapetal
cells of WT, the vacuoles were reabsorbed and the tapetum
started to degenerate (Figure 6E). Meanwhile, the elementary
structure of the exine, composed of the well-organized tectum,
bacula, and nexine, was observed at the surface of the WT
microspores being released from the tetrads (Figures 6F,G).
Conversely, in the ghgpat12/25 anthers, themiddle layer persisted

and became largely vacuolated (Figure 6H); the tapetal cells
seemed slightly stained and became abnormally expanded, which
caused one side to be in direct contact with the middle layer
(Figure 6H). The ghgpat12/25microspores displayed an irregular
shape (Figure 6I), and the pollen exine seemed to contain
relatively normal nexine, but the tectum and bacula were
poorly developed and lacked the assembly of spines (Figure 6J).
At the late UNP stage, the WT microspore underwent large
vacuolation period, the tapetum continued to degenerate, and
the sporopollenin was deposited onto the microspore surface
thickening the exine (Figures 6K–M). However, a stunted middle
layer and swollen tapetum cells with intact nuclei were observed
in the ghgpat12/25 anther (Figure 6N). The ghgpat12/25 pollen
nexine did not show significant thickening, and the assembly of
sexine was still abnormal (Figures 6O,P). At the BNP stage, the
WT anther showed an almost completely degenerated tapetal cell
layer (Figure 6Q) and spherical pollen grains with accumulated
starch and lipidic materials (Figure 6R). Furthermore, the
pectocellulosic intine started to develop beneath the exine, and
the tryphine was deposited onto the pollen wall (Figure 6S).
However, ghgpat12/25 anther showed no obvious degeneration
of the middle layer but a vanished tapetal layer (Figure 6T),

Frontiers in Plant Science | www.frontiersin.org 9 May 2021 | Volume 12 | Article 667739

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Zhang et al. GhGPAT12/25 Are Essential for Male-Sterility

FIGURE 6 | Transmission electron microscopy (TEM) analysis of anthers in HM-1 and ghgpat12/25. (A,E,K,Q) Cross sections of the HM-1 anther cell wall at the

(A) TTP stage, (E) eUNP stage, (K) lUNP stage, and (Q) BNP stage. (C,H,N,T) Cross sections of the ghgpat12/25 anther cell wall at the (C) TTP stage, (H) eUNP

stage, (N) lUNP stage, and (T) BNP stage. (B,D) Tds of panel (B) HM-1 and (D) ghgpat12/25. (F,L,R) Pollen grains of HM-1 at the (F) eUNP stage, (L) lUNP stage,

and (R) BNP stage. (I,O,U) Pollen grains of ghgpat12/25 at the (I) eUNP stage, (O) lUNP stage, and (U) BNP stage. (G,M,S) Pollen exine of HM-1 at the (G) eUNP

stage, (M) lUNP stage, and (S) BNP stage. (J,P,V) Pollen grains of ghgpat12/25 at (J) eUNP stage, (P) lUNP stage, and (V) BNP stage. Ba, bacula; Ex, exine; In,

intine; Ml, middle layer; Msp, microspore; Ne, nexine; T, tapetum; Tds, tetrads; Te, tectum. The red arrows show main differences between HM-1 and ghgpat12/25 in

tapetum, tetrads, pollen grains and exine. Bars: 10 µm in panels (A-C,F,I) and (L-N,Q,T), 20 µm in panels (D,G,J) and (O,R,U), and 2 µm in panels (E,H,K,P,S,V).
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leaving aborted microspores with thin intine and absent tryphine
in anther locules (Figures 6U,V).

In synthesis, it can be concluded that GhGPAT12/25 are
required for the development of an anther cell layer, tapetum
PCD, pollen wall assembly, and anther cuticle formation.

DNA Fragmentation in ghgpat12/25

Tapetal Cells Is Abnormal
The timely degradation of tapetal cells caused by the process
of PCD is considered to be vital for anther cuticle formation
and pollen development. Paraffin section observation and TEM
suggested that ghgpat12/25 tapetal cells abnormally expanded
with the development of pollen. To examine whether ghgpat12/25
anthers are defective in the tapetum PCD process, a TUNEL
(terminal deoxynucleotidyl transferase-mediated dUTP nick-
end labeling) assay was performed. DNA fragmentation was
not detected at the MC stage in both WT and ghgpat12/25
tapetal. Tapetal DNA fragmentation signals were firstly visualized
in the WT anthers at the TTP stage (Figures 7A,F). As the
tapetum layer continued to degenerate, positive TUNEL signals
continued to increase until reaching a maximum at the UNP
stage (Figure 7B), and then the signals declined and almost
disappeared after the BNP stage (Figures 7C,D). However, no
clear DNA fragmentation was detected in ghgpat12/25 anthers,
with the exception of the few signals scattered across the
tapetum at the UNP stage (Figures 7G–J). These TUNEL assay
results further indicated that the precise PCD of ghgpat12/25
tapetum was disrupted.

Loss of Function of GhGPAT12/25 Affects
the Expression of Genes Responsible for
Lipid Synthesis and Transport
To further gain insight into the functional mechanism of
GhGPAT12/25 in the control of anther development, RNA-seq
of anthers at the TTP and early UNP stage was established
to compare the global gene expression of ghgpat12/25 and
WT plant. A total of 3655 original differentially expressed
genes (DEGs) were filtered with the | log2 fold change|
≥ 1 and FDR ≤ 0.01. Of these genes, 1111 were down-
regulated (uninvolved in up-regulation in any stages) and
2315 were up-regulated (uninvolved in down-regulation in
any stages). Enrichment analysis of DEGs showed that the
down-regulated genes were involved in “polyol transport,”
“transmembrane transport,” “lipid biosynthetic process,”
“glycerol transport,” and “wax metabolic process,” among others
(Figure 8A), whereas the up-regulated genes were mainly
enriched (Figure 8A) to be responsive to various stimuli, such as
hormone, chemical, chitin, etc.

Notably, the down-regulated genes included CER1
(GH_A06G1828 and GH_D06G1860), CER3 (GH_A13G2356),
andCER6 (GH_A01G2012 andGH_D01G2106) (Supplementary

Table 1), which have been reported to be male sterile genes
contributing to the biosynthesis of cuticle membrane and wax
in Arabidopsis (Aarts et al., 1995; Fiebig et al., 2000; Ariizumi
et al., 2003). Moreover, other wax and cuticle pathway involving
genes, such as LACS1 (Lu et al., 2009) (GH_A07G1407), CER2

(Haslam et al., 2012) (GH_A01G1242), and SHN1 (Broun et al.,
2004) (GH_A10G0747), also exhibited lower expression in
ghgpat12/25 (Supplementary Table 1). For the assembly of
anther cuticle, lipidic monomers synthesized by glycerol-3-
phosphate acyltransferase are required to be transferred to the
epidermis layer by LTPs and ABC transporter proteins (ABCGs)
(Li-Beisson et al., 2013). Here, many LTPs and ABCGs genes
were found to be down-regulated in the mutant (Supplementary

Table 1); among such genes are LTPG1 (GH_A04G1689 and
GH_D04G2037), LTPG6 (GH_D05G0009 and GH_D08G0861),
LTP4 (GH_A07G0829), LTPG26 (GH_D02G0373), ABCG14
(GH_D08G1774), and ABCG25 (GH_D05G2788). Subsequently,
the decreased expression of these genes using quantitative
real-time (qRT)-PCR was confirmed (Figure 8B). To further
elucidate the potential regulatory mechanism of GhGPAT12/25,
the known and predicted interactions among down-regulated
genes were investigated, and genes with high connectivity with
others in the protein–protein interaction (PPI) network were
selected for functional analysis. Such investigation showed
that these genes were also involved in lipid biosynthetic, wax
metabolic, and cutin metabolic processes (Figure 8C), which
correlated well with the GO enrichment of all down-regulated
genes. Moreover, genes contributing to the biosynthetic
processes of several secondary metabolites (isoprenoid,
terpenoid and pigment) were also enriched in this network
(Figure 8C). These results implied that the mutation of
GhGPAT12/25 might affect the biosynthesis and transportation
of lipidic components required for the formation of exine
and anther cuticle.

Anther Cuticular Waxes Were Altered in
ghgpat12/25 Anthers
Due to the defects of anther cuticle and pollen exine
(Figures 5, 6), as well as the down-regulation of wax synthesis
genes in ghgpat12/25 (Figure 8B), it can be speculated that
the wax enrichment in ghgpat12/25 anthers was abnormal. To
test this hypothesis, the compositions and quantity of cuticle
waxes of the wild type and the ghgpat12/25 anthers were
determined by gas chromatography–mass spectrometry (GC-
MS) and gas chromatography–flame ionization detection (GC-
FID). After clarifying the ratio between surface area and weight
of anthers in WT and ghgpat12/25 (Supplementary Figure 5),
the wax compositions per unit area (mm2) were quantified.
Alkanes were determined as the major wax monomers in WT
and ghgpat12/25 anthers (Figure 9A). Approximately, a total
of 0.058 µg waxes per mm2 were detected in WT anthers.
However, the waxes in ghgpat12/25 anthers (0.014 µg/mm2)
were 75% less than those in the WT anthers (Figure 9A and
Supplementary Table 2). The affected waxes in ghgpat12/25
anthers were attributed to the reduction of alkanes (C24, C25,
C26, C27, C29, C30, C31, and C32) and fatty acids (C20,
C24, and C26) (Figures 9B,C and Supplementary Table 2).
Additionally, a significant decrease in the levels of other
metabolites, like tocopherols, campesterols, and diterpenoids,
was also observed in ghgpat12/25 anthers (Figure 9D and
Supplementary Table 2). On the other hand, the contents
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FIGURE 7 | TUNEL assay for the detection of DNA fragmentation in anthers of HM-1 and ghgpat12/25. (A–E) DNA fragmentation in HM-1 anthers at the (A) meiosis

cell (MC) stage, (B) tetrad pollen (TTP) stage, (C) uninucleate pollen (UNP) stage, (D) binucleate pollen (BNP) stage, and (E) mature pollen (MP) stage. (F–J) DNA

fragmentation in ghgpat12/25 anthers at the (F) meiosis cell (MC) stage, (G) tetrad pollen (TTP) stage, (H) uninucleate pollen (UNP) stage, (I) binucleate pollen (BNP)

stage, and (J) mature pollen (MP) stage. Msp, microspore; T, tapetum; Tds, tetrads. The white arrows show positive signal in anthers. Bar = 20 µm.

of alcohols (C22, C24, and C26) in the anthers of WT and
ghgpat12/25 were not significantly different (Supplementary

Figure 6 and Supplementary Table 2). These data implied that
the loss of function of GhGPAT12/25 can affect the enrichment of
wax monomers in cotton anthers.

GhGPAT12/25 Were Activated by
GhMYB80
According to the analysis of the promoter sequences
(Supplementary Figure 7), it was predicted that GhGPAT12/25
may be regulated by MYB or/and bHLH because of the
existence of their binding sites. To further identify the
potential upstream regulatory genes, MYB and bHLH
transcription factors, which showed similar expression
patterns to those of GhGPAT12/25, were screened based
on the previous RNA-seq data of anther samples and other
vegetative tissues (Zhang et al., 2015, 2020). Five pairs of
homologous genes were found to be strictly expressed in
anthers at the early developmental stages (Figure 10A).
Subsequently, a yeast one-hybrid system (Y1H) was performed
using two sequences that represent the most likely binding
sites of MYB or/and bHLH TFs (Figure 10B). For the
TFs, the study revealed that only GhMYB80 (GhMYB80-
A, GH_A04G0015) could directly bind to the WAACCA
(MYB1AT) site in GhGPAT12/25 promoters (Figure 10C).
However, the other genes exhibited no or low binding
activity on the SD/-Trp/-Leu/-His + 200mM 3-AT selective
medium (Figure 10C).

GhMYB80 has been reported to share conserved sequences
with that of Arabidopsis and Brassica and to rescue the
male sterile phenotype of atmyb80 in Arabidopsis (Xu et al.,
2014). The qRT-PCR analysis was carried out to identify the
expression pattern of GhMYB80s in various tissues; thus, the
specific expression characteristic in anthers during the TTP

stage was determined (Figure 10D). To explore their potential
roles in cotton anther development and verify the regulatory
relationship with GhGPAT12/25, a VIGS assay was used in
TM-1 to transiently suppress the expression of GhMYB80s.
A 300-bp fragment of the GhMYB80-A CDS from the non-
conserved region was used in the (pCLCrVA)-based VIGS
construct. As expected, pCLCrVA-GhMYB80s plants showed a
significant decline in male fertility, characterized by 64%–93%
of the anthers being shriveled (Figures 10E,F). The expressions
of GhMYB80s in TTP stage anthers of the positive plants
were down-regulated by approximately 59%–85% compared to
the negative control plants (Figure 10G), implying that the
corresponding phenotype was indeed due to the silence of
GhMYB80s. Furthermore, the expression levels of GhGPAT12/25
in GhMYB80s-slienced plants were found to be significantly
reduced in positive anthers (Figure 10H). This suggested that
GhGPAT12/25 act downstream of GhMYB80s and might be
activated by GhMYB80s.

The activation of the GhGPAT12/25 promoters by the
GhMYB80s protein was further confirmed via dual-luciferase
(LUC) assays. In this system, the promoter sequence of
GhGPAT12 was constructed to the pGreenII0800-LUC reporter
plasmid, and the CDS of GhMYB80-A (GH_A04G0015) was
cloned into an effecter plasmid (pGreenII62-SK) and driven
by a CaMV35S promoter. The GhMYB80 transactivation
level to the probable downstream promoter was measured
by normalizing the signal of the luciferase reporter to that
of Renilla luciferase (REN). The assay showed that the co-
transformed effector-reporter exhibited a statistically significant
higher-level transactivation in comparison with negative control
(Figure 10I). This result indicated that GhGPAT12 can be
activated by GhMYB80-A. According to the high similarity
of the GhGPAT12/25 promoters (Supplementary Figure 7), it
can be concluded that GhMYB80s are likely to directly bind
to the specific elements in the GhGPAT12/25 promoters and
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FIGURE 8 | RNA-seq and qRT-PCR analysis of anthers in HM-1 and ghgpat12/25. (A) Gene Ontology (GO) analysis of down-regulated and up-regulated DEGs.

(B) qRT-PCR analysis of DEGs related to the synthesis and transport of lipidic monomers required for cuticle formation. (C) Biological process enrichment analysis of

PPI DEGs by ClueGO plug-in in Cytoscape. The size of the nodes represents the number of genes. Node color, from blue to red, indicates increase in significance of

biological processes. Error bars indicate ± S.D. (n = 3 biological replicates).

activate the expression of GhGPAT12/25 for their subsequent
functionalization.

DISCUSSION

GhGPAT12/25 Are Required for the
Anther Cuticle Formation and Pollen
Exine Assembly
Heterosis utilization is an expectable goal in cotton genetic
breeding. Male sterile lines are considered of great agricultural

importance for the production of hybrids in order to improve the
productivity and quality of cotton fiber (Zhu et al., 2008b). Few
genes have been identified to be crucial for the formation of male
organs in cotton (Wang and Li, 2009; Li et al., 2013, 2020; Liu
et al., 2019a; Wang et al., 2019), and, therefore, the underlying
regulatory mechanism controlling anther development and male
sterility in cotton remains elusive.

In this research, GhGPAT12 and GhGPAT25, a paralogous

gene pair, were identified encoding glycerol-3-phosphate
acyltransferases in cotton (Figure 2). Evidences strongly
suggesting a significant role of such pair in the anther cuticle
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FIGURE 9 | Analysis of anther waxes compositions in the anthers of WT and ghgpat12/25. (A) Total wax, (B) alkanes, (C) fatty acids, and (D) other metabolites’

amounts per unit surface area (µg/mm2) in WT and ghgpat12/25 anthers. Student’s t-test, *P < 0.05 and **P < 0.01. Error bars indicate ± S.D. (n = 3 biological

replicates).

formation and pollen development were also discovered
(Figures 4–6). As genes specifically expressed in anthers,
GhGPAT12/25 are predominantly transcribed during early
anther developmental stages (Figure 1). According to
previous studies in Arabidopsis and rice, the expression
characteristics of GhGPAT12/25 are similar to many male
sterility genes, represented by MYB80 (Phan et al., 2011; Pan
et al., 2020), MS1/PTC1 (Wilson et al., 2001; Li et al., 2011),
CYP703A2/CYP703A3 (Morant et al., 2007; Yang et al., 2014),
CYP704B1/CYP704B2 (Dobritsa et al., 2009; Li et al., 2010), and
ACOS5/OsACOS12 (de Azevedo Souza et al., 2009; Li et al., 2016).
These genes were reported to play essential roles in anther cuticle
assembly and pollen exine development, indicating the potential
functions of GhGPAT12/25 in cotton anther development. The
knockout ofGhGPAT12/25mediated by CRISPR/Cas9 supported
this hypothesis, thus yielding a completely male sterile mutant
(Figure 3 and Supplementary Figures 2, 3).

The cytological observation and biochemical analysis of
this research revealed that aberrant lipidic metabolism in
ghgpat12/25 anther affects the precise tapetum degeneration and
the biosynthesis of essential precursors in anther cuticle and
pollen exine (Figures 4–7, 9 and Supplementary Figure 6).
The tapetal layer of ghgpat12/25 could not undergo timely
PCD, but displayed a series of unpredictable changes, such as
lightly staining and swollen appearance, from the MC stage to
the BNP stage (Supplementary Figures 6, 7). These abnormal
morphologies are reminiscent of the phenotype of many male
sterile lines, such as atgpat1 (Zheng et al., 2003) and lap5lap6
(Kim et al., 2010) in Arabidopsis; dpw (Shi et al., 2011), dpw3
(Mondol et al., 2019), and cyp704b2 (Li et al., 2010) in rice;
and zmms33 (Zhang et al., 2018; Zhu et al., 2019) in maize.

Additionally, during the late developmental stage, the acute
and abnormal degradative tapetum in ghgpat12/25 anther and
the aborted pollen grains leaving the atrophic anther locules
(Figures 4J,L) indicate defects in synthesis and transport of
lipidic precursors from the tapetum cell to the pollen wall surface
in the mutant. These defects confirm the essential role of the
cooperative action between tapetum cell and microspore for
pollen development.

The anormogenesis of microspores is another characteristic in
ghgpat12/25. Microspores in ghgpat12/25 exhibited an irregular
shape and abnormal exine (Figures 4–6). According to SEM
detection, the pollen grains of ghgpat12/25were relatively smooth
with no reticulate exine pattern and spines on the pollen surface
(Figures 5G,H). These deficiencies were caused by the poor
development of sexine (tectum and bacula) on the pollen wall
(Figures 5G,H). Such development was exposed by the TEM
analysis (Figures 6J,P,V). Altogether, these deficiencies in tapetal
layer PCD and microsporogenesis lead to the male sterility, and
these results may be predicted by the expression ofGhGPAT12/25
in both tapetal cells and pollen surface.

Despite the un-expression of GhGPAT12/25 on anther
epidermal cells shown by the RNA in situ hybridization
experiment (Figure 1), GhGPAT12/25 were also found to be
critical for anther cuticle development (Figure 5). Anther cuticle
is the protective barrier for the normal development of anthers
and pollen grains in the anther locules (Piffanelli et al., 1998).
As the downstream executor of anther lipid metabolism, GPAT is
thought to be a committed enzyme for glycerol synthesis and an
essential factor in the precise assembly of cuticle monomers (Li-
Beisson et al., 2013). In the present study, SEM was performed
to observe the anther surface of ghgpat12/25, thus discovering
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FIGURE 10 | Regulatory relationship between GhGPAT12/25 and GhMYB80. (A) Transcription factors showing similar expression pattern with GhGPAT12/25.

(B) Binding site sequences of MYB and bHLH (MYC) TFs on the promoters of GhGPAT12/25. The binding sites of MYB and bHLH (MYC) are located on the

complementary strands. (C) Interaction between upstream TFs and the probably targeting promoter sequences of GhGPAT12/25 in yeast one-hybrid assay.

(D) Expression pattern of GhMYB80s. (E) The proportion of normal anthers in pCLCrVA and pCLCrVA-GhMYB80s lines. (F) Flower phenotype of pCLCrVA and

pCLCrVA-GhMYB80s lines. The red arrows show normal anthers. (G) Relative expression levels of GhMYB80s in pCLCrVA and pCLCrVA-GhMYB80s lines.

(H) Relative expression levels of GhGPAT12/25 in pCLCrVA and pCLCrVA-GhMYB80s lines. (I) The relative LUC/REN ratios of the control and test groups. In panels

(D,E,G,H), error bars indicate ± S.D. (n = 3 biological replicates). In panel (I), the data are the mean ± S.D. of six independent biological replicates. Student’s t-test,

**P < 0.01.

the seemingly lacking cuticle on anther surface (Figures 5E,F).
This defect is consistent with the observations in osgpat3 (Men
et al., 2017) and zmms33 (Zhang et al., 2018; Zhu et al.,
2019) mutants. Moreover, this defect may be explained by the
biochemical evidence establishing that the synthesis of wax
monomers, such as alkanes and fatty acids, as well as several other
metabolites (tocopherols, campesterols, and diterpenoids), was
largely reduced in ghgpat12/25 anthers (Figure 9).

Therefore, these series of concomitant defects in pollen exine
and anther cuticle highlight that the sporopollenin and cuticle
may share similar lipidic constituents supplied by tapetal layer
cells, and GhGPAT12/25may act as important factors in affecting
the normal functioning of tapetum during anther development.

GhGPAT12/25 Have Conserved and
Diversified Functions for Anther
Development in Dicot
The sn-Glycerol-3-phosphate O-acyltransferase (GPAT, EC
2.3.1.15) is the first enzyme for the assembly of membrane

and storage glycerolipids (Zheng et al., 2003). Previous
studies revealed that GPATs can be distinguished by the
positions (sn-1 or sn-2) that catalyze the transfer of an acyl
group from acyl-CoA/acyl-ACP to glycerol-3-phosphate
(G3P) and whether they have phosphorylation activity.
These characteristics have been extensively illustrated in
animals and plants (Yang et al., 2012). In general, different
structural characteristics and catalytic performance determine
the diverse functions of GPATs. The sn-1 acyltransferases
were found to play important roles in the production of
intracellular storage oil and to be represented by ATS1
(Nishida et al., 1993) and AtGPAT9 (Gidda et al., 2009) in
Arabidopsis. The sn-2 acyltransferases are likely involved
in the biosynthesis of extracellular lipid barrier polyesters,
cutin and suberin, such as AtGPAT1–8 (Yang et al., 2012),
BnGPAT4 (Chen et al., 2014), OsGPAT3 (Men et al., 2017),
ZmMS33 (Zhang et al., 2018; Zhu et al., 2019), and SlGPAT6
(Petit et al., 2016). Despite the scarce information about
the molecular structure and biosynthetic steps of lipid
polymers, the synthesis of cutin glycerolipid is produced
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via a variant set of reactions that store lipid biosynthesis
(Yang et al., 2010).

Based on the protein conserved domain analysis,
GhGPAT12/25 were identified as glycerol-3-phosphate
acyltransferases (Figure 2). Phylogenetic tree analysis implied
that GhGPAT12/25 were assigned to clade I and considered to
be sn-2 acyltransferases homologous to AtGPAT1, indicating
the potential roles of GhGPAT12/25 in polyester synthesis
(Figure 2B). Sequence alignment showed that GhGPAT12/25 and
homologous members in other species share common conserved
boxes (AT-I to AT-IV) in acyltransferase (AT) domain, with the
corresponding catalytic and binding residues in all sequences
(Figure 2C). In addition, the HAD-like domain located in
the N-terminal region of GPATs is thought to be a typical
reference for distinguishing the existence of phosphohydrolytic
activity. Like AtGPAT1/2/3/5/7, GhGPAT12/25 may not have
this activity due to the absence of pivotal sites necessary for
substrates binding and catalysis in DXD and GDXXXD motif,
and they were predicted to acylate the sn-2 position of G3P and
produce lysophosphatidic acid (LPA) (Figure 2C). In clade III,
AtGPAT4, AtGPAT6, and AtGPAT8 contained intact activity
sites in these motifs (Figure 2C) and functioned as unique
bifunctional enzymes with both acyltransferase and phosphatase
activity, producing sn-2 MAC (monoacylglycerol) rather than
LPA (Yang et al., 2012).

OsGPAT3 and ZmMS33 have been reported to be
indispensable for male reproduction (Men et al., 2017;
Zhang et al., 2018; Zhu et al., 2019), but the functions of
their homologous genes in Arabidopsis (AtGPAT2/3) are not
yet clear (Yang et al., 2012). This evidenced the functional
differentiation of GPAT in dicotyledon and monocotyledon.
Notably, AtGPAT1/6 are considered as crucial factors to anther
and tapetum development in Arabidopsis (Zheng et al., 2003;
Li et al., 2012). Similar to its ortholog AtGPAT1 in Arabidopsis,
GhGPAT12/25 were also found to benefit male fertility in cotton,
indicating their relatively conserved functions in dicotyledon.
However, unlike AtGPAT1, which expresses in flower buds and
siliques, causing a partial male sterility with defective pollen
grains and normal anther cuticle with loss of function (Zheng
et al., 2003), GhGPAT12/25 are specifically expressed in the
early developmental anthers (Figure 1) and their mutants are
completely male sterile with abnormal tapetum, immature exine,
and a lack of cuticle (Figures 3–7), suggesting the diversified
functions of GPAT during evolution. Altogether, these results
reflect the conserved and diversified function of GhGPAT12/25
in male reproductive development. However, it is worth noting
that more research on GPAT is needed to explore their specific
evolutionary mechanism in dicots and monocots.

A Potential Regulatory Pathway of
GhGPAT12/25 in Male Sterility
As an evolutionarily conserved gene in various plants, MYB80 is
located downstream of AMS to control the anther development
and cuticle formation. MYB80 is considered to directly or
indirectly regulate the expression of a series of functional
genes, which contribute to the synthesis or transport of

lipidic components required for anther development, such as
CYP703A2, MS2, LAP5, and LAP6 (Phan et al., 2011; Xiong
et al., 2016; Lu et al., 2020). In addition, further genetic and
biochemistry analysis have revealed thatMYB80 directly activates
the expression of MS1 and CYP703A2 by binding to the core
motifs (AACC) located on the promoters (Xiong et al., 2016; Lu
et al., 2020).

In this study, GhGPAT12/25 were found to be key enzymes
in the synthetic pathway of lipidic monomers required for the
formation of anther cuticle and pollen exine (Figures 5, 6).
Their upstream regulator was then predicted to be GhMYB80s
because of the similar expression patterns of them and the
MYB1AT motif (CTAACCA) located on the promoter of
GhGPAT12/25 (Figure 10B). Y1H, dual luciferase, and VIGS
assays, which were performed to investigate the potential
regulatory mechanism of GhGPAT12/25 in anther development,
demonstrated that GhMYB80s are likely to directly bind to the
core motif of GhGPAT12/25 promoter, thereby activating the
expression of GhGPAT12/25 (Figures 10C,E–I). These results
preliminarily reveal the regulatory mechanism of GhGPAT12/25
in the process of anther cuticle formation and highlight
the evolutionary conservation role of MYB80 in cotton
anther development.

Indeed, except for the effects of MYB80 on anther cuticle
formation, many MYB TFs, such as MYB16, MYB30, MYB94,
MYB96, etc., were found to be crucial manipulators for the
regulation process of cuticle synthesis in vegetative organs
by regulating the expression of downstream lipidic-related
genes (Oshima and Mitsuda, 2013; Lee et al., 2016; Zhang
et al., 2019). Moreover, these downstream genes are mainly
CER1, LACS2, KCS1, KCS2, KCS6, KCR1, and CER3, which
are also involved in the formation of cutin and wax in
anthers, thus implying that these genes may be regulated
by diverse MYBs in different synthesis pathways of cuticle
due to their ubiquitous expression in various tissues (Seo
et al., 2011; Lee et al., 2016). Therefore, as key enzymes in
anther cuticle formation pathway, GhGPAT12/25 may also be
regulated by MYBs. Altogether, these discussions ratify the
underlying regulatory mechanism of GhGPAT12/25 discovered
in this research.

In view of our transcriptome analysis showing the
significantly differential down-regulation of a large number
of lipid biosynthetic and glycerol transport genes (SNH1,
CER1, CER2, CER3, CER6, LACS1, LTPG1, LTPG6, ABCG10,
ABCG14, and ABCG25, etc.) in ghgpat12/25 anthers (Figure 8B
and Supplementary Table 1), it can be speculated that
GhGPAT12/25 likely function in modulating the synthesis and
transport of lipidic framework during anther development,
while their loss of function leads to the disturbances of
these processes.

In previous researches, SNH1, CER1, CER2, CER3, and CER6
are considered to contribute to the production of epicuticular
wax (Millar et al., 1999; Fiebig et al., 2000; Ariizumi et al.,
2003; Broun et al., 2004; Haslam et al., 2012) and not affect
the content and composition of cutin. LACS1 is an acyl-CoA
synthetase that acts on long-chain and very-long-chain fatty
acids, and it is important for the biosynthesis and assembly of
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both cuticular wax and cutin polyester in Arabidopsis (Lu et al.,
2009). Therefore, according to the potential role ofGhGPAT12/25
for the formation of cutin monomers, we speculated that the
down-regulation of these wax-related genes may be due to the
lack of cutin matrix that supports the correct incorporation of
intracuticular and epicuticular waxes into the cuticle backbone.
In other words, the failed cutin synthesis process affected
the production of wax components. This hypothesis was
confirmed by the reduction of wax components in ghgpat12/25
anthers (Figure 9).

Moreover, the lipidic monomers synthesized in tapetal
cells need to be transported to the anther epidermis. This
process requires the participation of ABCG transporters for
the channeling of intracellular lipids through the plasma
membrane and LTP(G)s responsible for exporting lipidic
monomers to pass through the apoplastic compartment or
hydrophilic cell wall (Edstam and Edqvist, 2014). Several
ABCGs and LTP(G)s were found to be down-regulated
in ghgpat12/25 anthers (Figure 8B and Supplementary

Table 1); among them, LTPG1 has been reported to bind
to lipids and to function as a component of the cuticular
lipid export machinery in Arabidopsis. The mutation of
LTPG1 causes the alterative compositions of cuticular lipid
on epidermis (Debono et al., 2009). Meanwhile, LTPG6,
which is abundantly expressed in pollen, has previously
been found to affect the pollen morphology, ovule fertility,
and seed formation (Edstam and Edqvist, 2014). LTPG26 is
considered a young anther-specific gene, but its function is
still unclear. Additionally, several genes, such as DRN1 (Dhar
et al., 2020), LTP4 (Deeken et al., 2016), ABCG14 (Wang
et al., 2017), and ABCG25 (Kuromori et al., 2010), were
reported to be responsible for systemic resistance, especially
for bacterial/fungus pathogens. It is worth considering that,
although there is not enough evidence, these genes may
exert resistance by transporting lipidic components used
to synthesize cuticle. Other genes are mainly functionally
ambiguous in Arabidopsis because of their unique effect
characteristics. For example, ABCGs are half-transporters
and require dimerization to function. Different dimer
combinations may have diverse substrates, thus performing
different functions (McFarlane et al., 2010). Therefore, their
down-regulation in ghgpat12/25 may imply their potential
roles in anther cuticle development, and it is indispensable
to explore the detailed biological functions of ABCGs and
LTP(G)s members in future studies, especially their effects in
anther development.

In conclusion, a pair of paralogs GhGPAT12/25 specifically
expressed in early developmental stage tapetum and
microspores were identified in this research. CRISPR/Cas9-
mediated knockout and gene regulatory mechanism analysis
demonstrated that GhGPAT12/25 are indispensable enzymes
acting downstream of GhMYB80s and contributing to the
anther cuticle formation and pollen exine development by
synthesizing glycerol framework. Moreover, the loss of function
of GhGPAT12/25 affects the expression of genes related to the
synthesis and transport of cutin and wax, thus leading to the
male sterile phenotype in ghgpat12/25. This study discovered

pivotal genes controlling male sterility and provided important
insights into the regulatory mechanism underlying anther
development in cotton.
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