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Abstract. Most high dynamic range image (HDRI) algorithms assume
stationary scene for registering multiple images which are taken under
different exposure settings. In practice, however, there can be some global
or local movements between images caused by either camera or object
motions. This situation usually causes ghost artifacts which make the
same object appear multiple times in the resultant HDRI. To solve this
problem, most conventional algorithms conduct ghost detection proce-
dures followed by ghost region filling with the estimated radiance values.
However, usually these methods largely depend on the accuracy of the
ghost detection results, and thus often suffer from color artifacts around
the ghost regions. In this paper, we propose a new robust ghost-free
HDRI generation algorithm that does not require accurate ghost detec-
tion and not suffer from the color artifact problem. To deal with the
ghost problem, our algorithm utilizes the global intensity transfer func-
tions obtained from joint probability density functions (pdfs) between
different exposure images. Then, to estimate reliable radiance values, we
employ a generalized weighted filtering technique using the global in-
tensity transfer functions. Experimental results show that our method
produces the state-of-the-art performance in generating ghost-free HDR
images.

1 Introduction

Typical cameras represent a pixel using only 256 values for each of the red, green,
and blue channel. On the contrary, the range of radiance of a real scene has a far
wider range than 256 values [1]. Hence, a photograph taken by a conventional
camera can not capture the whole dynamic range of scene radiance. So, the
cameras usually compress the scene radiance value using a proper function which
is often called the camera response function (CRF). This process, however, can
cause unpleasant under- or over-exposed regions.

Many approaches have been proposed to recover a high dynamic range im-
age (HDRI) by estimating the CRF using multiple low dynamic range images
(LDRIs) which are taken under different exposure settings for the scene [2–5].
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The pioneering work of Mann and Picard [2] used a gamma function to esti-
mate a CRF. Debevec and Malik [3] estimated a CRF using error function with
smoothness constraint in a least squared-error sense, and then the radiance value
of each pixel is determined by a weighted sum of the radiance values of multiple
exposure images. Mitsunaga and Nayar [4] approximated a CRF using a poly-
nomial with a fixed degree. They only assumed that the ratios of the exposures
between images are roughly known, instead of the exposure time. Grossberg and
Nayar [5] suggested a robust method to recover a CRF using intensity histograms
instead of a pixel value itself without image registration.

In practice, however, while fusing multiple images into a single radiance image,
all these methods severely suffer from artifacts caused by moving camera and/or
objects, because they assume a stationary scene. A camera motion causes global
image transformation such as an affine or perspective transformations between
different exposure images. If one takes photographs using a tripod, this problem
might be reduced. A more critical problem, however, is caused by an object mo-
tion which invokes inevitable ghost artifacts that make the same object appears
multiple times in a generated HDRI. Due to these reasons, practically it is a very
important and critical issue to produce a ghost-free HDRI from multiple images.

In this paper, we propose a new HDRI generation method that is very effective
for handling global and local movements from multiple exposures. Fig. 1 shows
an example of our HDRI generated from multiple LDRIs with object motions.
Compared with the standard method [3], our proposed method produces much
clear and ghost-free HDRI.

(a) (b) (c) (d)

(e) (f)

Fig. 1. (a)-(d) are input LDRIs. (e) Result of the standard HDRI method [3]. (f) Result
of the proposed method.
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2 Previous Works

There are several works for handling ghost artifacts for HDRI generation.
Jacobs et. al. [6] compared two measures to detect ghost regions such as vari-
ance image (VI) [1] and uncertainty image (UI) [6]. They argued that VI was
effective for detecting high contrast movement such as moving people, cars, and
etc., while UI was effective for low contrast movement such as moving leaves
and water rippling [6]. Grosch [7] detected ghost regions using predicted pixel
colors which were estimated from the CRF. They defined an error map that
had invalid pixel set by thresholding the absolute difference value between the
predicted pixel color and the original color. However, These methods have a
common drawback that the ghost detection results tend to be sensitive to the
threshold values of those measures. Also, they can decrease the dynamic range of
ghost regions, since they fill the detected ghost regions with the radiance values
from only a single image.

Some other approaches utilize as many multiple exposures as possible for
ghost regions. Gallo et. al. [8] detected ghost pixels using a linear property of
log radiance values in block-wise comparison. For each pixel, they combined
multiple exposures except for the images that had ghost regions. Then, they
blended the block boundaries to reduce the color difference between neighboring
blocks. Raman et. al. [9] suggested a similar approach. They also detected ghost
regions using block-based comparison between different exposures followed by
thresholding. Then, they performed the Poisson blending between neighboring
blocks. However, these methods still suffer from color artifacts around block
boundaries due to inaccurate CRF estimation [8].

Alternatively, there are other approaches that solve this problem by adjusting
weighting function in the Debevec and Malik’s weighted average framework [3].
Khan et. al. [10] suggested a ghost removal method by adjusting weights when
combining multiple exposures. They assumed that all pixels were belonging to
either foreground (moving part) or background (static part), and those back-
ground pixels were significantly prevailed than the pixels of foreground moving
objects. Their weight function is composed of two terms regarding the probability
of being correctly exposed and the probability of belonging to the background.
Then, they iteratively updated the probability of belonging to the background.
Pedone and Heikkilä [11] suggested a similar approach to [10]. They estimated
bandwidth matrices for computing the accurate probability of belonging to the
background, and propagated the influence of the low probabilities to the sur-
rounding regions using an energy minimization technique. A main drawback of
these methods is that if the object of interest is moving, that object can be
recognized as ghost and disappeared in the resultant HDRI.

On the other hand, Bogoni [12] estimated motion vectors using optical flow
for different exposure images, and then used those information to warp other
exposure images. Kang et. al. [13] also used a gradient-based optical flow method
to find corresponding pixels between neighboring images that had alternating
different exposures for producing HDR video sequences. However, it is not trivial
to find the accurate correspondence between different exposure images.
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Fig. 2. An overview of our approach

Most approaches described above determine whether a pixel in each image
is a ghost or not in deterministic or statistical manners. Then, to compute the
radiance values, they utilize the un-ghost pixels of multiple exposures only in
the same position. In this case, when ghost detection is not so accurate enough,
many artifacts arise in the resultant HDRI. Also, even when the ghost detec-
tion is acceptable, it is still problematic to fill those regions with proper ra-
diance values. Filling those regions using only a single exposure image can re-
duce the dynamic range, and also filling them using only un-ghost pixels can
produce color artifacts around the ghost regions due to the inaccurate CRF
estimation.

3 Proposed Algorithm

Fig. 2 shows an overview of our algorithm. First, we select a reference image
to generate a HDRI among multiple exposure images. Then, we globally align
other images to this reference image to handle camera motions caused by hand-
shakes. Next, we estimate the joint probability density functions (pdfs) between
the reference image and other images to estimate the global intensity transfer
functions. Based on these joint pdfs, we roughly detect ghost regions in other
images w.r.t. the reference image. Then, a refinement procedure is followed based
on a global energy minimization framework using Graph-cuts [14]. The joint pdf
and ghost detection processes are performed recursively for two or three steps.
After that, we compute a CRF by sampling some un-ghost pixels. Based on this
CRF, we refine the radiance values of other images w.r.t. that of the reference
image to reduce the CRF estimation error. Finally, using the refined radiance
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values and the global intensity transfer functions of all exposure images, we
perform a generalized weighted filtering to compute the final radiance values.
After tone-mapping process, we produce a ghost-free HDRI for the reference
image. Detailed explanation is as follows.

3.1 Reference Image Selection and Global Image Alignment

First, we have to select a reference image among multiple exposure images. We
choose the image that has least saturated regions such as under- or over-exposed
regions as the reference image. Then, we globally align other images to this
reference image. In this global alignment, we use SIFT feature-based alignment
method [15], since SIFT descriptor is robust to exposure changes [15] and it
can handle affine or perspective image transformations in some degree. After
finding SIFT features, we compute homographies based on these features using
RANSAC [16], and then warp other images to the reference image. However,
even after this global alignment, there still remain some local misalignments due
to moving objects that usually cause ghost artifacts. Let us describe how to deal
with this problem in detail in the following sections.

3.2 Joint Pdf Estimation

To deal with ghost artifacts, we need a measure to judge the correspondence
between different exposure images. For this measure, we use a global intensity
relationship [17]. To estimate the global relationship between different expo-
sures, we construct a joint histogram P k

n0,n for each color channel k ∈ {R, G, B}

between the reference nth
0 image and other nth image. P k

n0,n is defined by

P k
n0,n(i, j) =

1

M

∑

p

Gn(p) · T [(i, j) = (Ik
n0

(p), Ik
n(p))], (1)

where p is a pixel position index. T [·] is one if the argument is true, zero oth-
erwise. M is the total number of corresponding pixels in an image. Ik

n(·) is an
intensity value of k channel of nth image. Gn(·) is a ghost weight function which
is defined in the following section. At first iteration, we set Gn(·) = 1 for all
pixels of all exposures. Next, Parzen windowing is performed by convolving 2D
Gaussian function to have smooth joint pdfs. In this work, we used a 5×5 Gaus-
sian function. Then, we normalize the joint histograms such that the sum of all
the elements equals to one. Examples of joint pdfs are shown in Fig. 3 (d)-(f)
for the images in Fig. 3 (a)-(c), where (a) is the reference image.

3.3 Ghost Region Estimation

For each nth image except for the reference image, we detect ghost pixels by
defining ghost weight Gn(·) which is defined by
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(a) Image 1 (b) Image 2 (c) Image 3

(d) P G
1,1 (e) P G

1,2 (f) P G
1,3

Fig. 3. (a)-(c) are input image sequence, where (a) is the reference image. (d)-(f) are
joint pdfs of the green channel corresponding to (a)-(c), respectively.

Gn(p) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, if PR
n0,n(IR

n0
(p), IR

n (p)) < c or

PG
n0,n(IG

n0
(p), IG

n (p)) < c or

PB
n0,n(IB

n0
(p), IB

n (p)) < c

1, otherwise

. (2)

Gn(p) = 0 represents that a pixel p in the nth image is a ghost, while Gn(p) = 1
represents that the pixel p is a non-ghost pixel. For the reference image, all the
pixels are assumed to be non-ghost pixels. In this work, we set the threshold
c as 10−5. These ghost regions initially determined by thresholding joint pdfs
could be very noisy and inaccurate. Hence, we refine the ghost detection result
by using an energy minimization approach. For each image, we define the total
energy to minimize as follows:

E(fn) =
∑

p

Dp(fn(p)) +
∑

p

∑

q∈N(p)

Vpq(fn(p), fn(q)), (3)

where the Boolean label fn ∈ {0, 1} represents whether a pixel is a ghost or
not. When fn(p) = 0, a pixel p in the nth image is a ghost, while fn(p) = 1
represents that a pixel p in the nth image is not a ghost pixel. N(p) represents
a neighboring pixels of p. In this work, we use a four-neighborhood system. Our
data cost Dp(·) is defined by

Dp(fn(p)) =

⎧

⎨

⎩

0, if (fn(p) = 0 ∧ Gn(p) = 0) or

(fn(p) = 1 ∧ Gn(p) = 1)
β, otherwise

, (4)
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(a) (b) (c) (d)

Fig. 4. Ghost detection result. Image 1 (in Fig. 3 (a)) is the reference image. (a) and
(b) are the ghost regions corresponding to image 2 and image 3, respectively, using
thresholding joint pdf. (c) and (d) are the refined ghost regions corresponding to image
2 and image 3, respectively, using global energy minimization.

where β is a constant, which we set as β = 2.5. We define a smoothness cost
Vpq(·, ·) as a truncated linear function defined by

Vpq(fn(p), fn(q)) = λpq · min(|fn(p) − fn(q)| , Vmax),

λpq =

⎧

⎨

⎩

λL,
if {(|In0(p) − In0(q)| < η)∨

(|In(p) − In(q)| < η)}
λS , otherwise

,
(5)

where λL > λS , and In(p) represents a gray value of a pixel p in the nth im-
age. Note that the strength of Vpq(·, ·) depends on the intensity difference. If
the intensity change between neighboring pixels is smaller than the threshold
η, we emphasize more smoothness by choosing a larger λL value than a smaller
one, λS . In this work, we set variables in Eq. (5) as follows: Vmax = 1, η = 5,
λL = 3.0, λS = 1.0. The total energy E(fn) is optimized using the Graph-cuts
(alpha-expansion) algorithm [14]. Using optimized fn(·), Gn(·) is also updated.
Estimating joint pdf and ghost detection processes are iteratively updated. Em-
pirically, two or three iterations are sufficient for convergence.

A ghost estimation example for Fig. 3 (a)-(c) is shown in Fig. 4, where white
pixels represent the ghost pixels. We can clearly see that, after global energy min-
imization, ghost detection results become less noisy and more accurate than those
of naive thresholding. Also, it is worth noting that our method does not directly
use these ghost detection results, since these results can be still errorneous. In-
stead, we apply more robust filtering method, which is described in section 3.5.

3.4 Camera Response Function Estimation and Radiance Value

Refinement

If we assume that exposure time ∆tn is known, the radiance value of a pixel p

in the nth image can be obtained [3] by

ln Ek
n(p) = g(Ik

n(p)) − ln ∆tn, (6)

where E represents a radiance value and g(·) is an inverse camera response
function. Note that our actual goal is to compute the radiance values for all the
pixels in the reference image. Hence, to estimate the radiance value, we should
estimate the inverse CRF function g(·).
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To compute g(·), we randomly sample a number of points (55 in this work),
avoiding ghost regions and edge regions. Then, we computed g(·) using the
method [3]. Also, as [3] suggested, combined radiance value is computed as a
weighted average as follows:

ln Ek(p) =

∑

n

w(Ik
n(p))(g(Ik

n(p) − ln ∆tn))

∑

n

w(Ik
n(p))

, (7)

where w(·) is a triangle-shaped function defined by

w(z) =

{

z − zmin for z ≤ 0.5(zmin + zmax)
zmax − z for z > 0.5(zmin + zmax)

, (8)

where zmin and zmax are the minimum and maximum intensity values, respec-
tively.

To eliminate ghost artifacts, we should combine a set of exposure images
which does not include ghost pixels in calculating Eq. (7). However, even if we
accurately detect ghost pixels, there can be still significant color artifacts due
to inaccurate CRF estimation [8]. In other words, averaging from different sets
of exposure images which do not include ghost pixels often induces significant
color differences, because each E value of the same position for different exposure
images could have different values owing to inaccurate g(·).

The estimated CRF can be inaccurate by various factors such as inaccurate
ghost detection, image alignment error, noise and blurring. To solve this problem,
we refine the radiance values of other images such that all the pixels of different
exposure images have consistent radiance values to the reference image. First,
for non-ghost pixels, we compute the radiance values using Eq. (7). Then, we
obtain refined radiance value Ēk

n(·) by averaging the radiance values for each
exposure images as follows:

ln Ēk
n(z) =

1

C

∑

p, Ik
n(p)=z

Gn(p) · ln Ek(p), (9)

where C is a normalization constant. To acquire more smooth curve, we can
adopt a more sophisticated curve-fitting algorithm [4].

3.5 Generalized Weighted Filtering Method

In this section, we propose a robust weighted filtering approach for HDRI gen-
eration. Fig. 5 depicts our generalized weighted filtering scheme. First, using the
estimated joint pdf, the global intensity transfer function between the reference
nth

0 image and the nth image can be computed in the minimum mean squared
error (MMSE) sense. To consider the saturated cases, we define the global in-
tensity transfer functions according to the exposure time of images as follows:
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Fig. 5. Generalized weighted filtering scheme. The number of input images is N . Input
images are aligned according to exposure time. The final radiance value Ê of the
reference nth

0 image is computed using weighted sum of refined radiance values Ēn

of images. For each pixel q of nth image in the window L(p) centered at pixel p, the
total weight is determined by combining three weights; properly exposed weight w(·),
geometric distance weight d(p, q), and color difference weight cn0,n (p, q).

Bk
n0→n(i) =

255
∑

j=0

P k
n0,n(i,j)·j

255
∑

j=0

P k
n0,n(i,j)

(for ∆tn0 < ∆tn) ,

Bk
n→n0

(j) =

255
∑

i=0

P k
n0,n(i,j)·i

255
∑

i=0

P k
n0,n(i,j)

(for ∆tn0 ≥ ∆tn) .

(10)

For a pixel p in the reference image, we define a window region L(p) that includes
all the pixels around the center pixel p in all the exposure images. Then, to
compute the final radiance value Êk(·), we compute a weighted sum based on
the bilateral filtering weight [18] and the intensity weight as follows:

ln Êk(p) =

∑

n

∑

q∈L(p)

w(Ik
n(q))cn0,n(p,q)d(p,q) ln Ēk

n(Ik
n(q))

∑

n

∑

q∈L(p)

w(Ik
n(q))cn0,n(p,q)d(p,q)

,

cn0,n (p, q) = exp

(

−
∑

k

ψk
n0,n(p,q)

σ2
c

)

,

ψk
n0,n(p, q) =

{

∣

∣Bk
n0→n(Ik

n0
(p)) − Ik

n(q)
∣

∣

2
(for ∆tn0 < ∆tn)

∣

∣Ik
n0

(p) − Bk
n→n0

(Ik
n(q))

∣

∣

2
(for ∆tn0 ≥ ∆tn)

,

d(p, q) = exp
(

−‖p−q‖2

σ2
d

)

,

(11)
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(a) (b) (c)

(d) Standard [3] (e) Photomatix [21] (f) Proposed method

(g) (h) (i)

Fig. 6. Playground sequence. (a)-(c) are input LDR images, where (b) is the reference
image. (d) Result of the standard method [3]. (e) Result of the Photomatix [21]. (f)
Result of the proposed method. (g)-(i) are the magnified views of (d)-(f), respectively.

where w(·) is defined in Eq. (8) that emphasizes properly exposed intensity.
cn0,n(·, ·) is a weighting function for color difference between two pixels, d(·, ·) is a
weighting function for geometric distance between two pixels, and ‖·‖ represents
the Euclidean distance. Note that, in Eq. (11), we use the refined radiance values
Ēk

n(·) in Eq. (9) instead of the radiance values from the estimated CRF function,
because the refined radiance values produce less color artifacts when combining
radiance values of multiple exposures. Also, in order to compute cn0,n(·, ·), using
the global intensity transfer functions in Eq. (10) the intensity of the reference
nth

0 image is transformed to nth image that has longer exposure time than that
of the nth

0 image. Conversely, for nth image that has shorter exposure time than
that of nth

0 image, the intensity of nth image is transformed to the nth
0 image.

This weighted filtering approach can be considered as a generalized Debevec &
Malik approach [3] in that it considers a wider range of pixels, and is robust to
ghost artifacts, image misalignments and CRF estimation error. In this work, we
set variables in Eq. (11) as σc = 7, σd = 10. The size of L(p) was set as 21 × 21
for each exposure image.
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4 Experimental Results

To evaluate the performance of our method, we tested our algorithm for various
scenes that include camera and object movements. To visualize computed radi-
ance values, we averaged the results of both gradient-based [19] and photographic
[20] tone-mapping methods.

First, we compared our method with the commercial Photomatix software
[21]. For Photomatix software, we tried to reduce ghost artifacts with ‘moving
objects/people’ and ‘high’ detection modes. Fig. 6 and 7 (a)-(c) are the input
images taken by a Pentax K-7 camera with exposure bracketing mode of three
exposures (-2EV, 0EV, 2EV). In Fig. 6 and 7, (d)-(f) are the results of the

(a) (b) (c)

(d) Standard [3] (e) Photomatix [21] (f) Proposed method

(g) (h) (i)

Fig. 7. Amusement park sequence. (a)-(c) are input LDR images, where (b) is the
reference image. (d) Result of the standard method [3]. (e) Result of the Photomatix
[21]. (f) Result of the proposed method. (g)-(i) are the magnified views of (d)-(f),
respectively.
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(a) (b) (c) (d) (e)

(f) Standard [3] (g) Gallo et. al. [8] (h) Proposed method

(i) (j)

(k) (l)

Fig. 8. Sculpture garden sequence. (a)-(e) are input LDR images, where (c) is the
reference image. (f) Result of the standard method [3]. (g) Result of [8]. (h) Result of
the proposed method. (i)-(j) are the magnified views of the blue rectangle regions in
(g). (k)-(l) are the magnified views of the blue rectangle regions in (h).

standard method [3], the Photomatix [21], and the proposed method, respec-
tively. For local movement regions, magnified views of (d)-(f) are shown in (g)-(i),
respectively. As expected, we can observe that there are severe ghost artifacts in
the standard method. Although the Photomatix reduces ghost artifacts a little
bit, it can not completely eliminate them. Our method produces the most clean
and ghost-free HDRIs even for severe local movement regions.

To further evaluate our method, we compared the results of our method with
those of Gallo et. al. [8]. Fig. 8 and 9 show the comparison of ours with [8].
Two input sequences in Fig. 8 and 9 are from [8]. The standard method [3]
severely suffers from ghost artifacts. Although [8] produces good results, it suffers
from blending artifacts around block boundaries. On the contrary, our method
produces more natural and clean HDRI with less color artifacts.
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(a) (b) (c) (d) (e)

(f) Standard [3] (g) Gallo et. al. [8] (h) Proposed method

(i) (j) (k)

(l) (m) (n)

Fig. 9. Arch sequence. (a)-(e) are input LDR images, where (c) is the reference image.
(f) Result of the standard method [3]. (g) Result of [8]. (h) Result of the proposed
method. (i)-(k) are the magnified views of the white rectangle regions in (g). (l)-(n)
are the magnified views of the white rectangle regions in (h).
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5 Conclusion

In this paper, we have proposed an effective ghost elimination method for high
dynamic range imaging using multiple exposure images of a dynamic scene. The
proposed method is based on generalized weighted filtering using global intensity
transfer functions between different exposures and refined radiance values. Our
method does not need accurate ghost detection results which often include false
positives or negatives, and also does not suffer from color artifacts such as visible
seams between neighboring regions.
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