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Ghost-imaging experiments correlate the outputs from two photodetectors: a
high-spatial-resolution (scanning pinhole or CCD array) detector that measures
a field that has not interacted with the object to be imaged, and a bucket (single-
pixel) detector that collects a field that has interacted with the object. We give a
comprehensive review of ghost imaging—within a unified Gaussian-state
framework—presenting detailed analyses of its resolution, field of view, image
contrast, and signal-to-noise ratio behavior. We consider three classes of illu-
mination: thermal-state (classical), biphoton-state (quantum), and classical-
state phase-sensitive light. The first two have been employed in a variety of
ghost-imaging demonstrations. The third is the classical Gaussian state that
produces ghost images that most closely mimic those obtained from biphoton
illumination. The insights we develop lead naturally to a new, single-beam ap-
proach to ghost imaging, called computational ghost imaging, in which only
the bucket detector is required. We provide quantitative results while simulta-
neously emphasizing the underlying physics of ghost imaging. The key to de-
veloping the latter understanding lies in the coherence behavior of a pair of
Gaussian-state light beams with either phase-insensitive or phase-sensitive
cross correlation. © 2010 Optical Society of America
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Ghost imaging: from quantum to
classical fo computational

Baris I. Erkmen and Jeffrey H. Shapiro

1. Introduction

Ghost imaging is a transverse imaging modality that has been receiving consid-
erable and increasing attention of late, owing to its novel physical characteris-
tics. Aside from minor implementation variations, virtually all ghost-imaging
demonstrations thus far exploit the cross correlation between the photocurrents
obtained from illumination of two spatially separated photodetectors by a pair of
highly correlated optical beams. One beam interrogates a target (or sample) and
then illuminates a single-pixel (bucket) detector that provides no spatial reso-
lution. The other beam does not interact with the target, but it impinges on a
scanning pinhole detector or a high-resolution camera, hence affording a
multiple-pixel output. The term “ghost imaging” was coined soon after the ini-
tial experiments were reported, to emphasize that neither of the photocurrents
alone yields a target image: the light hitting the bucket detector has interacted
with the target, but that detector has no spatial resolution, whereas the light hit-
ting the multipixel detector has not interrogated the target. However, cross cor-
relating the two photocurrents does produce a target image. Figure 1 shows the
generic lensless ghost-imaging configuration that will be the focus for the sec-
tions below.

The brief qualitative description of ghost imaging that we have just given pur-
posefully avoids what, for some, has been a raging question. Is ghost image for-
mation a quantum effect, or is it classical? Providing a definitive answer to that
question—which we shall do in what follows—requires a careful and explicit
definition for what constitutes a quantum as opposed to a classical effect within
the Fig. 1 construct. At its heart will be the distinction between classical-state
and nonclassical-state light beams that we will present in Section 2. Ultimately,
we will see that both type light beams are viable sources for ghost imaging. The
choice between the two, however, does affect the spatial resolution, field of view,
contrast, and signal-to-noise ratio (SNR) of the resulting ghost image.

Work on ghost imaging has resulted in a long list of publications that run the
gamut from reports of its experimental realizations, to discussions of its funda-
mental physics, to attempts at distinguishing its classical and quantum features,
to suggestions for implementation variations dictated by practical consider-
ations. Let us begin our review by summarizing the major milestones that have
been achieved. The first experimental demonstration of ghost imaging, reported
in 1995 by Pittman et al. [1], utilized the orthogonally polarized signal and idler
beams produced by type-II phase-matched spontaneous parametric downcon-
version (SPDC). These beams—comprising a low-flux stream of frequency-
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Simple ghost-imaging setup. Correlated signal (S) and reference (R) fields—
here shown as quantum operators that can be used to analyze all source
possibilities—propagate through L-meter-long free space paths. The signal then
illuminates a high-spatial-resolution detector, shown here as a scanning pinhole
detector, whereas the reference illuminates a single-pixel (bucket) detector
through an object transparency with field transmission 7(p). Cross correlation
of the resulting photocurrents yields the ghost image of the intensity transmis-
sion | 7(p)|* as the pinhole is scanned.

entangled signal—idler photon pairs (biphotons)—were separated by a polarizing
beam splitter and used as the signal and reference in a ghost-imaging arrange-
ment akin to that shown in Fig. 1. Because of the low-flux nature of the SPDC
source, photon-coincidence counting was performed instead of photocurrent
cross correlation. The ghost image that Pittman ef al. obtained was claimed to be
a quantum effect, because an entangled-state light source was employed in its
generation. In 2002, however, Bennink ef al. [2] published results from a ghost-
imaging-like experiment that used scanning of a pair of collimated laser beams
with anticorrelated propagation directions. That the Bennink ez al. experiment
did not rely on entanglement—and that hence its ghost image could be regarded
as a classical effect—sparked a debate [3—5] whose prevailing conclusion was
that the product of the near-field and far-field spatial resolutions of the images
generated by a particular configuration of the classical scheme was inferior to
that obtained from a biphoton-state ghost imager. It soon became apparent that
this conclusion did not apply universally to all classical-source ghost imagers.
Indeed, the similarity between the propagation behavior of the biphoton wave
function and the mutual coherence function of thermal radiation [6—8] prompted
theoretical analysis of ghost imaging with partially coherent thermal light
[9-12], which predicted that ghost images with features qualitatively compa-
rable with the biphoton imager could be achieved. Subsequent experimental
demonstrations confirmed this theoretical prediction [13,14]. These experiments
were performed with pseudothermal light generated by passing a laser beam
through a rotating ground-glass diffuser. The diffusely scattered, time-varying
optical field at the output of the ground glass impinged on a 50:50 beam splitter
whose output beams provided the signal and reference light for a lensless ghost-
imaging arrangement. Because the pseudothermal source could be easily made
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dim or bright, it was possible to utilize photon-counting detectors [13] in the
former case and a CCD array in the latter [14]. Both the theoretical analysis and
the experimental results showed that the main difference between
pseudothermal-source ghost images and biphoton-state ghost images was the
presence of a very significant featureless background level in the pseudothermal
ghost image, something that was not present in the biphoton ghost image.

The discovery that ghost imaging could be performed with bright pseudother-
mal sources opened the door to a new debate regarding the physics of ghost im-
aging. Scarcelli ef al. [15] asserted that thermal-state ghost imaging did not ad-
mit of a classical interpretation based on the correlation of the intensity
fluctuations in the two source beams. Despite several prior articles having suc-
cessfully used coherence theory [9,10] and classical statistical optics [11,12] to
analyze thermal-state ghost imaging and to accurately predict experimental ob-
servations, Scarcelli ef al. argued that a quantum-mechanical description based
on nonlocal two-photon interference was compulsory for a quantitatively correct
description of thermal-light ghost imaging. Later, however, a conceptual single-
beam analysis, employing classical coherence theory, showed that the pseudot-
hermal ghost image resulted from speckle correlation [16], but it did not provide
a quantitative comparison between the pseudothermal and biphoton cases. To
obtain that missing quantitative comparison, we introduced a unifying Gaussian-
state framework [17] that encompassed ghost images formed from pseudother-
mal and biphoton light, as well as ghost images realized with classical phase-
sensitive light. We showed that the point-spread function in biphoton-state ghost
imaging depended on the phase-sensitive cross correlation between the two
SPDC output fields, whereas in thermal-state ghost imaging the point-spread
function depended on their phase-insensitive cross correlation. The fact that a
two-field classical Gaussian-state source could, in principle, be engineered to
have arbitrary phase-sensitive and phase-insensitive cross correlation functions
led us to conclude that ghost image formation with biphoton light was not due to
quantum entanglement per se, but rather to classical coherence propagation. We
also showed that the intensity fluctuation interpretation for thermal-state ghost
imaging did yield correct quantitative predictions, because the predictions of the
semiclassical and quantum theories of photodetection coincide when the inci-
dent optical fields are statistical mixtures of coherent states. The idea of using
classical phase-sensitive light for ghost imaging, which we originated in [17],
was an essential ingredient in our treatment of ghost imaging because it is the
two-field classical state that most closely mimics the coherence properties of the
biphoton state.

The speckle-correlation interpretation of thermal-state ghost imaging led one of
us to the realization that the light-beam behavior that it requires may be obtained
by allowing a spatially coherent laser beam to illuminate a spatial light modula-
tor (SLM) whose pixels are driven by statistically independent noise processes
[18]. From there it was simple to argue that noise modulation was unnecessary in
that driving the pixels with orthogonal or pseudorandom time functions would
suffice. Once the realm of deterministic modulation was entered, it became clear
that there was no need for the light beam that illuminated the high-spatial-
resolution detector, because its illumination was subject only to free-space dif-
fraction and hence could be precomputed from the known drives applied to the
SLM. What results is computational ghost imaging: the photocurrent generated
by the single-pixel (bucket) detector, as a result of the SLM output light interact-
ing with the target and impinging on the detector, is correlated with the precom-
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puted intensity pattern to produce the ghost image. A proof-of-principle experi-
ment for computational ghost imaging was quickly accomplished [19]. Since
then, techniques from compressed sensing have been employed to increase the
efficiency of computational ghost-image formation, i.e., to reduce the integra-
tion time required in order to obtain an image of adequate quality [20].

Although understanding the noise characteristics of ghost imaging is a vital
component for assessing its imaging performance, relatively little rigorous SNR
analysis had been done for the Fig. 1 configuration until recently. An initial SNR
assessment of pseudothermal ghost imaging stated that the SNR should be pro-
portional to the contrast of the image [21]. In other work, the SNRs of classical
and quantum ghost imaging (along with other photon-correlation imagers) were
reported [22]. There it was shown that at equal photon numbers the SNR of
biphoton-state ghost imaging exceeds that of thermal-state ghost imaging. How-
ever, in general the higher-SNR-yielding source depends on the particular pa-
rameter values. The SNR of biphoton-state ghost imaging was also analyzed in
[23], where a trade-off between image resolution and SNR was exhibited. In [24]
we extended our unifying Gaussian-state framework from [17] to provide a rig-
orous SNR analysis for both classical and quantum ghost imaging in the narrow-
band and broadband limits, and at all brightness levels. Our effort indeed yielded
an SNR proportional to the image contrast for bright thermal-state ghost imag-
ing. Furthermore, the biphoton-state ghost imaging SNR was shown to be pro-
portional to the mean coincidence rate. Perhaps most interesting, however, was
that the Gaussian-state framework facilitated the first analytic derivation of the
full quantum-to-classical transition in SNR, as the brightness of the source fields
(from SPDC) transitioned from having much less than one photon per mode to
having many photons per mode. Finally, in agreement with the earlier conclu-
sions from [22], the work in [24] showed that neither source (thermal-state or
biphoton-state) universally dominates the other: the specific operating param-
eters, such as bandwidth and source brightness, determine whether classical or
quantum sources have superior SNR performance.

The history we have summarized displays the path that will be taken in what fol-
lows, viz., a quantitative treatment—relying on Gaussian-state analysis—that
proceeds from quantum ghost imaging to classical ghost imaging to computa-
tional ghost imaging. Before embarking on that journey, let us note some of the
recent advances in ghost imaging that will not be covered. Ghost imaging using
homodyne reception, instead of direct detection, has been proposed, and its per-
formance has been analyzed in detail [25]. In this configuration a second-order
field moment is measured, rather than a fourth-order moment, so that both phase
and amplitude information can be obtained. Fourier-plane ghost imaging of
pure-phase objects using biphoton-state sources has been analyzed [26]. Ghost
imaging with thermal light has been a major area of interest. Lensless ghost im-
aging with true thermal light obtained from a hollow cathode lamp has been
demonstrated [27], Fourier-plane imaging of pure phase objects has been carried
out [28,29], and the transfer functions for lensless ghost-imaging configurations
with pointlike detectors in both arms have been analyzed [30]. The possibility of
using ghost imaging in remote sensing has led to an experiment that images a
target in reflection, rather than the more usual case of imaging in transmission
[31,32], and some analysis of ghost imaging through atmospheric turbulence has
been reported [33]. A unified theoretical framework, based on statistical optics,
has been applied to the Hanbury-Brown Twiss correlation experiment and to
thermal-state ghost imaging, showing that in both cases the correlation in inten-
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sity fluctuations accurately predicts the experimental observations [34]. Another
avenue of recent interest has been to utilize different wavelengths in each arm
[35,36]. This approach facilitates the tailoring of the wavelengths in each arm of
the ghost imager to optimize imaging efficiency. Ghost-imaging schemes that
rely on field moments of higher than fourth order have also been analyzed
[37-39] and experimentally demonstrated [40,41].

Our goal is to provide a comprehensive review of the fundamentals of ghost im-
aging, using (classical and quantum) Gaussian states as the framework for analy-
sis and comparison. Restricting our attention to Gaussian states may seem arbi-
trary, but such is not the case. The two sources of primary interest to ghost
imaging are thermal-state light and biphoton light, which are classical and quan-
tum, respectively, in the sense to be defined in Section 2. The former is obtained
by 50:50 beam splitting of a true thermal source (e.g., the hollow cathode lamp
of [27]) or a pseudothermal source (laser illumination of a rotating ground-glass
diffuser). The latter is the post-selected result of using the signal and idler out-
puts from SPDC in that source’s typical low-brightness, low-flux operating re-
gime. Thermal sources emit zero-mean, Gaussian-distributed mixtures of coher-
ent states. In the absence of pump depletion, the signal and idler obtained from
SPDC are in a zero-mean, jointly Gaussian state. Thus, by analyzing classical
and quantum ghost imaging within the same Gaussian-state framework, we shall
be able to unambiguously identify the features of ghost imaging that contain a
true quantum signature. An accompanying benefit to using Gaussian states
stems from their analytic convenience. Zero-mean Gaussian states are com-
pletely characterized by their correlation functions [42]. Furthermore, because
linear transformations (such as free-space diffraction) of Gaussian-state light
beams yield Gaussian-state light beams, the output state can be obtained by sim-
ply propagating the input field’s correlation functions through the same linear
system. The convenience afforded by having the state completely characterized
by correlation functions is particularly crucial to deriving tractable SNRs, for
which the variance of the ghost-image estimate is needed. In short, the unifying
Gaussian-state framework developed in this paper is well-suited to developing a
physical understanding of ghost imaging and a quantitative treatment of its per-
formance.

The rest of this review article is organized as follows. We begin, in Section 2, by
establishing exactly what we mean by “classical” and “quantum” light sources,
so as to preclude any ambiguity in our treatment or conclusions. Next, in Section
3, we derive the ghost image signature obtained with general zero-mean Gauss-
ian states and identify phase-sensitive and phase-insensitive cross correlations
as the entities facilitating ghost-image formation. Motivated by that identifica-
tion, we devote Section 4 to the coherence theory for these two correlation
classes. In Section 5 we use the results from the previous sections to derive the
far-field ghost image signatures of three classes of Gaussian-state sources. First,
we consider a source possessing the maximum phase-insensitive cross
correlation—as constrained by its autocorrelation functions—but no phase-
sensitive cross correlation. Such a source always produces a classical state, and
thermal light is of this class. Second, we consider a source with the maximum
classical phase-sensitive cross correlation—again constrained by its autocorre-
lation functions—but no phase-insensitive cross correlation. Finally, we treat the
latter source when its phase-sensitive cross correlation is the maximum permit-
ted by quantum mechanics. The low-brightness, low-flux limit of this source
yields the biphoton state in postselection. Having derived the image signatures,
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we use Section 6 to develop the image SNRs obtained with these three sources.
We then treat their image acquisition times in Section 7. In Section 8, we explain
the physics of computational ghost imaging, which is rooted in the physics of
conventional ghost imaging, and then proceed to an analysis of its working prin-
ciples. We conclude our review in Section 9, with a discussion of the key results
that emerge from our analysis.

2. Semiclassical versus Quantum Photodetection

Before we embark on an analysis that aims to distinguish between the “classical”
and “quantum” features of ghost imaging, it is imperative that we provide a
quantitative definition of these terms. Light is intrinsically quantum mechanical,
and its quantized nature has long been observed through high-sensitivity photo-
detection [43,44]. Therefore, all optical imaging phenomena are fundamentally
of a quantum mechanical nature. However, it has long been known [44—-48] that
the photodetection statistics of a light beam in a coherent state, or a statistical
mixture of coherent states, can be calculated by using the semiclassical (shot-
noise) theory of photodetection. In this theory electromagnetic fields are (possi-
bly random) space—time functions that obey Maxwell’s equations, and the fun-
damental noise in photodetection arises from the discreteness of the electron
charge. Despite these two theories’ having disparate interpretations for the
physical nature of the noise seen in photodetection, the quantitative outcome of
either calculation is identical when the illuminating quantum field is in a coher-
ent state or a random mixture of coherent states. Therefore, it has been widely
accepted that optical phenomena that can be explained with the semiclassical
theory do not demonstrate the quantum nature of light [44,47,48]. Consequently,
throughout this paper we adopt the following conventions: (1) a light beam for
which the semiclassical theory of photodetection is valid, i.e., when its predic-
tions coincide with those of the quantum theory, will be said to be in a classical
state; and (2) a feature of ghost imaging will be said to be a quantum signature if’
and only if it cannot be accurately quantified with the semiclassical theory of
photodetection.

Let us make the discussion from the previous paragraph explicit by introducing
our notation for classical fields and quantum field operators and then exhibiting
the associated semiclassical and quantum theories of photodetection. Consider
an ideal photodetector, i.e., one with unity quantum efficiency, zero dark current,
and infinite electrical bandwidth, whose photocurrent, i(¢), registers individual
photon detection events instantaneously as current impulses carrying charge g.
In semiclassical theory, the scalar [49], quasi-monochromatic, paraxial optical
field impinging on the photosensitive surface of the photodetector is a positive-
frequency classical electromagnetic wave, denoted E(p,t)e ", where p is a 2D
position vector on the detector’s planar photosensitive region and w) is the field’s
center frequency, so that E(p, ) is its baseband envelope whose bandwidth, (2, is
much smaller than w,. For convenience, we assume that this field is normalized
to have the units \photons/m?s. Conditioned on perfect knowledge of the field im-
pinging on the photodetector, we have that i(7)/ ¢ is an inhomogeneous Poisson im-
pulse train with rate function [46,50]
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u(t) = JA aplEp.0L, (1)

where A is the detector’s photosensitive region. Thus, regardless of whether the
illuminating field is deterministic or random, the photocurrent is subject to the
noise that is inherent in this Poisson process, which yields the well-known shot-
noise floor of semiclassical photodetection theory [47,48,51]. Randomness in
the illumination is then accounted for by taking E(p,¢) to be a stochastic pro-
cess, as is done in classical statistical optics [52].

In the quantum theory of photodetection, the classical photocurrent produced by
the same ideal photodetector is a stochastic process whose statistics coincide
with those of the photon-flux operator measurement scaled by the electron
charge [53],

(1)=¢q f . dpE(p,0)E(p,1). (2)

Here E (p,t) is the quantum-mechanical baseband electric field operator, nor-
malized to have \photons/m?s units, and { indicates Hermitian conjugation. It fol-

lows that the photocurrent statistics are determined by the state of E (p,1), and the
shot-noise limit of semiclassical theory can be surpassed by some states, such as
amplitude-squeezed states, or the eigenkets of continuous-time photodetection

[47,48,51,53,54]. It has long been known [47,48,51,53], however, that when E (p,1)
is in the coherent state |[E(p, ?)), indexed by its eigenfunction E(p, ¢) and satisfying

E(p,)|E(p,1)) = E(p,0)|E(p,1), (3)

the statistics of the 1 () measurement are identical to those from the semiclassical
theory with the impinging classical field taken to be E(p, 7). More generally, the
two photodetection theories yield identical statistics for any quantum state that is
a classical statistical mixture of coherent states—viz., for all states that have
proper P representations [44]—when the classical field used in the semiclassical
theory comprises the same statistical mixture of the coherent-state eigenfunc-
tions [47,48,51,55,56]. Moreover, mixtures of coherent states are the only quan-
tum states for which all quantum photodetection statistics—in particular, those
of direct, homodyne, and heterodyne detection [47,48]—coincide with the cor-
responding results found from the semiclassical theory.

Because the correlation measurement at the heart of ghost imaging is a derived
statistic from two photodetection measurements, we conclude that the quantum
theory of ghost imaging using source states that have proper P representations
will yield results equivalent to the classical theory of ghost imaging using the
corresponding (classical) random optical fields plus semiclassical (shot-noise)
photodetection theory. Therefore, any truly quantum features of ghost imaging
are necessarily exclusive to optical field states that do not possess proper P rep-
resentations.

Having detailed our convention for the using the “classical” and “quantum” no-
menclature, we will use the quantum theory for what follows because it is uni-
versally valid. The reader is cautioned to remember that whenever a feature is
deemed classical, there is a derivation using classical fields and semiclassical
photodetection that yields identical answers to what was found from the quan-
tum treatment.
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3. Gaussian-State Ghost Imaging

Consider the ghost-imaging configuration shown in Fig. 1. An optical source
generates two scalar, quasi-monochromatic, paraxial, positive-frequency optical

fields [57], a signal Eg(p,f)e ™ and a reference Ex(p,f)e ™, with
vVphotons/m?s units and common center frequency w,, where p is the transverse co-
ordinate with respect to each field’s optical axis. The commutation relations for the
baseband field operators are given by [53]

[E(p1,11),Ee(p,12)]=0, (4)

[Em(pl,tl),EZ(pr)] = 0,.00(p) — P) 8t — 1), (5)

where &, ¢ is the Kronecker delta function, m,£=S,R, and &(-) is the unit im-
pulse. Both beams undergo L meters of quasi-monochromatic, paraxial, free-
space diffraction along their respective optical axes, yielding the detection-plane
field operators [47,48,58]

Edp.)= | Qo' (o't~ Lo (p- ). (6)

where (€,m)=(1,S) or (¢,m)=(2,R), c is the speed of light, #,;(p) is the
Huygens—Fresnel Green’s function,

o 2TLNg PPN oL
hp)=—""—""" (7)
1P iNoL
and \y=2mc/ w, is the wavelength associated with the center frequency. At the

detection planes, E (p, 1) illuminates a quantum-limited pinhole photodetector
of area A, whose photosensitive region p € A, is centered at the transverse co-

ordinate p,, while E,(p,?) illuminates a field-transmission mask 7(p) located
immediately in front of a quantum-limited bucket photodetector with photosen-
sitive region p € A,. Each photodetector is modeled as the cascade of a trans-
missivity # attenuator, followed by an ideal photodetector—as described in Sec-
tion 2—whose photocurrent is then low-pass filtered by a real-valued impulse
response /5(¢). Such an arrangement then represents a quantum-efficiency 7 de-
tector with no dark current, no thermal noise, and finite electrical bandwidth.

The ghost image at the transverse coordinate p, is formed by time-averaging the
product of the detector photocurrents, which is equivalent to a measurement of
the quantum operator

) 1 2
Coo=—[ " ai0io. ®)
T[ —Ty2
where
(=g f du L dpE) (p,uw)EL(pu)hy(t —u), 9)

form=1,2, with T; being the duration of the averaging interval. The field opera-
tors appearing in these photocurrent operators are
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5 \/7751([),1‘) +yl- nEvacl(pat)v form=1,
Ep(p.f) = A . (10)
nT(P)Ex(p,t) + 1= WT(p)PE e (p.0), for m=2,

where the {Evacm(p, t)}—which are needed to ensure commutator preservation in

accounting for <1 photodetection—are in their vacuum states. The C (p;) mea-
surement yields an unbiased estimate of the ensemble-average equal-time photocur-
rent cross-correlation function

(Clp1) = (1)1 (0))
~gr | do [ an [ duste ol

X (E}(p1,u) ES(p,un) Ey (pr,uy) E(p,us)), (11)

where we have approximated the integral over the pinhole detector’s photosen-
sitive region as the value of the integrand at p, times the photosensitive area 4,.

The expression in Eq. (11) shows that the ghost image is a linear transformation
on the spatial profile of the mask’s photon-flux transmissivity, |7(p)|>. Hence,
the point-spread function (impulse response) of this transformation determines
the ghost image’s behavior, i.e., its field of view and spatial resolution. However,

because the point-spread function is determined by a fourth-order moment of E |

and Ez, it is, in general, cumbersome to evaluate. Fortunately, further simplifi-
cations are possible when the source state is restricted to be a zero-mean jointly
Gaussian state. In particular, because the free-space diffraction integral is a lin-

ear transformation, the detection plane field operators E , and Ez are in a zero-

mean jointly Gaussian state whenever E ¢ and E r are in a zero-mean jointly
Gaussian state. Then, using the moment-factoring theorem for Gaussian states
(which is a standard recipe for expressing arbitrary moments of Gaussian-state
field operators in terms of their second-order moments) [44,59], we can reduce
the required fourth-order field moment to the following sum of second-moment
products:

(El(pr,u)ES(p,un) E\(pr,uy) E(p,uy))
= (E{(p1, 1)) E 1 (pr,u) XEXp,u2) Ey(p,ur))

+ KE(p1,u))Er(p, ) + KE (py, 1)) Ex(p,uy)) - (12)

Following the prior literature [51,55], we refer to second-order field moments of

the form (E",Tn(pl ,1)E(py,1,)) as phase-insensitive correlation functions (here
m,€=1,2, butin general they can refer to any field index), because only the rela-
tive phase between the two fields affects this moment. On the other hand, we call

second-order field moments of the form (E, (p;,t,)E¢(p,,t,)) phase-sensitive
correlation functions, because they depend on the fields’ absolute phases. For
both the phase-insensitive and phase-sensitive correlations the m={ cases are
autocorrelation functions, whereas the m # € cases are cross-correlation func-
tions.
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To simplify our analysis, while preserving the essential physics of ghost imag-
ing, let us assume that the baseband signal and reference fields are cross-
spectrally pure, complex stationary, and that their phase-sensitive autocorrela-
tion functions are zero, i.e.,

(EL(prt)E(pr 1)) = K2 (pr.p) R (1~ 1)), (13)
(Eg(p1,1))Er(pys12)) = KEx(p1, p) REK(E — 1), (14)
(E(p1,t)E,(pasty)) =0, (15)

for m,€=S,R. Here the superscripts (n) and (p) label normally ordered (phase-
insensitive) and phase-sensitive terms, respectively. For convenience, and with
no loss of generality, let us also assume that

RY(0)=REH0)=1. (16)

Then, paraxial, quasi-monochromatic diffraction in free space over the
L-meter-long propagation paths transform the zero-mean, jointly Gaussian state
of the source, with correlation functions given in Egs. (13)—(15), into a zero-
mean, jointly Gaussian state at the detection planes whose correlation functions
are cross-spectrally pure and given by

(EL(prt)Edpyty)) = K2 (pr.p) R (1, — 1)), (17)
(E(p1,1)E>(pys12)) = KP)(p1,p) RPN, — 1), (18)
<Em(plall)Enz(p2’12)> :O, (19)

for m,€=1,2. In these expressions,

K" (p1.p,) = f dp; f dpiK) (1. PR (P~ PDRL(p,— p}),  (20)

KP)(p1.py) = J dp; J dpKEX(pl. P (pi— PR (P~ Py,  (21)

for (m,m')=(1,S) or (m,m')=(2,R), and likewise for (£,€"). In addition, be-
cause the quasi-monochromatic quantum Huygens—Fresnel principle, Eq. (6),
only involves delay in time, the temporal correlation behavior is unaffected by
propagation. It follows that the fundamental difference between the propagation
of phase-insensitive and phase-sensitive correlation functions is the lack of con-
jugation in the propagation kernel of the latter. Nonetheless, this difference is re-
sponsible for significantly different propagation characteristics, which we will
describe in the next section.

Substituting Eq. (12) into Eq. (11), along with Egs. (17) and (18), simplifies the
photocurrent cross-correlation expression to
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Ay

(22)

where

2
Co(m)=q2172A1( f dthg(t)) K"\ (p1.p) L dpKY)(p.p)|T(p))*  (23)

is a nonnegative, non-image-bearing background [60] and

C,=q 772A1[|R(1'2(f)|2*h3(f)*h3(_ )]s (24)
C, = @A RENO) PHhs(t)*hp(— 1)) g (25)

are constants that depend on the temporal cross correlations between E  and E 2
the parameters of the photodetectors, and the electron charge ¢ [61].

We therefore conclude that the ghost image, defined as the image-bearing term

in (C(p,)), is equal to the target’s intensity transmission profile, |7 (p)|?, filtered
through a linear, space-varying point-spread function. For a ghost image ob-
tained with zero-mean Gaussian-state light, this point-spread function is equal to
the weighted sum of the squared magnitudes of the phase-insensitive and phase-
sensitive cross-correlation functions at the planes of detection in the signal and
reference arms of the imager.

4. Phase-Insensitive versus Phase-Sensitive
Coherence

Equation (22) shows that, in general, both the phase-insensitive and phase-
sensitive cross-correlation functions of the detection-plane field operators con-
tribute to the ghost image’s point-spread function. As we shall see in the next
section, the phase-sensitive cross correlation vanishes in thermal-state ghost im-
aging, so that its point-spread function depends only on the phase-insensitive
cross correlation. Conversely, in biphoton-state ghost imaging and in classical
phase-sensitive-light ghost imaging the phase-insensitive cross correlation is
zero, and the point-spread function depends only on the phase-sensitive cross
correlation. Therefore it is critical that we understand the physics implied by
these two types of coherence. Developing that understanding is the goal in the
present section.

Although the difference between the phase-insensitive and phase-sensitive cor-
relation functions is only the conjugation of one of the field operators in the
former, the physical consequences are profound. In order to develop a crisp ana-
Iytic understanding of the distinctions, we assume that the cross-spectrally pure
correlation functions we have introduced in (13)—(15) have a Gaussian form,;
namely, they are Gaussian—Schell model correlation functions [44,52,62]. Be-
cause the propagation paths in the two arms of the ghost imager are identical, the
distinction between cross-correlation propagation and autocorrelation propaga-
tion is inconsequential. So, to simplify the physical descriptions in this section,
and with no loss in generality, we shall focus on autocorrelation functions.
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First, suppose that the phase-insensitive correlation function is given by

. . 2P 2 2
(ET(p1,1))E(py,ty)) = Ee_(lm\zﬂﬂzlz)/ao—\ﬂz = 1205, (1 - f1)2/27%, (26)
0

where P denotes the photon flux; a, is the beam radius (defined as the radius at
which the photon irradiance profile is attenuated by e relative to the peak beam
irradiance); p, is the coherence radius, which is assumed to satisfy the low-
coherence condition p, < a,; and Ty, is the coherence time. The physics immedi-
ately apparent from this expression is that the phase-insensitive fluctuations ob-
served at the space—time coordinates (p,,#,) and (p,,1,) are correlated when p,
and p, are separated by a distance smaller than the coherence length p,, while
both are within the beam radius a,, and when ¢, and ¢, are separated by less than
the coherence time 7. Additional insight can be obtained in the frequency do-
main by writing the baseband field operator in terms of its monochromatic
plane-wave components, i.e., as

B - | dk | 4 Gacemeor 27)
R2 27J —» \/ET

where k is the transverse spatial-frequency vector and () is the temporal fre-

quency [62]. In this expression /](k,Q) is a frequency-domain operator satisfy-
ing the canonical commutation relations

[A(k},Q)),4(ky, Q)] =0, (28)

[A (k1 21), 47 (k. 05)] = 8k ~ ko) HQ = ). (29)
Because of the quasi-monochromatic paraxial approximation we made earlier,
A(k,Q) is excited (i.e., not in a vacuum state) only for |k| < w,/c and | < w.
Applying the inverse transform associated with Eq. (27) to the phase-insensitive

correlation function in Eq. (26), we obtain

PTyp;

(AT (K, 0)A (K, ) = —— ¢ akd S Ak P2, T92 500, — ), (30)

o

where k,=(k,+Kk,)/2 and k;=k,—k;, and we have used the low-coherence
condition to write 1/ag+1/p5~1/pj. As shown in Fig. 2(a), this correlation
function implies that the angular extent of the source radiation (found by setting
k,;=0) is 2N/ wp, and that the angular extent of the source coherence (found by
setting k,=0) is 2\,/ ma,. Furthermore, the source bandwidth is given by 2/ 7,
and distinct-frequency plane-wave components of the source are uncorrelated.
In words, phase-insensitive coherence is both monochromatic and quasi-
monoplanatic. The former feature is evident from the delta-function temporal-
frequency term in Eq (30). To better understand the latter, consider the plane-
wave components at a given detuning, (). They have significant excitation only
within the source’s radiation cone, which has full cone angle 2\,/ 7p,. More im-
portant, these plane-wave components are only correlated with neighboring
frequency-{) plane-wave components that lie within the source’s coherence
cone, whose cone angle, 2N,/ ma,, is much smaller than that of the radiation
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Coherence behavior and angular spectrum of the source-plane (z=0) baseband

field operator E(p, ) with phase-insensitive correlation function given by Eq.
(26). (a) The average z=L plane irradiance is appreciable only within a region of
diameter 2\ (L / 7p, (red) around the optical axis. The phase-insensitive fluctua-
tions seen at two transverse points that are symmetrically displaced from the op-
tical axis are correlated only when their separation is less than 2\ L/ 7a, (blue).
(b) Three plane-wave components are shown here as three arrows with different
colors (and line styles). The plane waves (of the same frequency) with which
they have phase-insensitive correlation lie within the shaded cones of the same
color (and same line-style borders). Because phase-insensitive coherence is
quasi-monoplanatic, the coherence cone for each plane wave is centered on its

own propagation direction.
|

cone. This spatial-coherence behavior of the phase-insensitive correlation is il-
lustrated in Fig. 2(b).

The phase-insensitive coherence behavior that we have just reviewed is well
known [44]. We have provided its detailed description for comparison with the
behavior of phase-sensitive coherence that, although it has received much less
attention [63], plays a key role in quantum ghost imaging. To parallel our devel-
opment for the phase-insensitive case, we now suppose that the phase-sensitive
correlation function is given by the same Gaussian—Schell model, i.e.,
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Ty

where

P, = f _dp(E(p,1) (32)
R

is the mean-squared phase-sensitive flux, and a,, py<<a,, and 7|, are now, re-
spectively, the radius of mean-squared phase-sensitive excitation, the coherence

length, and the coherence time of that excitation. Consequently, E(pl ,1;) and

E(pz,tz) have appreciable phase-sensitive correlation when p; and p, are both
within the phase-sensitive excitation radius a,, have spatial separation less than
the coherence length p,, and temporal separation less than the coherence time
T,. Except for this source-plane description involving phase-sensitive correla-
tion, rather than phase-insensitive correlation, it is unchanged from what we saw
in conjunction with Eq. (26). The angular spectrum associated with the phase-
sensitive correlation, however, reveals a rather different and quite interesting
picture, as we will now show.

Applying the inverse transform associated with Eq. (27) to Eq. (31), we obtain

PTyp;

Ak, Q) A(ky, Q) = e il 2 nilki 3 T2 500, + ), (33)

v

where k,= (k; +k,)/2 and k;=Kk,—K; as before, and we have again used the
low-coherence 1/ a§+ 1/ p(z) ~1/ pé approximation. Thus, as illustrated in Fig.
3(a), the angular extent of phase-sensitive excitation (found by setting k,=0) is
2N\y/ ma,, and the angular extent of the phase-sensitive correlation (found by set-
ting k,=0), is given by 2\,/ mp,. The source bandwidth is 2/ T}, and plane-wave
pairs with antipodal detunings within this bandwidth have nonzero phase-
sensitive cross correlation, but all other frequency pairs are uncorrelated. It fol-
lows that phase-sensitive light is bichromatic and quasi-biplanatic. The former
feature is due to the delta-function temporal-frequency term in Eq. (33). To bet-
ter appreciate the latter, consider the plane-wave components at +(k,()). Each
has appreciable phase-sensitive flux only when 6= \(|k|/27 lies within the
source phase-sensitive radiation cone, which has full cone angle 2\,/ 7p,. More
important, the (k,{)) plane-wave component has phase-sensitive cross correla-
tion only with the frequency —() plane-wave components whose spatial frequen-
cies lie within its coherence cone, which is centered at —6 in angle (—k in spatial
frequency) and has cone angle 2N,/ ma,. This spatial coherence structure of
phase-sensitive correlation is illustrated in Fig. 3(b). Thus, although we have
started with identical correlation functions for the two coherence classes, we
have found that the physics implied by the two classes of coherence is notably
different. That difference will be further explored below, where we examine far-
field propagation of our phase-insensitive and phase-sensitive Gaussian—Schell
model correlation functions, and in the upcoming sections, where we will see
that the difference in the physics results in some distinct ghost-image character-
istics. Before doing so, however, some additional comments are in order.

We have noted that there is very little that has been published on the coherence
theory for phase-sensitive light; see [44], where it is not even mentioned. Yet
bichromatic, biplanatic light-wave behavior figures prominently in a context of
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Coherence behavior and angular spectrum of the source-plane (z=0) baseband

field operator E (p,t) with the phase-sensitive correlation function given in Eq.
(31). (a) The mean-square phase-sensitive fluctuations on the z=L plane are ap-
preciable within the diameter 2\(L/ ma (red). The phase-sensitive fluctuations
seen at two transverse points displaced in the opposite direction by an equal
amount are correlated as long as the distance between the two points is less than
2N\oL/mpy (blue). (b) Three plane-wave components are shown here as three ar-
rows with different colors (and line styles). The plane waves with which they
have phase-sensitive correlation are shown as shaded cones having the same
color (and same line-style borders). Because phase-sensitive coherence is quasi-
biplanatic, the coherence cone for each plane wave component is centered

around its mirror image about the optical axis.
|

importance to ghost imaging, namely, the signal and idler beams obtained from
continuous-wave (cw), frequency-degenerate SPDC. SPDC with a
+z-propagating, plane-wave, cw pump can be regarded as a photon-fission pro-
cess in which a single pump photon at frequency wp can split into a signal—idler
pair whose frequencies, wg and w;, obey wg+ w;=wp, and whose wave vectors,
kg and k;, satisfy the phase-matching condition k¢+k;=kpi,, where kp is the
pump wave number and i, is the z-directed unit vector. As a result, the signal and
idler photons in such a pair have frequencies that are bichromatic about wp/2,
and their transverse wave vectors are antipodal, making these photons bi-
planatic. Thus, the standard perturbative derivation of the state produced by
SPDC leads to a biphoton wave function, for a signal—idler pair, that propagates
exactly as does the phase-sensitive cross correlation; see [6] and Eq. (21).
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Herein, we assert, lies the root of much confusion about what is classical and
what is quantum in ghost imaging. Those characteristics of ghost-image forma-
tion that depend on how phase-sensitive cross correlation behaves can be seen
with classical-state light. It is only those features of ghost imaging that require
stronger-than-classical phase-sensitive cross correlation that are intrinsically
quantum effects.

We conclude our treatment of coherence theory by describing the far-field,
quasi-monochromatic, paraxial propagation of the phase-insensitive and phase-

sensitive correlation functions. For this discussion let £ 1(p,t) denote the field

operator resulting from propagation of E (p,t) over an L-meter-long free-space
path. For phase-insensitive coherence propagation, it is well known that a single
Fresnel number, Dy=mpya,/\yL, distinguishes between the D,> 1 near-field
regime—in which diffraction effects are negligible—and the Dy<1 far-field
regime—in which diffraction spread is dominant [44,52]. Note that this Fresnel
number differs from that for the diffraction of a coherent laser beam with inten-
sity radius a,, which is D = wa%/ NoL. This difference reflects the coupling be-
tween coherence radius and intensity radius that occurs in free-space diffraction of
partially coherent light. The far-field, phase-insensitive correlation function is
readily obtained from the source’s phase-insensitive angular spectrum, given earlier,
by means of the Fraunhofer diffraction integral with the simple substitution of
2ap/\oL for k. We find that the far-field phase-insensitive correlation function,
stemming from the Gaussian—Schell near-field correlation function of Eq. (26), is

<EZ(P1 EL(ps, tz)>
277Pp3

ASL?

. P 2 2 2
e*l‘fT(\Pl|2f|P2\2)/)\oLe*27T P0|Ps\2/>\oLze*ﬂ' ao\Pd|2/2>\oLZe*(f2*tl)z/zﬁ)
b

(34)

where p,=(p,+p,)/2 and p,=p,—p,. This shows that the intensity radius is a;
=a,/Dy=N\oL/mp, and the coherence radius is given by p; =p,/Dy=N\oL/ mwa;
i.e., the far-field intensity radius is inversely proportional to its source-plane co-
herence length, and the far-field coherence length is inversely proportional to the
source-plane intensity radius. This behavior is well known from the Van Cittert—
Zernike theorem for far-field phase-insensitive coherence propagation [52].

The phase-sensitive correlation function from Eq. (31) propagates in a manner
that is distinctly different from its phase-insensitive counterpart. In this case we
find that coherence-radius diffraction and mean-square-radius diffraction are de-
coupled [63]. Two Fresnel numbers are then necessary to distinguish the near
field from the far field: the Fresnel number for diffraction of the coherence ra-
dius, Dy=mp§/\yL, and the Fresnel number for diffraction of the mean-square
radius, Dp= wa%/ NoL. The near-field regime for phase-sensitive correlation
propagation occurs when both Fresnel numbers are much greater than one, and
the far-field regime is when both are much less than one. Because we have im-
posed the low-coherence condition, py < a,, we can say that the near-field re-
gime for phase-sensitive coherence propagation is Dy >> 1, and its far-field re-
gime is Dp<1. Each of these conditions is more stringent than the
corresponding condition for phase-insensitive light. It is easy to compute the far-
field form of the Gaussian—Schell model phase-sensitive correlation function
from its source’s angular spectrum and the Fraunhofer diffraction integral, with
the following result:
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Here we have that p,/Dy=M\,L/ma, is the far-field mean-square radius and
ay/Dg=N\yL/mp, is the far-field coherence radius for the phase-sensitive corre-
lation. Unlike the far-field phase-insensitive case, whose correlation peaks for
two points with equal transverse-plane coordinates, the far-field phase-sensitive
correlation is highest for two points that are symmetrically disposed about the
origin on the transverse plane [6,63], as expected from the quasi-biplanatic na-
ture of the phase-sensitive correlation.

Figure 4 highlights the difference between propagation of the phase-insensitive
and phase-sensitive correlation functions. In this figure we have plotted the
e 2-attenuation isocontours for the magnitudes of the equal-time source-plane
and detection-plane correlation functions in terms of the sum and difference co-
ordinates p,=(p,+p;)/2 and p,= p,—p,. All transverse-coordinate pairs that
correspond to the interior region of a contour are both coherent and intense. It is
straightforward to verify that all magnitude isocontours of our Gaussian—Schell
model correlations are ellipses. At the source plane, because of our low-
coherence assumption, the e 2-attenuation isocontours—for both the phase-
insensitive and the phase-sensitive correlation functions—have their minor axes
along the difference coordinate. In the far field, we find that diffraction leads to
identical increases along the major and minor axes of the phase-insensitive cor-
relation’s e 2-attenuation isocontour. For the corresponding far-field phase-
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Isocontours corresponding to the e 2-attenuation levels for the phase-sensitive
and phase-insensitive correlation functions in the near-field and the far-field

regimes.
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sensitive correlation’s isocontour we get inverted behavior, with its minor axis
now aligned with the sum coordinate and its major axis along the difference co-
ordinate. Thus, the far-field phase-insensitive correlation function is dominated
by a narrow function in the difference coordinate |p,|, whereas the far-field
phase-sensitive correlation function is a narrow function in the sum coordinate

.

5. Far-Field Ghost Imaging with Quantum and
Classical Light

We will now utilize the framework we have developed thus far to derive the far-
field ghost images obtained with three different Gaussian-state sources: phase-
insensitive light (e.g., pseudothermal or true thermal-state light), classically cor-
related phase-sensitive light (e.g., two laser beams with phase-conjugate
modulations imposed on them), and maximally entangled phase-sensitive light
(e.g., the output of ideal SPDC). In all of these cases, we shall assume that the
phase-insensitive autocorrelation functions specified in Eq. (13) are the
Gaussian—Schell model

2P
Kfr’l’)m(pl’pz)RE:)m(tz —1)= — e—(|P1\2+\P2|2)/05—\P2 - Pl\z/zp(z)e—(fz - f1)2/27%,
’ ’ may

(36)

for m=S,R. Each source will therefore be distinguished by its (phase-insensitive
and phase-sensitive) cross-correlation functions, which will be specified in the
subsections that follow.

We also assume, for analytic convenience, that the baseband impulse response of
the photodetectors, h4(f), is Gaussian with e 2-attenuation bandwidth Q, i.e.,

Hy(Q) = Flhy(0)] = e 227%, (37)

where F[ - | denotes the Fourier transform.

5.1. Thermal-State Light

Lensless ghost imaging with thermal-state light usually derives its signal and
reference sources from 50:50 beam splitting of a single zero-mean Gaussian-
state beam possessing a phase-insensitive autocorrelation function but no phase-
sensitive autocorrelation function. Taking the post-splitter signal and reference
fields to have the Gaussian—Schell model autocorrelations from Eq. (36), it fol-
lows that these fields have the maximum phase-insensitive cross correlation,
given by

2P
KEMprp) RN — 1) = — e U lealailos = o1 P2 =127 - (3g)
’ | ag

and a vanishing phase-sensitive cross correlation, viz., K(SP ;e(pl ,pz)Rgp;(tz—tl)
=0. Because the target is in the far field of the source, i.e., Dy <1, we use the
propagated source correlations from Section 4, i.e.,
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where a; =N\yL/mp, and p;=N\¢L/ ma,, and the ghost image signature, from Eq.
(22), becomes

A 2P : 2,2 2,2 2,2
(C(P)Y=Colp) +C,| — | e et f dpe’lor =P e 2ol T(p) P,
A

™y 2
(40)

Equation (40) reveals three significant features of the far-field thermal-state
ghost image. First, the ghost image is space-limited by the reference beam’s av-
erage intensity profile, so that the object must be placed in the field of view a;
[64]. Second, the useful transverse scanning range of the pinhole detector is re-
stricted to the field of view «;. Finally, and most important, the finite cross-
correlation coherence length p; limits the resolution of the image. When the
field-of-view limitations can be neglected, the image signature simplifies to

R 2P \? 2,2
<C(p1)>=q2772A1(?) UA deT(p)|2+C§”)f dpe P PUPL| T(p) 2 |,
2

(41)

where Cg") =1/V1+16/Q3T: (2). So, the ghost image is proportional to the convolu-
tion of the object’s intensity transmission, |7(p)|?, with the Gaussian point-spread

. 2, 2 . .. . . .
function e 1Pl PL, which limits the spatial resolution, defined here as the radius to the
e? level in the point-spread function, to \2 pr.

We can use the ghost-image expression from Eq. (41) to calculate the resulting
contrast via the following definition:

o, maxp[(C(py))] —min,, [(Clpy))]
cW =
Co(0)

(42)

The numerator in Eq. (42) quantifies the dynamic range of the image-bearing
term, while its denominator is the featureless background that is present within
the observation region. With this definition we find that this contrast factors as
follows:

¢ =ce, (43)

where the temporal (¢) factor is defined above, and the spatial (s) factor is given
by

max,, [Z,(py)] = min, [Z,(p,)]
an) _ , (44)

| airwr
A

2

with
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denoting the point-spread-degraded image of |7(p)|>. To obtain a closed form
contrast expression, we will assume that 7(p) is a binary amplitude mask, as has
often been the case in ghost-imaging experiments. It follows that

CM = mpl/Adp <1, (46)

where

Ar= [ aplroP. @)

and the inequality in (46) holds because 4,/ mp? is approximately the number of
resolution cells in the ghost image. Combined with the fact that Ci") =1, Eq. (46)
shows that classical-source ghost imaging always has low contrast. This is why
thermal-state ghost imaging has been performed with AC coupling of the pho-
tocurrents to the correlator [15]. Thermalized laser light is a narrowband source,
for which Q37> 1 so that Cf") =~ 1. The use of AC coupling implies that the cor-
relator is estimating the cross covariance between the photocurrents produced
by detectors 1 and 2, rather than their cross correlation. This ensemble-average

cross covariance is given by (C(p,))—C,(p,); so it might seem that covariance
estimation alleviates all concerns with the background term. Such is not the
case, as we shall show in the following section. In particular, despite the absence
of the background term from the photocurrents’ cross covariance, its shot noise
and excess noise still affect the image’s SNR.

5.2. Classically Correlated Phase-Sensitive Light

Let us now consider a source state that has the maximum phase-sensitive cross
correlation permitted by classical physics, given the autocorrelation functions in
Eq. (36), but has no phase-insensitive cross correlation, i.e.,

2P
KLh(p1p REp(1, = 1) = — e PPV~ o0 = 10°R75 - (48)
’ ’ may

and Kgf])e(pl ,pz)Rf&(tz—leO, where we have assumed the phase-sensitive
cross correlation function is real valued. When the source-to-object separation is
in the far-field regime for phase-sensitive coherence propagation, i.e., when
Dy« 1 as discussed in Section 4, the source-plane phase-sensitive cross corre-
lation in Eq. (48) gives rise to the following far-field cross-correlation function
[63]:

2P
|K(1p%(p1,p2)7€(lp%([2 — tl)’ = —e*(\l’1|2+|l’2\2)/ai*\l’2 + Pl|2/2P1%e*(f2 - f1)2/2T%’
' ' wa%
(49)

with a; and p; as defined above [see below Eq. (39)]. Hence, the ghost image
obtained with classical phase-sensitive light is
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Once again, we will assume that the region of interest for 7(p) is well within the
field of view, i.e., |p| < a,, so that we can express the ghost image as

2P 2 5 ) 4 2/2 2
SN aolrorc [ apen i |,
m A

Ay

<é(P1)> = 42772141(

ar
(51)

where C;”)ICY’) from the previous subsection. Comparing Eq. (51) with Eq.
(41), we see that the far-field ghost image formed with classical phase-sensitive
light and that formed with phase-insensitive light are identical except that the
former is inverted; i.e., the ghost image with phase-sensitive light has field of
view a; and spatial resolution V2 pr, but the image-bearing term is proportional to
| 7(~p)|? convolved with ¢ 1#l”/ oL, Consequently, ghost imaging with classical phase-
sensitive light suffers from the same low contrast as ghost imaging with thermal
light, which is given in Eq. (46) for a binary amplitude mask. This could be remedied
by use of AC coupling as explained in the previous subsection.

5.3. Maximally Entangled Phase-Sensitive Light

We continue to consider signal and reference beams in a zero-mean jointly
Gaussian state with no phase-insensitive cross correlation, but now we take the
phase-sensitive cross correlation to be the maximum permitted by quantum
physics. Because quantum ghost-imaging experiments have used the signal and
idler outputs from SPDC for its two source fields, we shall focus on that case
here. The output field operators of SPDC can be expressed as [65,66]

E(p.0) = AP)E,(p,0) + L, (p,1) (52)

for m=S,R, where |4(p)| =1 is an aperture function representing the finite
transverse extent of the interaction medium and the ﬁm(p,t) are auxiliary
vacuum-state operators, so that the Em(p, t) satisfy the free-space field commu-
tator relations [67]. The operator-valued Fourier transforms of {é’m(p,t),m

=S, R}, denoted {4,,(k,Q),m=S,R}, are given by a two-field Bogoliubov trans-
formation of vacuum-state input field operators, a,,(k,(), i.e.,

A5k, Q) = u(k, Q)dg(k,Q) + v(k,Q)dk(— k,— Q), (53)

Ag(— k= Q) = u(k, Q)dp(— k,— Q) + v(k, Q)dl(k,Q). (54)

Here v(k,Q) e R and u(k,Q)=1+iv(k,()) are the canonical transformation
coefficients. In accordance with the Gaussian-Schell model treatment intro-
duced earlier, we set [68]

PTyp;

v(k,Q)=202m)" o Pl (55)

ay
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A(p) = exp{~ |p|*/ag}, (56)

such that the Enl(p,t), for m=S,R, are in a zero-mean jointly Gaussian state,
with phase-insensitive autocorrelation functions given by Eq. (36), and the
maximum permissible phase-sensitive cross-correlation function,

. . 2P
<ES(P1J1)ER([)2,I2)> = —ze—(\P1|2+|P2\2)/aéX ie—\ﬂz - Pl\z/zp(z)e—(fz - f1)2/27%
mag

2
| a
(/) 0 zeflpz*m\z/ﬁ%e*(’z*’l)z”% ) (57)
PTopy

All other second-order moments, i.e., the phase-sensitive autocorrelation func-
tions and the phase-insensitive cross-correlation function, are zero. It is worth-
while to point out that when the source brightness Z=PT,pj/ag>>> 1, the first
term in the square brackets dominates, and Eq. (57) approaches the classical
phase-sensitive cross correlation given in Eq. (48). However, when Z< 1, the
second term is much larger than the first, resulting in a much stronger phase-
sensitive cross correlation than permitted in a classical state. If the brightness is
lowered to the limit in which there is on average much less than one photon each
in the signal and the idler beams during a measurement interval, then the state of
these SPDC outputs is well approximated by a dominant vacuum component
plus a weak pair of entangled photons, viz., the biphoton state [17,65].

Note that outside its low-brightness and high-brightness asymptotic regions, the
phase-sensitive cross-correlation function given in Eq. (57) is not cross-
spectrally pure as we assumed in Eq. (14). So we cannot immediately apply the
Eq. (22) ghost image result. However, the squared magnitude of Eq. (57) is the
sum of two cross-spectrally pure terms, so it is straightforward to derive the
ghost image signature starting from Eqgs. (11) and (12). Following this procedure
and using the detection-plane phase-sensitive cross correlation, obtained by
propagating each term in Eq. (57) according to Eq. (21), leads to the following
result for the far-field ghost image:

. 2P \?
(Clp) = Colpn) + C?’”(_z) | dpein e 2o )

2 a} P \?
- \/i 0 C| — | el [ dpeert efieier ol p(p)|2,
7 PTyp; Tay Ay

(58)

where Cy(p,) is given in Eq. (23), Cfp)=C(”) is as given in the previous subsec-
tions [see below Eq. (41)], and ng) =1/\1+32/ Qﬁ T(Z). Therefore, the ghost image
obtained with SPDC is, in general, the superposition of two image-bearing terms.
Nonetheless, in the two asymptotic limits of the source brightness Z, one image-
bearing term is much stronger than the other. In particular, when Z>> 1, the middle
term in Eq. (58) dominates the last term, and the ghost image becomes approxi-
mately

A 2P : 2 2 2
(C(py)) = Co(py) +C§p)($> 6_2”‘|2/”LfA dpe P +”'2/"Le_2"’|2/"L|T(p)|2.
L 2

(59)
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This image signature is identical to that obtained with classical phase-sensitive
light. Hence in the limit of bright signal and idler outputs from SPDC, the ghost
image approaches the classical limit.

In the low source-brightness limit, when Z < 1, we have that the last term in Eq.
(58) dominates the middle image-bearing term, yielding the ghost image

<é(P1)> ~ Cy(p))

2 L2 P \2
Az 0 ool — e—|p1|2/ai J dpe—lm+PI2/pie—|p\2/a§|T(p)|2
PTyp ' i ‘
T Lopy may, A2

(60)

The field of view of the source in this limit is given by \2a 1; 1.e., it is a factor of
\E larger than that obtained with the two classical sources considered before. If we
assume that the target and the pinhole scanning area are both well within this field-
of-view, we can further simplify the image signature to

. 2P \?
(C(py)) = 612772/41(_2)

may

1 a% 52
% f dplT(p) + =———C)" J dpe o eleL| T(p)? |
|: Ay VSWPTOP% t Az
(61)

which shows that the ghost image is a convolution of |7(—p)|?> with the point-

. 1pl2/02 . . . .
spread function e Ip/pL, In words, the far-field resolution achieved with this non-
classical source equals those realized with the classical sources considered ear-
lier, so, there is no quantum signature in the far-field image resolution.

The image contrast, however, has distinctly different behavior. Starting from Eq.
(61), we find that the contrast factors into
Y9 = ng)c(vq)’ (62)

where the temporal term CE") is defined above, and the spatial term is given by

1 Cl(z) maXpl[Iq(pl):l B minpl[Iq(pl)]

ng): \/S—pT 5 R (63)
mEloPo f dp|T(p)|?
2
with
Iq(Pl) = f dpeilpl+pl2/pi|T(P)|2 (64)

Ay

being the point-spread degraded image of | 7(—p)|?. Using the previous assump-
tion of a binary amplitude mask, we obtain
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1 Wai
CP =~ — X
‘ 8w PTydr

> 1/PT, (65)

because of our wa%/A > 1 field-of-view assumption. Thus, in the broadband
(QzTy< 1), low-brightness, low-flux limit, wherein the SPDC output becomes a
dominant vacuum state plus a weak biphoton component, the image contrast be-
comes

CP > Qy/P>>1, (66)

where the last inequality follows from the low-flux condition. This is why
biphoton-state ghost-imaging experiments have yielded background-free ghost
images [1,9,10], despite SPDC’s being a broadband process.

6. Signal-to-Noise Ratio

The low cross-correlation contrast of classical-state ghost images—which origi-
nates from the appreciable featureless background in which the desired image is
embedded—is easily remedied by forming cross-covariance images, rather than
cross-correlation images [9,10,17]. This can be accomplished by AC coupling
the photocurrents into a correlator, or by background subtraction. Nevertheless,
these techniques do not eliminate the shot noise and excess noise [69] associated
with the featureless background, which affect the integration time needed to ob-
tain an accurate cross-covariance estimate. Therefore it is important to quantify
the performance of classical and quantum ghost imagers via their SNRs. Fur-
thermore, pursuing closed-form analytic expressions for their SNRs is beneficial
in identifying the most critical source and detector parameters that affect image

quality.

In this section we will analyze the SNRs obtained with the three ghost-imaging
sources that we have considered in the previous section. Unlike in the previous
section, we will assume—for analytic simplicity—that AC coupling has been
implemented to eliminate the background term Cy(p,) seen in Egs. (40), (50),
and (58). We will also assume that the composite baseband frequency response
of the photodetectors and their AC-coupling is given by the difference of two
Gaussian functions [70],

Hy(Q2) = FLhg(n)] = & 2070 — 20705, (67)

where () is the baseband bandwidth of the detector as before, ()< () is the
stopband bandwidth of the AC-coupling notch around =0, and F[hg(7)] de-
notes the Fourier transform of the composite filter’s impulse response, /(). In
order to minimize suppression of the baseband photocurrent fluctuations—
whose cross correlation yields the ghost image—the notch bandwidth will be
taken to be much smaller than the bandwidth of the impinging fields; i.e.,
QOyTy< 1 will be assumed in all that follows.

In order to evaluate the ghost image SNR at p;, where
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(Cpy)Y?
SNR= ——— (68)

(ACXp,))

and Aé‘(p) = é(p) —(é(p)), the variance term appearing in the denominator
must be evaluated. This term can be expressed as

7,2

AC(py) = | " @t auti 00 i) - Co)Y, (©9)
Tf ~T2  J-Ty2 ,

which reveals the primary challenge in evaluating the measurement variance:
the fourth-moment of the photocurrents in the integrand is an eighth-order mo-
ment of the field operators. Fortunately, the moment-factoring theorem for
Gaussian-state optical fields—which we used earlier in Section 3 to find

(é(pl))—allows all field moments to be expressed in terms of second-order mo-
ments. This procedure is straightforward but tedious, and we therefore confine
our discussion to a description of the procedure, rather than a lengthy derivation.
First, we express the integrand on the right-hand side of Eq. (69) in terms of the
field-operator moments, as we have done in Eq. (11) for the mean. We then use
the commutator relations, Egs. (4) and (5), to put the integrand into normal or-
der. This procedure yields the sum of four normally ordered field moments: one
eighth-order moment, two sixth-order moments, and one fourth-order moment.
Next, the Gaussian-state moment-factoring theorem is applied to each term, re-
placing higher-order moments with expressions that depend only on the second-
order moments of the fields. Finally, by employing the coherence-separability of
the correlation functions [71], the spatial and temporal integrals in each term are
evaluated separately.

With all of the auto- and cross-correlation functions already specified in Section
5, evaluating the spatial and temporal integrals in the moment-factored variance
expression is a straightforward exercise. For the spatial integrals, we assume that
a; exceeds the transverse extent of the transmission mask by an amount suffi-

. . P 2, 2 )
cient to permit the approximation e 1Pl “|T(p)| =|T(p)|. For convenience, we
define

ay= [ aplpt (70)

which we will regard as the effective area of the transmission mask. Our A7 in-
terpretation follows by analogy with the case of a binary (|7(p)| € {0,1}) mask,
for which A7 is the area over which |T(p)|=1. With this interpretation we have
that 4}/ mp7 is approximately the number of spatial resolution cells in the ghost
image [17]. We also note that the small-pinhole approximation introduced in the
previous section requires p%/ A, > 1 for its validity in far-field operation. Finally,
we identify the two assumptions employed in evaluating the variance expres-
sion’s temporal integrals: 7;,>> Ty and )37;>> 1. Neither of these averaging-time
conditions is at all surprising. The former states that we must average over many
source coherence times to form a high-quality ghost image. The latter states that
we must average over many photodetector response times to achieve this same
purpose.

As a final note, we will evaluate the ghost-imaging SNR behavior that prevails
under narrowband and broadband illumination conditions. A source state is said
to be narrowband if (257,,>> 1, so that the coherence time of the impinging field
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state T, greatly exceeds the ~1/() integration time of the photodetectors. Con-
versely, a broadband source state is one that satisfies ();7,< 1, so that the
source’s coherence time is much shorter than the photodetector’s integration
time.

Using the procedure described above, the SNR can be derived in a closed—
albeit complicated—form for each of the sources considered below. The full
form of the SNR expressions are presented in previous work [24], but in this pa-
per we opt to skip them. Instead, we limit our presentation to the low- and high-
brightness asymptotic expressions, which are simpler to interpret and gain in-
sight from.

6.1. Thermal-State Light

We first consider the ghost-image SNR in the narrowband limit (037,>>1) as a
function of source brightness Z=PT,p;/ag=PT,p;/a;. The contributions to the
measurement variance (the SNR denominator) can be written as the sum of three
terms: the variance contribution coming from excess noise alone, that from shot
noise alone, and a term arising from beating between excess noise and shot
noise. As the source brightness grows without bound, the SNR increases until it
saturates at its maximum value,

2

Trp
SNR = \27——|T(p))I*, (71)
ToAy

for A7/ p% > 1, which is limited by the excess-noise contribution [72]. Roughly
speaking, this maximum SNR equals the number of source coherence times in
the averaging interval divided by the number of spatial resolution cells in the im-
age and multiplied by the square of the object’s intensity transmission. Recall
from Eq. (46) that 7p? /A is the image contrast for DC-coupled ghost-image
formation in the far field with narrowband thermal-state light and a binary trans-
mission mask (for which 4;=47). Hence, the SNR of AC-coupled, high-
brightness, thermal-state ghost imaging is proportional to the image contrast re-
alized by using the same setup with DC coupling.

In the low-brightness asymptote, i.e., when Z< 1, the shot-noise contribution
dominates the SNR noise denominator, yielding an expression quadratic in
photon-flux, i.e.,

1672 T, 7PA, i
SNR= —— — | 7(p,) . 72
\/7_7 TO QB(,Z% 7. | (pl)| ( )

In Fig. 5(a) we have plotted the narrowband thermal-state ghost-imaging SNR,
along with its high-brightness and low-brightness asymptotes, for several nar-
rowband ghost-imaging scenarios.

We now turn our attention to broadband sources, which satisfy );7,< 1, and
we assume that the ghost imager resolution satisfies 4/ p; > 1. Here, too, SNR
increases with increasing source brightness until it reaches its maximum value,
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Thermal-state ghost-imaging SNR, normalized by 7,/ T, plotted as a function of
source brightness Z=PTypy/ay=PTyp;/a;, for a far-field configuration
(magpy/ NoL < 1) with |T(py)|=1, A}/ p7=10% p?/A4,=10, and %=0.9. Various
0T, values are shown in the (a) narrowband and (b) broadband limits. Dashed—
dotted lines represent low-brightness asymptotes, and dashed lines correspond to

high-brightness asymptotes.
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QBTI_,’T(I)I)|4, (73)
Ap

R

2\2

where it is limited by excess noise alone. At very low source brightness, the SNR
of the broadband thermal-state ghost imager becomes limited by shot noise
alone and is given by

SNR =

4 nPA,
SNR = _QBT1—2 7L T(p))|. (74)

\/7_7 Opag
Figure 5(b) shows several plots of broadband thermal-state ghost-imaging SNR,
together with its high-brightness and low-brightness asymptotes. Aside from in-
significant numerical factors, the broadband SNR expressions differ from the
narrowband SNR expressions only through replacement of 1/7, from the nar-
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rowband expression with () in the broadband expression. This replacement is to
be expected. In the narrowband case 7;/ T, is the number of photocurrent coher-
ence times that are being averaged by the correlator. This is because the narrow-
band condition ()37,,>> 1 ensures that the photon-flux fluctuations are not af-
fected by the photodetector’s baseband bandwidth limit. However, under the
broadband condition, );7,< 1, the photocurrent fluctuations have a much
longer (~ 1/Qp) coherence time than that of the photon flux illuminating the de-
tectors, so it is {2537 that appears in the broadband SNR formulas.

6.2. Classically Correlated Phase-Sensitive Light

For phase-sensitive coherence, the far-field regime corresponds to ng/ ML
As stated in Section 4, the only difference between the classical far-field phase-
sensitive and phase-insensitive Gaussian-Schell model correlation functions is
the swapping of |p,+ p,|* and |p,— p,|?. It follows that the far-field SNR expres-
sions for classical phase-sensitive light are obtained from their phase-insensitive
counterparts—Eqs. (71) and (72) for narrowband case and Eqs. (73) and (74) for
the broadband case—by using |7(—p,)| in lieu of | T(p,)|.

6.3. Maximally Entangled Phase-Sensitive Light

To evaluate the entangled source’s ghost-image SNR in the far-field regime
(maj/ gL < 1) we utilize the same approximations that we have used for classi-
cal phase-sensitive light, but now we use the cross-correlation function from Eq.
(57) in lieu of Eq. (48) when integral expressions are explicitly evaluated. The
full closed-form solution for the SNR, which is derived by following the proce-
dure described earlier in this section, is plotted for several scenarios in Fig. 6.
Each of these plots captures the full quantum-to-classical transition seen in
ghost imaging with maximally entangled phase-sensitive light (the output fields
from SPDC) as the source brightness—mean photon-number per spatiotemporal
mode—increases.

We begin our survey of the SNR results with the narrowband case. When the
source is bright, i.e., Z>>1, the SNR equals that obtained with narrowband,
bright, classical, and maximally correlated phase-sensitive light; i.e., it equals

T p2
SNR = @r;’jlﬂ— pol*. (75)

04T

For dim-source (Z< 1) ghost imaging with |7(—p,)| ~ 1, the SNR becomes lin-
ear in photon flux,

7%2 7 PA|T(- p))|?

SNR = (76)

7TTO QBai

In this regime the SNR is limited by the very low number of photon pairs de-
tected over a detector integration time. The SNR achieved with narrowband
maximally entangled phase-sensitive light is plotted in Fig. 6(a) for several Q;T),
values. The plots verify the linear low-brightness regime and the high-brightness
saturation towards the classical asymptote. However, as shown in the plotted
curves, the SNR can exceed the bright-source asymptote. When this occurs,
there is a finite source brightness that yields the maximum SNR, and increasing
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Nonclassical phase-sensitive Gaussian-state ghost-imaging SNR, normalized by
T,/ T,, plotted versus source brightness Z=PTyp3/az=PT,p;/a; for a far-field
configuration (mal/\,L < 1) with |T(=p,)|=1, A}/ p;=10% p7/4,=10, and 7
=0.9. Various 5T, values are shown in the (a) narrowband and (b) broadband lim-
its. Dashed—dotted lines represent low-brightness asymptotes, and dashed lines cor-
respond to high-brightness asymptotes.

7 beyond this threshold will decrease the SNR with increasing photon flux.
If the low-brightness condition on the source (Z< 1) is augmented with the low-
flux condition

nPA7

2
Opa;

<1, (77)

then the average number of photons per integration time impinging on either de-
tector becomes much less than unity. It follows that the photodetectors can be
replaced with non-photon-resolving photodetectors without appreciable loss in
imaging functionality, thereby rendering the Fig. 1 ghost-imaging configuration
equivalent to biphoton-state ghost imaging with coincidence-counting circuitry
(instead of photocurrent correlation). Thus, narrowband biphoton-state ghost
imaging is also governed by the linear photon-flux SNR formula from Eq. (76)
for | T(=p,)| ~ 1. In the biphoton regime, we can interpret 72PA4,|T(—p,)|*/Q Ba%
as the mean number of photon coincidences per integration time of the detector,

Advances in Optics and Photonics 2, 405-450 (2010) doi:10.1364/A0P.2.000405 435



which is then multiplied by the number of coherence intervals within the inte-
gration window, T,/ T, to obtain the final SNR expression.

Let us next shift our attention to the broadband (37, < 1) limit. When Z>>1,
the SNR approaches the SNR of classical ghost imaging with a bright, phase-
sensitive, and maximally correlated broadband source, i.e.,

.og
SNR:_QBTI_JT(* p)l*. (78)
2\2 7 4p
On the other hand, if the low-brightness condition, Z< 1, and the low-flux con-
dition, as given in Eq. (77), are both satisfied, and |7(=p,)| ~ 1, then

1 772PA1‘T(_P1)‘2
SNR=—QpT)— 5.
T QOpa;

(79)
This expression corresponds to the broadband biphoton-state SNR. It equals the
product of the mean number of coincidences per photodetector integration time
multiplied by the number of independent observations within the integration
window, ();7). As in the narrowband case, the SNR in this regime suffers from
the paucity of photon pairs detected within the photodetector’s ~1/(); integra-
tion time, which is compensated by averaging the photocurrent product over
many temporal coherence bins, i.e., employing 7,{)2;>> 1. Figure 6(b) shows
plots of the SNR for several values of Q25T It is seen that the linear photon-flux
dependence of the SNR extends well beyond the low-flux regime. Furthermore,
the SNR achieved in the low-brightness regime [i.e., Eq. (79)] can exceed the
bright classical-source asymptote given in Eq. (78). Similar to what we found for
narrowband operation, the broadband SNR has a well-defined maximum
achieved at finite source brightness. Increasing the brightness beyond this opti-
mal value reduces the SNR, which ultimately converges to the SNR attained
with classical sources. All three of these SNR regimes are clearly identifiable in
the Fig. 6(b) SNR plots. For example, for {;7,=1072, the SNR is linear in photon
flux until Z=~ 1073, its maximum occurs at Z=~ 1072, and then the SNR decreases
with increasing 7 until at 7= 10 it converges to the bright-source asymptote.

In summary, we have found that classical-state ghost imager SNRs (thermal-
state and classical phase-sensitive Gaussian state) saturate—with increasing
source brightness—to maximum values that are inversely proportional to the
number of resolution cells on the imaged object. Biphoton-state ghost imagers
were shown to have SNRs that are typically proportional to their low photon
flux. However, our analysis revealed that as the source brightness increases be-
yond the biphoton regime, the SNR typically reaches a well-defined maximum,
after which increasing flux reduces the SNR. This may seem counterintuitive,
but it is consistent with the fact that the SNR must approach the bright classical-
state SNR as the source brightness increases beyond unity. Because this
classical-state limit is in general Jower than the maximum of the SNR achieved
at lower brightness values, the SNR must have a decreasing trend as source
brightness increases without bound.

7. Image Acquisition Time

All of the SNR expressions in the previous section are proportional to the cross-
correlation averaging time 77, so it is meaningful to compare the averaging times
required in order to achieve a desired SNR value with different ghost-imaging
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sources. Note that because the far-field ghost image obtained from a (classical or
quantum) source with phase-sensitive cross correlation is inverted, we shall
compare the imaging time for a ghost image at the spatial coordinate p; using a
thermal-state source with that for a ghost image at the spatial coordinate —p, us-
ing a source with phase-sensitive coherence.

It should be no surprise that if a/l parameters are set equal, the SNR of ghost im-
aging with an SPDC source is always greater than the SNR of a classical-state
source, because the cross correlation between the two source beams is stronger
in the former case. Furthermore, it follows from the results in the previous sec-
tion that the image acquisition time is significantly shorter with the maximally
entangled Gaussian-state source when Z< 1, but the acquisition times of the
maximally entangled and maximally correlated (classical) ghost-imaging
sources are similar when 7> 1.

Nonetheless, because the primary advantage of classical-state ghost imaging is
the abundance of photon flux, it is more interesting to compare the SNRs when
the source fluxes (and possibly other parameters) are allowed to vary. Let us first
consider the case in which all parameters except photon flux are equal in the con-
figurations of interest. Because the classical sources we have considered thus far
(thermal light and classical phase-sensitive light) yield identical SNRs, we shall
use P to denote their photon fluxes, reserving P9 for the photon flux of the
maximally entangled (nonclassical) state. Likewise, the averaging time for the
classical-state ghost imagers to achieve the desired SNR will be denoted Tf,c),
while that for the entangled-state source will be designated Tﬁq). Then, we obtain

Tﬁq) \/? Qpa; pj

ke T(py)l, 80
Tgc) x\/gﬂzp(q)AlA,T’ (P])| (80)

where x=2 in the narrowband ({237,>1) limit, and x=1 in the broadband
(QpTy< 1) limit. In obtaining this expression we have assumed that the
classical-state sources are bright enough to achieve the saturation SNR in Egs.
(71) and (73), but the quantum source is limited to low brightness; so the non-
classical signature of the source prevails. In general, the comparison may favor
either source. However, in the biphoton-state (low-flux) limit with |T(p,)|~ 1,
Eq. (80) implies that qu) > T§C), i.e., the cross-correlation averaging time re-
quired for narrowband biphoton-state ghost imagers to achieve a desired SNR
value is much longer than that for bright classical-state ghost imagers to do so,
given that all other system parameters are equal. Nevertheless, in a very high-
resolution  ghost-imaging  configuration,  high illumination  flux
(P9A4!/Qpat>>1) may be achievable with low-brightness (P9 T,p}/aj< 1)
and maximally entangled phase-sensitive Gaussian-state light. In this case Eq.
(80) implies that the averaging time for the nonclassical-state ghost imager can
be shorter than that for the classical-state ghost imager [73]. For example,
|T(py)|=1, 45/ p2=10% QTy=10"2, PO Typ%/a2=1073, and p? /4, =10 will yield
7' =19/10077.

Finally, we compare ghost imaging with a broadband biphoton state (low bright-
ness and low flux) to that with a bright narrowband classical state. Denoting the

parameters specific to the classical and quantum sources with the superscripts
(¢) and (g) respectively, we obtain

Advances in Optics and Photonics 2, 405-450 (2010) doi:10.1364/A0P.2.000405 437



7Y Q¥al o} |T(p)

c):\/ﬁ

T TPOALA, QT

(81)

Because the last factor on the right is typically less than unity, for |T(p;)|~ 1,
whereas the remaining factors are greater than unity, the cross-correlation aver-
aging time may favor either source state. As an example, consider |7(p,)|=1,
A}/ p2=10%, POTVp2/a2=107, p?/4,=10. Then a biphoton-state source with
1 THz bandwidth and a 1 MHz thermal-state source will result in qu) ~8
X 1073 Tﬁc)/ 77, which shows that the biphoton-state imager enjoys an enormous ad-
vantage in averaging time as compared with the classical-state imager when the
quantum efficiency is not unduly low.

The conclusions to be drawn from our treatment of image-acquisition time are
the following. We showed that with equal bandwidth sources, and all system pa-
rameters being equal unless otherwise noted, bright classical-state ghost imagers
typically reach the desired SNR value with a much shorter averaging time than
that needed by a biphoton-state ghost imager. Therefore, despite the biphoton
state’s yielding images with high contrast even in DC-coupled operation, its
photon-starved nature makes the total time duration it requires to accumulate the
ghost image far in excess of what is necessary with a bright classical-state
source. Nevertheless, we saw that there is a broadband, low-brightness, high-flux
regime of nonclassical phase-sensitive light that may get by with much shorter
cross-correlation averaging times than those needed by bright classical-state im-
agers. The notable drawback to reaping this quantum advantage, however, is the
necessity for high quantum efficiency photon-number resolving detectors. Fi-
nally, we showed that there is no clear winner between ghost imaging with a
broadband biphoton state and a narrowband bright classical state.

8. Computational Ghost Imaging

At this juncture, it is worthwhile to review the underlying physics of thermal-
state ghost imaging in terms of the correlation of intensity fluctuations in the sig-
nal and reference arms. It is well known that a partially coherent thermal-state
optical beam (whether it is true thermal light or pseudothermal light) has a
speckled transverse intensity profile that fluctuates in time, with the speckles ap-
proximately the size of the spatial coherence diameter (at the transverse plane of
interest) and the fluctuations occurring on a time scale approximately equal to
the coherence time, as exemplified in Fig. 7. Therefore, after 50:50 beam split-
ting and propagation through L meters of free space, identical speckle patterns
are generated on the signal- and reference-arm detection planes. The pinhole de-
tector in the signal arm is smaller than a coherence diameter; thus it observes the
fluctuations in only one speckle cell. The reference-arm bucket photodetector,
on the other hand, measures a weighted-sum of the fluctuations from all of the
speckle cells, where the weights correspond to the photon-flux transmissivity of
the mask at the transverse spatial position of each speckle cell. Hence, when the
speckle fluctuations seen by the single-pixel detector are correlated with the
photocurrent from the bucket detector, the strength of the correlation is propor-
tional to the weight of the corresponding speckle-cell contribution to the bucket
detector output. In other words, the correlation is proportional to the object’s
photon-flux transmissivity at the transverse position illuminated by the speckle
cell whose fluctuations are being measured by the signal-arm pinhole detector.
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Spatiotemporal speckle of partially coherent light. (a) The transverse speckle
pattern generated by illuminating a sheet of paper with a cw laser beam that has
been rendered spatially incoherent by transmission through a ground-glass dif-
fuser, and (b) the temporal fluctuations seen in a single speckle cell of a cw laser
beam that has been transmitted through a rotating ground-glass diffuser. 7|, de-
notes the coherence time, and the dashed line (red) indicates the dark baseline.

_____________________________________________________________________________________|

We can now better appreciate the role of the signal arm in ghost imaging: the
photocurrent from the pinhole detector provides a measurement of the intensity
fluctuations occurring in one speckle cell on the detection plane. This measure-
ment is critical in conventional thermal-state ghost imaging, because there is no
a priori knowledge of the detector-plane speckle pattern that the thermal source
will produce. It turns out, however, that imposing a deterministic spatiotemporal
modulation on a coherent laser is a viable alternative to having true randomness
in the source. In this case, because the intensity fluctuations are known a priori,
the signal arm can be replaced with numerical computation.

To expand on this point, consider the configuration shown in Fig. 8. Here, we
transmit a cw laser beam through a SLM whose inputs are chosen to create the

\[ Spatial light modulator pinhole detector, center p,
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50 /50 :
" Ep.t) Elp.1) 'T

cw
Laser

e ——

o T e
ER(pvt)

L-meter free space

propagation 4 C (p)
corre@l—»1

. Object,T(p)

777777777

Bucket detector (fixed)

(1)

Ghost imaging with a cw laser and a SLM.
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desired coherence behavior. Let us assume an idealized SLM consisting of d
X d pixels arranged in a (2M+1) X (2M+ 1) array with 100% fill factor within a
D X D pupil, where D=(2M+1)d and M>>1. We use this SLM to impose a
phase ¢,,,(¢) on the light transmitted through pixel (n,m).

Suppose we have that {e/®m(®): —M <n m =M} are independent identically dis-
tributed random processes obeying (e'®m)y=0 and (elPm(2)-dully
=§/n5kme"’2”1|/ To. These statistics prevail if, for example, {e/®")} is a set of
identically distributed random telegraph waves [74]. We focus on the narrow-
band case in which 7}, is long compared with the response time of the photode-
tectors, 1/(),. After the beam splitter and the free-space propagation into the far

field, the preceding source leads to zero-mean E,(p, ) and E,(p, ) with a phase-

insensitive correlation function of the form given in Eq. (17), where R(”)e(tz
,tl) e ‘lz t1|/T0 and

2

P 2
K™ (p,p,) = — ekollpal*~lpiP)/2L
mt(P15P2) 2\ Dt

( sin(7rdu,/NoL) sin(mdus/\oL) )
X
u=x,y Wodul/)\oL Wduz/)\oL
( Sin[WD(ul - u2)/)\0L] )
x( 1T —
u=x,y Sln[’ﬂ'd(ul - Uz)/)\oL]

(82)

where m,{=1,2. Although it is not a Gaussian—Schell form, the preceding spa-
tial correlation function has an intensity width ~\,L/d and a coherence length
~N\oL/D, which is similar to our Section 5 conclusions, if we identify d = p, and
D= qa,. Furthermore, using a central limit theorem argument, we can approxi-

mate the joint state of £,(p,#) and E,(p, ) as Gaussian. Hence the Fig. 8 con-
figuration will produce a ghost image

. 2
(Clp)) =4 rfAl( f dthgm) Ki\(pip) fA dpKZ(p.p)|T(p)

<G, anklp 1T, (53)

where, once again, the first term is a featureless background that can be sup-
pressed by means of a DC block, and the second term is the point-spread-
function degraded image, which has spatial resolution A (L /D within a spatial re-
gion of width N¢L/d [75].

The possibility of using noise generators to drive the SLM leads to the more in-
teresting observation that deterministic near-orthogonal driving functions can be
employed to achieve the same objective. The desired property at the SLM’s out-
put is a narrowband, zero-mean field state whose spatial coherence—inferred
now from a time average, rather than an ensemble average, because there is no
true randomness—is limited to field points within a single pixel. Employing
sinusoidal modulation, ¢,,,(£)=® cos[(Qy+AQ, ,)¢], with a different AL}, ,

each pixel is one possibility. Let (- ) T, denote time averaging over the T ,—second in-
terval employed in obtaining the ghost image. We have that (e'?n. m(’)>T ~2Jy(®)
~0 when (Qy+AQ, ,)T;>> 21 and @ > 77, where Jy( - ) is the zeroth- order Bessel
function of the first kind. With the additional condition [AQ),, [, |A€); ;] < €, and
CI)T,|AQ,,,m—AQj’k| > 1 when (n,m) # (j, k), we have <ei[‘f’"»m([)_¢’/'k(’)]>n% 0, unless
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j=n and k=m. Finally, the narrowband requirement is met if the modulation periods

27/ (Qy+AL, ) are all much longer than the response time of /15(¢). Thus, this de-
terministically modulated source will also yield a ghost image of spatial resolution
NoL/D within a spatial region of width AjL/d embedded in a background that can
be suppressed by means of a DC block.

At this point, the computational ghost-imaging configuration we introduce in
Fig. 9 is easily understood. We use deterministic modulation of a cw laser beam
to create the reference-arm field that illuminates the target transparency, and, as
usual, we collect the light that is transmitted through the transparency with a
bucket (single-pixel) detector. Knowing the deterministic modulation applied to
the original cw laser beam allows us to use diffraction theory to compute the in-

tensity pattern, 1,(p,,?) E(EAI(pl ,OE (p,,1)), that would have illuminated the
pinhole detector in the usual lensless ghost-imaging configuration. Furthermore,
we can subtract the time average of this intensity, in our computation, and elimi-
nate the prevalent background term from the ghost image. To distinguish these

computed values from actual light-field quantities, we will denote them 7,(p; ,7)

and Al 1(py, 1), respectively. The time-and-ensemble averaged correlation func-
tion [76],

(aélp) = < | amamasiioni=mmn) [ angnpa- rz>h3<72>> ,

Ty

(84)

with P,(t)=[ Azdp<EA;(p, I)Ez(p, 1)) being the ensemble-average photon flux il-
luminating the bucket detector, will then be a background-free ghost image—
with spatial resolution AL /D over a spatial extent of width \(L/d—akin to what
would be obtained from pseudothermal ghost imaging with d= py, D=~ a,, and a
DC block applied to the pinhole detector. It is worthwhile to emphasize that, be-
cause only one photodetector has been employed, it is impossible to interpret this
computational ghost image as arising from nonlocal two-photon interference.

In summary, the Fig. 9 setup shows how ghost imaging can be performed with
only a bucket (single-pixel) detector by precomputing the intensity fluctuation
pattern that would have been seen by the scanning pinhole detector (or high-
spatial-resolution camera). This computational ghost imager results in
background-free images whose resolution and field of view can be controlled by
choice of SLM parameters. Finally, this computational ghost-imaging configu-
ration underscores the classical nature of ghost-image formation.

Spatial light Object, Bucket detector

modilator T¢(p) /
B Ey(p.t) iQ(t)Aé(Pl)

L-meter free space precomputed

" 2
propagation All(p17 t)

cw
Laser

Computational ghost-imaging setup.
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9. Discussion

Ghost imaging has captured the attention and interest of the quantum imaging
community since its first demonstration with entangled photons over a decade
ago. In Section 1 we summarized the theoretical and experimental milestones of
ghost imaging prior to delving into its detailed treatment. The core of this paper
was a development of the fundamental properties of the conventional dual-arm
lensless ghost-imaging configuration. In particular, we analyzed the ghost image
signature obtained with three classes of Gaussian-state sources. Two used
classical-state light, specifically a joint signal-reference field state that has either
the maximum phase-insensitive or the maximum phase-sensitive cross correla-
tion consistent with having a proper P representation. The third used nonclassi-
cal light, in particular an entangled signal-reference field state, obtained from
SPDC, with the maximum phase-sensitive cross correlation permitted by quan-
tum mechanics. In Section 5 we examined ghost-imaging performance in the far
field. There we showed that the nonclassical source yields a slightly larger field-
of-view, but the resolution from all three sources are equal. Image contrast, how-
ever, is dramatically better with an SPDC source in its usual low-brightness op-
erating regime. The SNR analysis we reported in Section 6 and the image-
acquisition-time analysis presented in Section 7 showed that neither bright
classical-state sources nor dim quantum sources universally yield superior SNR,
or equivalently, shorter image-acquisition times. The particular source band-
width, brightness, and resolution values determine which state gives better per-
formance in these regards. We departed from the conventional dual-arm ghost-
imaging setup in Section 8, where we showed that imposing a spatiotemporally
varying deterministic modulation on a cw laser beam facilitates a single-arm
ghost-imaging configuration (having only a single-pixel detector), in which the
ghost image is extracted from the photodetector current via signal processing.

As our analysis in Section 3 shows, the fundamental source property that enables
acquisition of a ghost image—whether the source is classical or quantum—is
the nonzero cross covariance between the photon-flux densities of the two de-
tected fields, i.e., the cross correlation of the photon-flux densities minus the
product of their mean values. The product of the mean values generates a fea-
tureless background, while the cross covariance produces the image-bearing
terms. For zero-mean Gaussian-state sources—including both thermal-state
sources and the SPDC-generated biphoton-state sources—the point-spread
function of the image is expressible as a sum of terms involving only the second-
order moments of the field operators. As a result, we find that the phase-sensitive
and phase-insensitive field-operator cross correlations are the primary
Gaussian-state parameters that determine the ghost-image point-spread func-
tion. In [17] we showed that any pair of phase-sensitive and phase-insensitive
cross-correlation functions can be obtained, in principle, from two classical
Gaussian-state fields, so long as there are no restrictions on these fields’ autocor-
relation functions. In this respect, the image-bearing term alone does not contain
any quantum signature per se. However, if we compare sources that have identi-
cal autocorrelation functions (thus, identical ghost-image backgrounds in DC-
coupled operation), we find that nonclassical fields with low brightness and
maximum phase-sensitive cross correlation offer a higher contrast image (when
DC-coupling is used), a higher SNR, and some field-of-view expansion in the
far field. We found that classical-state ghost imager SNRs saturate—with in-
creasing source brightness—to a maximum value that is inversely proportional
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to the number of resolution cells in the imaged object. In this high-brightness
limit the classical ghost-imaging SNR is thus proportional to the contrast
achieved in DC-coupled operation. The contrast can be improved by removing
the featureless background via AC-coupled photodetectors or background sub-
traction, but SNR improvements, at high source brightness, require increasing
the cross-correlation averaging time.

Although we consider the debate on the fundamentals of ghost imaging to be re-
solved, it is relevant to dispel some of the recent myths regarding the physics of
thermal-state ghost imaging. In some recent publications it has been implied that
ghost imaging with thermal-state light cannot be explained by classical electro-
magnetic theory in combination with semiclassical photodetection theory, but
that nonlocal interference of photon pairs must be used to understand such ex-
periments [15,31,77]. Although we have no dispute that all optical phenomena
are fundamentally quantum mechanical, we strongly disagree that invoking non-
local two-photon interference is compulsory to explain thermal-state ghost im-
aging. We have presented several explanations in this paper to support this view.
First, we have reiterated the fact that a thermal state is a mixed state with a proper
P representation, so classical stochastic-field electromagnetism combined with
the semiclassical (shot noise) theory of photodetection yields thermal-state
ghost-imaging predictions that are quantitatively identical to those obtained with
quantum field operators and quantum photodetection theory. Second, and per-
haps more critically, the proper P representation also implies that there is no
nonlocal interaction in thermal-light ghost imaging in the sense of violating the
Clauser—Horne—Shimony—Holt inequality [78]. Computational ghost imaging,
studied in Section 8, precisely demonstrates this point by utilizing a single de-
tector, which eliminates all possibility of nonlocal interactions. [79]. Two dis-
tinct fields propagating paraxially in two different directions can exhibit spa-
tiotemporal correlations on transverse planes that are equidistant from the
source. This concept is both well known in and central to classical statistical op-
tics [44,52]. The physical separation between the two measurement planes does
not automatically imply a signature of nonlocality in quantum mechanics.

One significant component of our analysis is the source referred to as classical
phase-sensitive light, and merits a discussion in its own right. Specifically, it is a
two-beam Gaussian state with the maximum phase-sensitive cross correlation
permissible in classical statistical optics. This classical state is critical to prop-
erly delineating the classical-quantum boundary in most quantum imagers (e.g.,
see [17,80,81]) because it represents the Gaussian state that is most similar to
the nonclassical Gaussian state of the signal and idler outputs from SPDC
[51,55], which is currently the primary source for obtaining biphotons (en-
tangled photon pairs). As such, there is an intimate physical connection between
the phase-sensitive and phase-insensitive coherence duality [63], and the duality
between the partial entanglement of biphotons and the partial coherence of clas-
sical phase-insensitive fields [6]. In particular, the biphoton state is the low-
brightness, low-flux limit of the zero-mean jointly Gaussian state with maxi-
mum phase-sensitive cross correlation and zero phase-insensitive cross
correlation. In this limit, the biphoton wave function is the phase-sensitive cross-
correlation function between the signal and reference fields (e.g., see [17]).
Hence, the duality between biphoton wave function propagation and phase-
insensitive coherence propagation is rooted in the duality between phase-
sensitive and phase-insensitive coherence propagation. Because classical
fields—such as classical phase-sensitive Gaussian-state light—may also have
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phase-sensitive coherence, it is imperative to distinguish features that are due to
the presence of this phase-sensitive correlation from those that require this
phase-sensitive correlation to be stronger than what is possible with classical
states. The following examples illustrate our point. When ghost imaging is per-
formed with phase-sensitive light, image inversion occurs in the far field for
both classical and quantum sources. This inversion is entirely due to the differ-
ence between the free-space propagation of phase-sensitive and phase-
insensitive correlations, and it is not necessary for the phase-sensitive coherence
to be stronger than classical. On the other hand, the high contrast of DC-coupled
ghost images formed with SPDC light arises from that source’s phase-sensitive
cross correlation’s being much stronger than the classical limit, and this feature
is not reproducible with classical phase-sensitive light.

Because of its significance, it is worthwhile to briefly consider how classical
phase-sensitive light may be generated. The key ingredient to generating two
beams with a phase-sensitive cross correlation is utilizing a process that imparts
phase-conjugate modulations on the two beams. Thus narrowband classical
phase-sensitive light can be generated by dividing a cw laser beam with a 50:50
beam splitter and imposing complex-conjugate modulations on the two beams,
for example, by using telecommunications-grade electro-optic modulators. To
obtain broadband classical phase-sensitive light one could utilize SPDC, but
have thermal-state signal and idler inputs (instead of the vacuum-state inputs
used to obtain an entangled signal-idler output), such that the joint signal and
idler output state is a classical zero-mean Gaussian state with a phase-sensitive
cross correlation.

In addition, we emphasize that Gaussian-state analysis provides a robust and
versatile framework for answering some of the most fundamental questions as-
sociated with developing practical ghost imagers. We have utilized the versatil-
ity of this framework in our prior work and in this paper to obtain quantitative
and comparable performance metrics for classical and quantum ghost imagers,
thus unambiguously delineating the classical and quantum features of ghost im-
aging. The same framework can be applied to other imaging configurations as
well, thereby establishing a methodology for investigating the boundary be-
tween their classical and quantum behavior.

We close with a final brief summary of what we have presented. We have used
Gaussian-state analysis to establish a unified treatment of classical and quantum
ghost imaging. Our analysis has revealed that ghost-image formation is due to
phase-sensitive and phase-insensitive cross-correlations between the signal and
reference fields. Because arbitrary cross-correlations can be achieved by classi-
cal and quantum sources alike, image contrast and SNR are the only distinguish-
ing features between classical and quantum behavior. In particular, a classical
source with phase-sensitive cross-correlation can produce an image identical to
that obtained with a biphoton source—up to a different contrast and hence
SNR—even for ghost-imaging configurations that utilize lenses, mirrors, or
other linear optical elements. If we compare ghost images from classical and
quantum sources having identical autocorrelations, then the low-brightness limit
of the nonclassical source, in general, yields a field-of-view enhancement in far-
field operation, but the image resolution (which is governed by the source diam-
eter) is unaffected.
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