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Ghost-imaging experiments correlate the outputs from two photodetectors: a
high-spatial-resolution (scanning pinhole or CCD array) detector that measures
a field that has not interacted with the object to be imaged, and a bucket (single-
pixel) detector that collects a field that has interacted with the object. We give a
comprehensive review of ghost imaging—within a unified Gaussian-state
framework—presenting detailed analyses of its resolution, field of view, image
contrast, and signal-to-noise ratio behavior. We consider three classes of illu-
mination: thermal-state (classical), biphoton-state (quantum), and classical-
state phase-sensitive light. The first two have been employed in a variety of
ghost-imaging demonstrations. The third is the classical Gaussian state that
produces ghost images that most closely mimic those obtained from biphoton
illumination. The insights we develop lead naturally to a new, single-beam ap-
proach to ghost imaging, called computational ghost imaging, in which only
the bucket detector is required. We provide quantitative results while simulta-
neously emphasizing the underlying physics of ghost imaging. The key to de-
veloping the latter understanding lies in the coherence behavior of a pair of
Gaussian-state light beams with either phase-insensitive or phase-sensitive
cross correlation. © 2010 Optical Society of America
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host imaging: from quantum to
lassical to computational

aris I. Erkmen and Jeffrey H. Shapiro
. Introduction

host imaging is a transverse imaging modality that has been receiving consid-
rable and increasing attention of late, owing to its novel physical characteris-
ics. Aside from minor implementation variations, virtually all ghost-imaging
emonstrations thus far exploit the cross correlation between the photocurrents
btained from illumination of two spatially separated photodetectors by a pair of
ighly correlated optical beams. One beam interrogates a target (or sample) and
hen illuminates a single-pixel (bucket) detector that provides no spatial reso-
ution. The other beam does not interact with the target, but it impinges on a
canning pinhole detector or a high-resolution camera, hence affording a
ultiple-pixel output. The term “ghost imaging” was coined soon after the ini-

ial experiments were reported, to emphasize that neither of the photocurrents
lone yields a target image: the light hitting the bucket detector has interacted
ith the target, but that detector has no spatial resolution, whereas the light hit-

ing the multipixel detector has not interrogated the target. However, cross cor-
elating the two photocurrents does produce a target image. Figure 1 shows the
eneric lensless ghost-imaging configuration that will be the focus for the sec-
ions below.

he brief qualitative description of ghost imaging that we have just given pur-
osefully avoids what, for some, has been a raging question. Is ghost image for-
ation a quantum effect, or is it classical? Providing a definitive answer to that

uestion—which we shall do in what follows—requires a careful and explicit
efinition for what constitutes a quantum as opposed to a classical effect within
he Fig. 1 construct. At its heart will be the distinction between classical-state
nd nonclassical-state light beams that we will present in Section 2. Ultimately,
e will see that both type light beams are viable sources for ghost imaging. The
hoice between the two, however, does affect the spatial resolution, field of view,
ontrast, and signal-to-noise ratio (SNR) of the resulting ghost image.

ork on ghost imaging has resulted in a long list of publications that run the
amut from reports of its experimental realizations, to discussions of its funda-
ental physics, to attempts at distinguishing its classical and quantum features,

o suggestions for implementation variations dictated by practical consider-
tions. Let us begin our review by summarizing the major milestones that have
een achieved. The first experimental demonstration of ghost imaging, reported
n 1995 by Pittman et al. [1], utilized the orthogonally polarized signal and idler
eams produced by type-II phase-matched spontaneous parametric downcon-

ersion (SPDC). These beams—comprising a low-flux stream of frequency-

dvances in Optics and Photonics 2, 405–450 (2010) doi:10.1364/AOP.2.000405 407
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ntangled signal–idler photon pairs (biphotons)—were separated by a polarizing
eam splitter and used as the signal and reference in a ghost-imaging arrange-
ent akin to that shown in Fig. 1. Because of the low-flux nature of the SPDC

ource, photon-coincidence counting was performed instead of photocurrent
ross correlation. The ghost image that Pittman et al. obtained was claimed to be
quantum effect, because an entangled-state light source was employed in its

eneration. In 2002, however, Bennink et al. [2] published results from a ghost-
maging-like experiment that used scanning of a pair of collimated laser beams
ith anticorrelated propagation directions. That the Bennink et al. experiment
id not rely on entanglement—and that hence its ghost image could be regarded
s a classical effect—sparked a debate [3–5] whose prevailing conclusion was
hat the product of the near-field and far-field spatial resolutions of the images
enerated by a particular configuration of the classical scheme was inferior to
hat obtained from a biphoton-state ghost imager. It soon became apparent that
his conclusion did not apply universally to all classical-source ghost imagers.
ndeed, the similarity between the propagation behavior of the biphoton wave
unction and the mutual coherence function of thermal radiation [6–8] prompted
heoretical analysis of ghost imaging with partially coherent thermal light
9–12], which predicted that ghost images with features qualitatively compa-
able with the biphoton imager could be achieved. Subsequent experimental
emonstrations confirmed this theoretical prediction [13,14]. These experiments
ere performed with pseudothermal light generated by passing a laser beam

hrough a rotating ground-glass diffuser. The diffusely scattered, time-varying
ptical field at the output of the ground glass impinged on a 50:50 beam splitter
hose output beams provided the signal and reference light for a lensless ghost-

maging arrangement. Because the pseudothermal source could be easily made

Figure 1

correlator
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pinhole detector, center
(scanning)
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Bucket detector (fixed)

( )T �Object,

L-meter free space
propagation
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ˆ ( , )SE t�

ˆ ( , )RE t�

ˆ ( , )E t� �

ˆ ( , )E t� �

Source
(classical or quantum)

imple ghost-imaging setup. Correlated signal �S� and reference �R� fields—
ere shown as quantum operators that can be used to analyze all source
ossibilities—propagate through L-meter-long free space paths. The signal then
lluminates a high-spatial-resolution detector, shown here as a scanning pinhole
etector, whereas the reference illuminates a single-pixel (bucket) detector
hrough an object transparency with field transmission T���. Cross correlation
f the resulting photocurrents yields the ghost image of the intensity transmis-
ion �T����2 as the pinhole is scanned.
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im or bright, it was possible to utilize photon-counting detectors [13] in the
ormer case and a CCD array in the latter [14]. Both the theoretical analysis and
he experimental results showed that the main difference between
seudothermal-source ghost images and biphoton-state ghost images was the
resence of a very significant featureless background level in the pseudothermal
host image, something that was not present in the biphoton ghost image.

he discovery that ghost imaging could be performed with bright pseudother-
al sources opened the door to a new debate regarding the physics of ghost im-

ging. Scarcelli et al. [15] asserted that thermal-state ghost imaging did not ad-
it of a classical interpretation based on the correlation of the intensity
uctuations in the two source beams. Despite several prior articles having suc-
essfully used coherence theory [9,10] and classical statistical optics [11,12] to
nalyze thermal-state ghost imaging and to accurately predict experimental ob-
ervations, Scarcelli et al. argued that a quantum-mechanical description based
n nonlocal two-photon interference was compulsory for a quantitatively correct
escription of thermal-light ghost imaging. Later, however, a conceptual single-
eam analysis, employing classical coherence theory, showed that the pseudot-
ermal ghost image resulted from speckle correlation [16], but it did not provide
quantitative comparison between the pseudothermal and biphoton cases. To

btain that missing quantitative comparison, we introduced a unifying Gaussian-
tate framework [17] that encompassed ghost images formed from pseudother-
al and biphoton light, as well as ghost images realized with classical phase-

ensitive light. We showed that the point-spread function in biphoton-state ghost
maging depended on the phase-sensitive cross correlation between the two
PDC output fields, whereas in thermal-state ghost imaging the point-spread
unction depended on their phase-insensitive cross correlation. The fact that a
wo-field classical Gaussian-state source could, in principle, be engineered to
ave arbitrary phase-sensitive and phase-insensitive cross correlation functions
ed us to conclude that ghost image formation with biphoton light was not due to
uantum entanglement per se, but rather to classical coherence propagation. We
lso showed that the intensity fluctuation interpretation for thermal-state ghost
maging did yield correct quantitative predictions, because the predictions of the
emiclassical and quantum theories of photodetection coincide when the inci-
ent optical fields are statistical mixtures of coherent states. The idea of using
lassical phase-sensitive light for ghost imaging, which we originated in [17],
as an essential ingredient in our treatment of ghost imaging because it is the

wo-field classical state that most closely mimics the coherence properties of the
iphoton state.

he speckle-correlation interpretation of thermal-state ghost imaging led one of
s to the realization that the light-beam behavior that it requires may be obtained
y allowing a spatially coherent laser beam to illuminate a spatial light modula-
or (SLM) whose pixels are driven by statistically independent noise processes
18]. From there it was simple to argue that noise modulation was unnecessary in
hat driving the pixels with orthogonal or pseudorandom time functions would
uffice. Once the realm of deterministic modulation was entered, it became clear
hat there was no need for the light beam that illuminated the high-spatial-
esolution detector, because its illumination was subject only to free-space dif-
raction and hence could be precomputed from the known drives applied to the
LM. What results is computational ghost imaging: the photocurrent generated
y the single-pixel (bucket) detector, as a result of the SLM output light interact-
ng with the target and impinging on the detector, is correlated with the precom-
dvances in Optics and Photonics 2, 405–450 (2010) doi:10.1364/AOP.2.000405 409
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uted intensity pattern to produce the ghost image. A proof-of-principle experi-
ent for computational ghost imaging was quickly accomplished [19]. Since

hen, techniques from compressed sensing have been employed to increase the
fficiency of computational ghost-image formation, i.e., to reduce the integra-
ion time required in order to obtain an image of adequate quality [20].

lthough understanding the noise characteristics of ghost imaging is a vital
omponent for assessing its imaging performance, relatively little rigorous SNR
nalysis had been done for the Fig. 1 configuration until recently. An initial SNR
ssessment of pseudothermal ghost imaging stated that the SNR should be pro-
ortional to the contrast of the image [21]. In other work, the SNRs of classical
nd quantum ghost imaging (along with other photon-correlation imagers) were
eported [22]. There it was shown that at equal photon numbers the SNR of
iphoton-state ghost imaging exceeds that of thermal-state ghost imaging. How-
ver, in general the higher-SNR-yielding source depends on the particular pa-
ameter values. The SNR of biphoton-state ghost imaging was also analyzed in
23], where a trade-off between image resolution and SNR was exhibited. In [24]
e extended our unifying Gaussian-state framework from [17] to provide a rig-
rous SNR analysis for both classical and quantum ghost imaging in the narrow-
and and broadband limits, and at all brightness levels. Our effort indeed yielded
n SNR proportional to the image contrast for bright thermal-state ghost imag-
ng. Furthermore, the biphoton-state ghost imaging SNR was shown to be pro-
ortional to the mean coincidence rate. Perhaps most interesting, however, was
hat the Gaussian-state framework facilitated the first analytic derivation of the
ull quantum-to-classical transition in SNR, as the brightness of the source fields
from SPDC) transitioned from having much less than one photon per mode to
aving many photons per mode. Finally, in agreement with the earlier conclu-
ions from [22], the work in [24] showed that neither source (thermal-state or
iphoton-state) universally dominates the other: the specific operating param-
ters, such as bandwidth and source brightness, determine whether classical or
uantum sources have superior SNR performance.

he history we have summarized displays the path that will be taken in what fol-
ows, viz., a quantitative treatment—relying on Gaussian-state analysis—that
roceeds from quantum ghost imaging to classical ghost imaging to computa-
ional ghost imaging. Before embarking on that journey, let us note some of the
ecent advances in ghost imaging that will not be covered. Ghost imaging using
omodyne reception, instead of direct detection, has been proposed, and its per-
ormance has been analyzed in detail [25]. In this configuration a second-order
eld moment is measured, rather than a fourth-order moment, so that both phase
nd amplitude information can be obtained. Fourier-plane ghost imaging of
ure-phase objects using biphoton-state sources has been analyzed [26]. Ghost
maging with thermal light has been a major area of interest. Lensless ghost im-
ging with true thermal light obtained from a hollow cathode lamp has been
emonstrated [27], Fourier-plane imaging of pure phase objects has been carried
ut [28,29], and the transfer functions for lensless ghost-imaging configurations
ith pointlike detectors in both arms have been analyzed [30]. The possibility of
sing ghost imaging in remote sensing has led to an experiment that images a
arget in reflection, rather than the more usual case of imaging in transmission
31,32], and some analysis of ghost imaging through atmospheric turbulence has
een reported [33]. A unified theoretical framework, based on statistical optics,
as been applied to the Hanbury-Brown Twiss correlation experiment and to
hermal-state ghost imaging, showing that in both cases the correlation in inten-
dvances in Optics and Photonics 2, 405–450 (2010) doi:10.1364/AOP.2.000405 410
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ity fluctuations accurately predicts the experimental observations [34]. Another
venue of recent interest has been to utilize different wavelengths in each arm
35,36]. This approach facilitates the tailoring of the wavelengths in each arm of
he ghost imager to optimize imaging efficiency. Ghost-imaging schemes that
ely on field moments of higher than fourth order have also been analyzed
37–39] and experimentally demonstrated [40,41].

ur goal is to provide a comprehensive review of the fundamentals of ghost im-
ging, using (classical and quantum) Gaussian states as the framework for analy-
is and comparison. Restricting our attention to Gaussian states may seem arbi-
rary, but such is not the case. The two sources of primary interest to ghost
maging are thermal-state light and biphoton light, which are classical and quan-
um, respectively, in the sense to be defined in Section 2. The former is obtained
y 50:50 beam splitting of a true thermal source (e.g., the hollow cathode lamp
f [27]) or a pseudothermal source (laser illumination of a rotating ground-glass
iffuser). The latter is the post-selected result of using the signal and idler out-
uts from SPDC in that source’s typical low-brightness, low-flux operating re-
ime. Thermal sources emit zero-mean, Gaussian-distributed mixtures of coher-
nt states. In the absence of pump depletion, the signal and idler obtained from
PDC are in a zero-mean, jointly Gaussian state. Thus, by analyzing classical
nd quantum ghost imaging within the same Gaussian-state framework, we shall
e able to unambiguously identify the features of ghost imaging that contain a
rue quantum signature. An accompanying benefit to using Gaussian states
tems from their analytic convenience. Zero-mean Gaussian states are com-
letely characterized by their correlation functions [42]. Furthermore, because
inear transformations (such as free-space diffraction) of Gaussian-state light
eams yield Gaussian-state light beams, the output state can be obtained by sim-
ly propagating the input field’s correlation functions through the same linear
ystem. The convenience afforded by having the state completely characterized
y correlation functions is particularly crucial to deriving tractable SNRs, for
hich the variance of the ghost-image estimate is needed. In short, the unifying
aussian-state framework developed in this paper is well-suited to developing a
hysical understanding of ghost imaging and a quantitative treatment of its per-
ormance.

he rest of this review article is organized as follows. We begin, in Section 2, by
stablishing exactly what we mean by “classical” and “quantum” light sources,
o as to preclude any ambiguity in our treatment or conclusions. Next, in Section
, we derive the ghost image signature obtained with general zero-mean Gauss-
an states and identify phase-sensitive and phase-insensitive cross correlations
s the entities facilitating ghost-image formation. Motivated by that identifica-
ion, we devote Section 4 to the coherence theory for these two correlation
lasses. In Section 5 we use the results from the previous sections to derive the
ar-field ghost image signatures of three classes of Gaussian-state sources. First,
e consider a source possessing the maximum phase-insensitive cross
orrelation—as constrained by its autocorrelation functions—but no phase-
ensitive cross correlation. Such a source always produces a classical state, and
hermal light is of this class. Second, we consider a source with the maximum
lassical phase-sensitive cross correlation—again constrained by its autocorre-
ation functions—but no phase-insensitive cross correlation. Finally, we treat the
atter source when its phase-sensitive cross correlation is the maximum permit-
ed by quantum mechanics. The low-brightness, low-flux limit of this source
ields the biphoton state in postselection. Having derived the image signatures,
dvances in Optics and Photonics 2, 405–450 (2010) doi:10.1364/AOP.2.000405 411
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e use Section 6 to develop the image SNRs obtained with these three sources.
e then treat their image acquisition times in Section 7. In Section 8, we explain

he physics of computational ghost imaging, which is rooted in the physics of
onventional ghost imaging, and then proceed to an analysis of its working prin-
iples. We conclude our review in Section 9, with a discussion of the key results
hat emerge from our analysis.

. Semiclassical versus Quantum Photodetection

efore we embark on an analysis that aims to distinguish between the “classical”
nd “quantum” features of ghost imaging, it is imperative that we provide a
uantitative definition of these terms. Light is intrinsically quantum mechanical,
nd its quantized nature has long been observed through high-sensitivity photo-
etection [43,44]. Therefore, all optical imaging phenomena are fundamentally
f a quantum mechanical nature. However, it has long been known [44–48] that
he photodetection statistics of a light beam in a coherent state, or a statistical
ixture of coherent states, can be calculated by using the semiclassical (shot-

oise) theory of photodetection. In this theory electromagnetic fields are (possi-
ly random) space–time functions that obey Maxwell’s equations, and the fun-
amental noise in photodetection arises from the discreteness of the electron
harge. Despite these two theories’ having disparate interpretations for the
hysical nature of the noise seen in photodetection, the quantitative outcome of
ither calculation is identical when the illuminating quantum field is in a coher-
nt state or a random mixture of coherent states. Therefore, it has been widely
ccepted that optical phenomena that can be explained with the semiclassical
heory do not demonstrate the quantum nature of light [44,47,48]. Consequently,
hroughout this paper we adopt the following conventions: (1) a light beam for
hich the semiclassical theory of photodetection is valid, i.e., when its predic-

ions coincide with those of the quantum theory, will be said to be in a classical
tate; and (2) a feature of ghost imaging will be said to be a quantum signature if
nd only if it cannot be accurately quantified with the semiclassical theory of
hotodetection.

et us make the discussion from the previous paragraph explicit by introducing
ur notation for classical fields and quantum field operators and then exhibiting
he associated semiclassical and quantum theories of photodetection. Consider
n ideal photodetector, i.e., one with unity quantum efficiency, zero dark current,
nd infinite electrical bandwidth, whose photocurrent, i�t�, registers individual
hoton detection events instantaneously as current impulses carrying charge q.
n semiclassical theory, the scalar [49], quasi-monochromatic, paraxial optical
eld impinging on the photosensitive surface of the photodetector is a positive-
requency classical electromagnetic wave, denoted E�� , t�e−i�0t, where � is a 2D
osition vector on the detector’s planar photosensitive region and �0 is the field’s
enter frequency, so that E�� , t� is its baseband envelope whose bandwidth, �, is
uch smaller than �0. For convenience, we assume that this field is normalized

o have the units �photons/m2s. Conditioned on perfect knowledge of the field im-
inging on the photodetector, we have that i�t� /q is an inhomogeneous Poisson im-
ulse train with rate function [46,50]
dvances in Optics and Photonics 2, 405–450 (2010) doi:10.1364/AOP.2.000405 412
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µ�t� = �
A

d��E��,t��2, �1�

here A is the detector’s photosensitive region. Thus, regardless of whether the
lluminating field is deterministic or random, the photocurrent is subject to the
oise that is inherent in this Poisson process, which yields the well-known shot-
oise floor of semiclassical photodetection theory [47,48,51]. Randomness in
he illumination is then accounted for by taking E�� , t� to be a stochastic pro-
ess, as is done in classical statistical optics [52].

n the quantum theory of photodetection, the classical photocurrent produced by
he same ideal photodetector is a stochastic process whose statistics coincide
ith those of the photon-flux operator measurement scaled by the electron

harge [53],

ı̂�t� = q�
A

d�Ê†��,t�Ê��,t� . �2�

ere Ê�� , t� is the quantum-mechanical baseband electric field operator, nor-
alized to have �photons/m2s units, and † indicates Hermitian conjugation. It fol-

ows that the photocurrent statistics are determined by the state of Ê�� , t�, and the
hot-noise limit of semiclassical theory can be surpassed by some states, such as
mplitude-squeezed states, or the eigenkets of continuous-time photodetection

47,48,51,53,54]. It has long been known [47,48,51,53], however, that when Ê�� , t�
s in the coherent state �E�� , t��, indexed by its eigenfunction E�� , t� and satisfying

Ê��,t��E��,t�� = E��,t��E��,t�� , �3�

he statistics of the ı̂�t� measurement are identical to those from the semiclassical
heory with the impinging classical field taken to be E�� , t�. More generally, the
wo photodetection theories yield identical statistics for any quantum state that is

classical statistical mixture of coherent states—viz., for all states that have
roper P representations [44]—when the classical field used in the semiclassical
heory comprises the same statistical mixture of the coherent-state eigenfunc-
ions [47,48,51,55,56]. Moreover, mixtures of coherent states are the only quan-
um states for which all quantum photodetection statistics—in particular, those
f direct, homodyne, and heterodyne detection [47,48]—coincide with the cor-
esponding results found from the semiclassical theory.

ecause the correlation measurement at the heart of ghost imaging is a derived
tatistic from two photodetection measurements, we conclude that the quantum
heory of ghost imaging using source states that have proper P representations
ill yield results equivalent to the classical theory of ghost imaging using the

orresponding (classical) random optical fields plus semiclassical (shot-noise)
hotodetection theory. Therefore, any truly quantum features of ghost imaging
re necessarily exclusive to optical field states that do not possess proper P rep-
esentations.

aving detailed our convention for the using the “classical” and “quantum” no-
enclature, we will use the quantum theory for what follows because it is uni-

ersally valid. The reader is cautioned to remember that whenever a feature is
eemed classical, there is a derivation using classical fields and semiclassical
hotodetection that yields identical answers to what was found from the quan-

um treatment.

dvances in Optics and Photonics 2, 405–450 (2010) doi:10.1364/AOP.2.000405 413
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. Gaussian-State Ghost Imaging

onsider the ghost-imaging configuration shown in Fig. 1. An optical source
enerates two scalar, quasi-monochromatic, paraxial, positive-frequency optical

elds [57], a signal ÊS�� , t�e−i�0t and a reference ÊR�� , t�e−i�0t, with
photons/m2s units and common center frequency �0, where � is the transverse co-
rdinate with respect to each field’s optical axis. The commutation relations for the
aseband field operators are given by [53]

�Êm��1,t1�,Ê���2,t2�� = 0, �4�

�Êm��1,t1�,Ê�
†��2,t2�� = �m,����1 − �2���t1 − t2� , �5�

here �m,� is the Kronecker delta function, m ,�=S ,R, and �� · � is the unit im-
ulse. Both beams undergo L meters of quasi-monochromatic, paraxial, free-
pace diffraction along their respective optical axes, yielding the detection-plane
eld operators [47,48,58]

Ê���,t� =� d��Êm���,t − L/c�hL�� − ��� , �6�

here �� ,m�= �1,S� or �� ,m�= �2,R�, c is the speed of light, hL��� is the
uygens–Fresnel Green’s function,

hL��� 	
ei2�L/�0ei����2/�0L

i�0L
, �7�

nd �0=2�c /�0 is the wavelength associated with the center frequency. At the

etection planes, Ê1�� , t� illuminates a quantum-limited pinhole photodetector
f area A1 whose photosensitive region ��A1 is centered at the transverse co-

rdinate �1, while Ê2�� , t� illuminates a field-transmission mask T��� located
mmediately in front of a quantum-limited bucket photodetector with photosen-
itive region ��A2. Each photodetector is modeled as the cascade of a trans-
issivity � attenuator, followed by an ideal photodetector—as described in Sec-

ion 2—whose photocurrent is then low-pass filtered by a real-valued impulse
esponse hB�t�. Such an arrangement then represents a quantum-efficiency � de-
ector with no dark current, no thermal noise, and finite electrical bandwidth.

he ghost image at the transverse coordinate �1 is formed by time-averaging the
roduct of the detector photocurrents, which is equivalent to a measurement of
he quantum operator

Ĉ��1� =
1

TI
�

−TI/2

TI/2

dtı̂1�t�ı̂2�t� , �8�

here

ı̂m�t� = q� du�
Am

d�Êm�
†��,u�Êm� ��,u�hB�t − u� , �9�

or m=1,2, with TI being the duration of the averaging interval. The field opera-

ors appearing in these photocurrent operators are
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Êm� ��,t� 	 
��Ê1��,t� + �1 − �Êvac1
��,t� , for m = 1,

��T���Ê2��,t� + �1 − ��T����2Êvac2
��,t� , for m = 2,� �10�

here the �Êvacm
�� , t�—which are needed to ensure commutator preservation in

ccounting for ��1 photodetection—are in their vacuum states. The Ĉ��1� mea-
urement yields an unbiased estimate of the ensemble-average equal-time photocur-
ent cross-correlation function

�Ĉ��1�� = �ı̂1�t�ı̂2�t��

= q2�2A1�
A2

d�� du1 � du2hB�t − u1�hB�t − u2��T����2

� �Ê1
†��1,u1�Ê2

†��,u2�Ê1��1,u1�Ê2��,u2�� , �11�

here we have approximated the integral over the pinhole detector’s photosen-
itive region as the value of the integrand at �1 times the photosensitive area A1.

he expression in Eq. (11) shows that the ghost image is a linear transformation
n the spatial profile of the mask’s photon-flux transmissivity, �T����2. Hence,
he point-spread function (impulse response) of this transformation determines
he ghost image’s behavior, i.e., its field of view and spatial resolution. However,

ecause the point-spread function is determined by a fourth-order moment of Ê1

nd Ê2, it is, in general, cumbersome to evaluate. Fortunately, further simplifi-
ations are possible when the source state is restricted to be a zero-mean jointly
aussian state. In particular, because the free-space diffraction integral is a lin-

ar transformation, the detection plane field operators Ê1 and Ê2 are in a zero-

ean jointly Gaussian state whenever ÊS and ÊR are in a zero-mean jointly
aussian state. Then, using the moment-factoring theorem for Gaussian states

which is a standard recipe for expressing arbitrary moments of Gaussian-state
eld operators in terms of their second-order moments) [44,59], we can reduce

he required fourth-order field moment to the following sum of second-moment
roducts:

�Ê1
†��1,u1�Ê2

†��,u2�Ê1��1,u1�Ê2��,u2��

= �Ê1
†��1,u1�Ê1��1,u1���Ê2

†��,u2�Ê2��,u2��

+ ��Ê1
†��1,u1�Ê2��,u2���2 + ��Ê1��1,u1�Ê2��,u2���2. �12�

ollowing the prior literature [51,55], we refer to second-order field moments of

he form �Êm
† ��1 , t1�Ê���2 , t2�� as phase-insensitive correlation functions (here

,�=1,2, but in general they can refer to any field index), because only the rela-
ive phase between the two fields affects this moment. On the other hand, we call

econd-order field moments of the form �Êm��1 , t1�Ê���2 , t2�� phase-sensitive
orrelation functions, because they depend on the fields’ absolute phases. For
oth the phase-insensitive and phase-sensitive correlations the m=� cases are
utocorrelation functions, whereas the m�� cases are cross-correlation func-

ions.
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o simplify our analysis, while preserving the essential physics of ghost imag-
ng, let us assume that the baseband signal and reference fields are cross-
pectrally pure, complex stationary, and that their phase-sensitive autocorrela-
ion functions are zero, i.e.,

�Êm
† ��1,t1�Ê���2,t2�� = Km,�

�n� ��1,�2�Rm,�
�n� �t2 − t1� , �13�

�ÊS��1,t1�ÊR��2,t2�� = KS,R
�p� ��1,�2�RS,R

�p� �t2 − t1� , �14�

�Êm��1,t1�Êm��2,t2�� = 0, �15�

or m ,�=S ,R. Here the superscripts �n� and �p� label normally ordered (phase-
nsensitive) and phase-sensitive terms, respectively. For convenience, and with
o loss of generality, let us also assume that

Rm,�
�n� �0� = RS,R

�p� �0� = 1. �16�

hen, paraxial, quasi-monochromatic diffraction in free space over the
-meter-long propagation paths transform the zero-mean, jointly Gaussian state
f the source, with correlation functions given in Eqs. (13)–(15), into a zero-
ean, jointly Gaussian state at the detection planes whose correlation functions

re cross-spectrally pure and given by

�Êm
† ��1,t1�Ê���2,t2�� = Km,�

�n� ��1,�2�Rm,�
�n� �t2 − t1� , �17�

�Ê1��1,t1�Ê2��2,t2�� = K1,2
�p���1,�2�R1,2

�p��t2 − t1� , �18�

�Êm��1,t1�Êm��2,t2�� = 0, �19�

or m ,�=1,2. In these expressions,

Km,�
�n� ��1,�2� =� d�1�� d�2�Km�,��

�n� ��1�,�2��hL
*��1 − �1��hL��2 − �2�� , �20�

K1,2
�p���1,�2� =� d�1�� d�2�KS,R

�p� ��1�,�2��hL��1 − �1��hL��2 − �2�� , �21�

or �m ,m��= �1,S� or �m ,m��= �2,R�, and likewise for �� ,���. In addition, be-
ause the quasi-monochromatic quantum Huygens–Fresnel principle, Eq. (6),
nly involves delay in time, the temporal correlation behavior is unaffected by
ropagation. It follows that the fundamental difference between the propagation
f phase-insensitive and phase-sensitive correlation functions is the lack of con-
ugation in the propagation kernel of the latter. Nonetheless, this difference is re-
ponsible for significantly different propagation characteristics, which we will
escribe in the next section.

ubstituting Eq. (12) into Eq. (11), along with Eqs. (17) and (18), simplifies the

hotocurrent cross-correlation expression to
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�Ĉ��1�� = C0��1� + �
A2

d��Cn�K1,2
�n���1,���2 + Cp�K1,2

�p���1,���2��T����2,

�22�

here

C0��1� = q2�2A1�� dthB�t��2

K1,1
�n���1,�1��

A2

d�K2,2
�n���,���T����2 �23�

s a nonnegative, non-image-bearing background [60] and

Cn = q2�2A1��R1,2
�n��t��2�hB�t��hB�− t��t=0, �24�

Cp = q2�2A1��R1,2
�p��t��2�hB�t��hB�− t��t=0 �25�

re constants that depend on the temporal cross correlations between Ê1 and Ê2,
he parameters of the photodetectors, and the electron charge q [61].

e therefore conclude that the ghost image, defined as the image-bearing term

n �Ĉ��1��, is equal to the target’s intensity transmission profile, �T����2, filtered
hrough a linear, space-varying point-spread function. For a ghost image ob-
ained with zero-mean Gaussian-state light, this point-spread function is equal to
he weighted sum of the squared magnitudes of the phase-insensitive and phase-
ensitive cross-correlation functions at the planes of detection in the signal and
eference arms of the imager.

. Phase-Insensitive versus Phase-Sensitive
oherence

quation (22) shows that, in general, both the phase-insensitive and phase-
ensitive cross-correlation functions of the detection-plane field operators con-
ribute to the ghost image’s point-spread function. As we shall see in the next
ection, the phase-sensitive cross correlation vanishes in thermal-state ghost im-
ging, so that its point-spread function depends only on the phase-insensitive
ross correlation. Conversely, in biphoton-state ghost imaging and in classical
hase-sensitive-light ghost imaging the phase-insensitive cross correlation is
ero, and the point-spread function depends only on the phase-sensitive cross
orrelation. Therefore it is critical that we understand the physics implied by
hese two types of coherence. Developing that understanding is the goal in the
resent section.

lthough the difference between the phase-insensitive and phase-sensitive cor-
elation functions is only the conjugation of one of the field operators in the
ormer, the physical consequences are profound. In order to develop a crisp ana-
ytic understanding of the distinctions, we assume that the cross-spectrally pure
orrelation functions we have introduced in (13)–(15) have a Gaussian form;
amely, they are Gaussian–Schell model correlation functions [44,52,62]. Be-
ause the propagation paths in the two arms of the ghost imager are identical, the
istinction between cross-correlation propagation and autocorrelation propaga-
ion is inconsequential. So, to simplify the physical descriptions in this section,

nd with no loss in generality, we shall focus on autocorrelation functions.
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irst, suppose that the phase-insensitive correlation function is given by

�Ê†��1,t1�Ê��2,t2�� =
2P

�a0
2
e−���1�2+��2�2�/a0

2−��2 − �1�2/2	0
2
e−�t2 − t1�2/2T0

2
, �26�

here P denotes the photon flux; a0 is the beam radius (defined as the radius at
hich the photon irradiance profile is attenuated by e−2 relative to the peak beam

rradiance); 	0 is the coherence radius, which is assumed to satisfy the low-
oherence condition 	0�a0; and T0 is the coherence time. The physics immedi-
tely apparent from this expression is that the phase-insensitive fluctuations ob-
erved at the space–time coordinates ��1 , t1� and ��2 , t2� are correlated when �1

nd �2 are separated by a distance smaller than the coherence length 	0, while
oth are within the beam radius a0, and when t1 and t2 are separated by less than
he coherence time T0. Additional insight can be obtained in the frequency do-
ain by writing the baseband field operator in terms of its monochromatic

lane-wave components, i.e., as

Ê��,t� = �
R2

dk

2�
�

−



 d�

�2�
Â�k,��eik·�−i�t, �27�

here k is the transverse spatial-frequency vector and � is the temporal fre-

uency [62]. In this expression Â�k ,�� is a frequency-domain operator satisfy-
ng the canonical commutation relations

�Â�k1,�1�,Â�k2,�2�� = 0, �28�

�Â�k1,�1�,Â†�k2,�2�� = ��k1 − k2����1 − �2� . �29�

ecause of the quasi-monochromatic paraxial approximation we made earlier,
ˆ �k ,�� is excited (i.e., not in a vacuum state) only for �k���0 /c and �����0.

pplying the inverse transform associated with Eq. (27) to the phase-insensitive
orrelation function in Eq. (26), we obtain

�Â†�k1,�1�Â�k2,�2�� =
PT0	0

2

�2�
e−a0

2�kd�2/8−	0
2�ks�

2/2e−T0
2
�2

2/2���2 − �1� , �30�

here ks	�k1+k2� /2 and kd	k2−k1, and we have used the low-coherence
ondition to write 1 /a0

2+1/	0
2�1/	0

2. As shown in Fig. 2(a), this correlation
unction implies that the angular extent of the source radiation (found by setting

d=0) is 2�0 /�	0 and that the angular extent of the source coherence (found by
etting ks=0) is 2�0 /�a0. Furthermore, the source bandwidth is given by 2/T0

nd distinct-frequency plane-wave components of the source are uncorrelated.
n words, phase-insensitive coherence is both monochromatic and quasi-
onoplanatic. The former feature is evident from the delta-function temporal-

requency term in Eq (30). To better understand the latter, consider the plane-
ave components at a given detuning, �. They have significant excitation only
ithin the source’s radiation cone, which has full cone angle 2�0 /�	0. More im-
ortant, these plane-wave components are only correlated with neighboring
requency-� plane-wave components that lie within the source’s coherence

one, whose cone angle, 2�0 /�a0, is much smaller than that of the radiation
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one. This spatial-coherence behavior of the phase-insensitive correlation is il-
ustrated in Fig. 2(b).

he phase-insensitive coherence behavior that we have just reviewed is well
nown [44]. We have provided its detailed description for comparison with the
ehavior of phase-sensitive coherence that, although it has received much less
ttention [63], plays a key role in quantum ghost imaging. To parallel our devel-
pment for the phase-insensitive case, we now suppose that the phase-sensitive
orrelation function is given by the same Gaussian–Schell model, i.e.,

Figure 2

(a)

(b)

oherence behavior and angular spectrum of the source-plane �z=0� baseband

eld operator Ê�� , t� with phase-insensitive correlation function given by Eq.
26). (a) The average z=L plane irradiance is appreciable only within a region of
iameter 2�0L /�	0 (red) around the optical axis. The phase-insensitive fluctua-
ions seen at two transverse points that are symmetrically displaced from the op-
ical axis are correlated only when their separation is less than 2�0L /�a0 (blue).
b) Three plane-wave components are shown here as three arrows with different
olors (and line styles). The plane waves (of the same frequency) with which
hey have phase-insensitive correlation lie within the shaded cones of the same
olor (and same line-style borders). Because phase-insensitive coherence is
uasi-monoplanatic, the coherence cone for each plane wave is centered on its
wn propagation direction.
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�Ê��1,t1�Ê��2,t2�� =
2Ps

�a0
2
e−���1�2+��2�2�/a0

2−��2 − �1�2/2	0
2
e−�t2 − t1�2/2T0

2
, �31�

here

Ps 	 �
R2

d��Ê2��,t�� �32�

s the mean-squared phase-sensitive flux, and a0, 	0�a0, and T0 are now, re-
pectively, the radius of mean-squared phase-sensitive excitation, the coherence

ength, and the coherence time of that excitation. Consequently, Ê��1 , t1� and
ˆ ��2 , t2� have appreciable phase-sensitive correlation when �1 and �2 are both

ithin the phase-sensitive excitation radius a0, have spatial separation less than
he coherence length 	0, and temporal separation less than the coherence time

0. Except for this source-plane description involving phase-sensitive correla-
ion, rather than phase-insensitive correlation, it is unchanged from what we saw
n conjunction with Eq. (26). The angular spectrum associated with the phase-
ensitive correlation, however, reveals a rather different and quite interesting
icture, as we will now show.

pplying the inverse transform associated with Eq. (27) to Eq. (31), we obtain

�Â�k1,�1�Â�k2,�2�� =
PsT0	0

2

�2�
e−a0

2�ks�
2/2e−	0

2�kd�2/8e−T0
2
�2

2/2���2 + �1� , �33�

here ks	�k1+k2� /2 and kd	k2−k1 as before, and we have again used the
ow-coherence 1/a0

2+1/	0
2�1/	0

2 approximation. Thus, as illustrated in Fig.
(a), the angular extent of phase-sensitive excitation (found by setting kd=0) is
�0 /�a0, and the angular extent of the phase-sensitive correlation (found by set-
ing ks=0), is given by 2�0 /�	0. The source bandwidth is 2 /T0, and plane-wave
airs with antipodal detunings within this bandwidth have nonzero phase-
ensitive cross correlation, but all other frequency pairs are uncorrelated. It fol-
ows that phase-sensitive light is bichromatic and quasi-biplanatic. The former
eature is due to the delta-function temporal-frequency term in Eq. (33). To bet-
er appreciate the latter, consider the plane-wave components at ±�k ,��. Each
as appreciable phase-sensitive flux only when �	�0�k� /2� lies within the
ource phase-sensitive radiation cone, which has full cone angle 2�0 /�	0. More
mportant, the �k ,�� plane-wave component has phase-sensitive cross correla-
ion only with the frequency −� plane-wave components whose spatial frequen-
ies lie within its coherence cone, which is centered at −� in angle (−k in spatial
requency) and has cone angle 2�0 /�a0. This spatial coherence structure of
hase-sensitive correlation is illustrated in Fig. 3(b). Thus, although we have
tarted with identical correlation functions for the two coherence classes, we
ave found that the physics implied by the two classes of coherence is notably
ifferent. That difference will be further explored below, where we examine far-
eld propagation of our phase-insensitive and phase-sensitive Gaussian–Schell
odel correlation functions, and in the upcoming sections, where we will see

hat the difference in the physics results in some distinct ghost-image character-
stics. Before doing so, however, some additional comments are in order.

e have noted that there is very little that has been published on the coherence
heory for phase-sensitive light; see [44], where it is not even mentioned. Yet

ichromatic, biplanatic light-wave behavior figures prominently in a context of
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mportance to ghost imaging, namely, the signal and idler beams obtained from
ontinuous-wave (cw), frequency-degenerate SPDC. SPDC with a
z-propagating, plane-wave, cw pump can be regarded as a photon-fission pro-
ess in which a single pump photon at frequency �P can split into a signal–idler
air whose frequencies, �S and �I, obey �S+�I=�P, and whose wave vectors,

S and kI, satisfy the phase-matching condition kS+kI=kPiz, where kP is the
ump wave number and iz is the z-directed unit vector. As a result, the signal and
dler photons in such a pair have frequencies that are bichromatic about �P /2,
nd their transverse wave vectors are antipodal, making these photons bi-
lanatic. Thus, the standard perturbative derivation of the state produced by
PDC leads to a biphoton wave function, for a signal–idler pair, that propagates
xactly as does the phase-sensitive cross correlation; see [6] and Eq. (21).

Figure 3

(a)

(b)

oherence behavior and angular spectrum of the source-plane �z=0� baseband

eld operator Ê�� , t� with the phase-sensitive correlation function given in Eq.
31). (a) The mean-square phase-sensitive fluctuations on the z=L plane are ap-
reciable within the diameter 2�0L /�a0 (red). The phase-sensitive fluctuations
een at two transverse points displaced in the opposite direction by an equal
mount are correlated as long as the distance between the two points is less than
�0L /�	0 (blue). (b) Three plane-wave components are shown here as three ar-
ows with different colors (and line styles). The plane waves with which they
ave phase-sensitive correlation are shown as shaded cones having the same
olor (and same line-style borders). Because phase-sensitive coherence is quasi-
iplanatic, the coherence cone for each plane wave component is centered
round its mirror image about the optical axis.
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erein, we assert, lies the root of much confusion about what is classical and
hat is quantum in ghost imaging. Those characteristics of ghost-image forma-

ion that depend on how phase-sensitive cross correlation behaves can be seen
ith classical-state light. It is only those features of ghost imaging that require

tronger-than-classical phase-sensitive cross correlation that are intrinsically
uantum effects.

e conclude our treatment of coherence theory by describing the far-field,
uasi-monochromatic, paraxial propagation of the phase-insensitive and phase-

ensitive correlation functions. For this discussion let ÊL�� , t� denote the field

perator resulting from propagation of Ê�� , t� over an L-meter-long free-space
ath. For phase-insensitive coherence propagation, it is well known that a single
resnel number, D0=�	0a0 /�0L, distinguishes between the D0�1 near-field
egime—in which diffraction effects are negligible—and the D0�1 far-field
egime—in which diffraction spread is dominant [44,52]. Note that this Fresnel
umber differs from that for the diffraction of a coherent laser beam with inten-
ity radius a0, which is Dcoh=�a0

2 /�0L. This difference reflects the coupling be-
ween coherence radius and intensity radius that occurs in free-space diffraction of
artially coherent light. The far-field, phase-insensitive correlation function is
eadily obtained from the source’s phase-insensitive angular spectrum, given earlier,
y means of the Fraunhofer diffraction integral with the simple substitution of
�� /�0L for k. We find that the far-field phase-insensitive correlation function,
temming from the Gaussian–Schell near-field correlation function of Eq. (26), is

�ÊL
†��1,t1�ÊL��2,t2��

=
2�P	0

2

�0
2L2

e−i����1�2−��2�2�/�0Le−2�2	0
2��s�

2/�0
2L2

e−�2a0
2��d�2/2�0

2L2
e−�t2 − t1�2/2T0

2
,

�34�

here �s= ��1+�2� /2 and �d=�2−�1. This shows that the intensity radius is aL

a0 /D0=�0L /�	0 and the coherence radius is given by 	L=	0 /D0=�0L /�a0;
.e., the far-field intensity radius is inversely proportional to its source-plane co-
erence length, and the far-field coherence length is inversely proportional to the
ource-plane intensity radius. This behavior is well known from the Van Cittert–
ernike theorem for far-field phase-insensitive coherence propagation [52].

he phase-sensitive correlation function from Eq. (31) propagates in a manner
hat is distinctly different from its phase-insensitive counterpart. In this case we
nd that coherence-radius diffraction and mean-square-radius diffraction are de-
oupled [63]. Two Fresnel numbers are then necessary to distinguish the near
eld from the far field: the Fresnel number for diffraction of the coherence ra-
ius, DN=�	0

2 /�0L, and the Fresnel number for diffraction of the mean-square
adius, DF=�a0

2 /�0L. The near-field regime for phase-sensitive correlation
ropagation occurs when both Fresnel numbers are much greater than one, and
he far-field regime is when both are much less than one. Because we have im-
osed the low-coherence condition, 	0�a0, we can say that the near-field re-
ime for phase-sensitive coherence propagation is DN�1, and its far-field re-
ime is DF�1. Each of these conditions is more stringent than the
orresponding condition for phase-insensitive light. It is easy to compute the far-
eld form of the Gaussian–Schell model phase-sensitive correlation function
rom its source’s angular spectrum and the Fraunhofer diffraction integral, with

he following result:
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�ÊL��1,t1�ÊL��2,t2��

= −
2�Ps	0

2

�0
2L2

ei����1�2+��2�2�/�0Le−2�2aT
2��s�

2/�0
2L2

e−�2	0
2��d�2/2�0

2L2
e−�t2 − t1�2/2T0

2
.

�35�

ere we have that 	0 /D0=�0L /�a0 is the far-field mean-square radius and

0/D0=�0L /�	0 is the far-field coherence radius for the phase-sensitive corre-
ation. Unlike the far-field phase-insensitive case, whose correlation peaks for
wo points with equal transverse-plane coordinates, the far-field phase-sensitive
orrelation is highest for two points that are symmetrically disposed about the
rigin on the transverse plane [6,63], as expected from the quasi-biplanatic na-
ure of the phase-sensitive correlation.

igure 4 highlights the difference between propagation of the phase-insensitive
nd phase-sensitive correlation functions. In this figure we have plotted the
−2-attenuation isocontours for the magnitudes of the equal-time source-plane
nd detection-plane correlation functions in terms of the sum and difference co-
rdinates �s	��2+�1� /2 and �d	�2−�1. All transverse-coordinate pairs that
orrespond to the interior region of a contour are both coherent and intense. It is
traightforward to verify that all magnitude isocontours of our Gaussian–Schell
odel correlations are ellipses. At the source plane, because of our low-

oherence assumption, the e−2-attenuation isocontours—for both the phase-
nsensitive and the phase-sensitive correlation functions—have their minor axes
long the difference coordinate. In the far field, we find that diffraction leads to
dentical increases along the major and minor axes of the phase-insensitive cor-
elation’s e−2-attenuation isocontour. For the corresponding far-field phase-

Figure 4

|ρd|/2

|ρs|λ0L
πρ0

λ0L
πρ0

λ0L
πa0

λ0L
πa0

a0

ρ0

Near field
Far field, phase-sensitive
Far field, phase-insensitive

socontours corresponding to the e−2-attenuation levels for the phase-sensitive
nd phase-insensitive correlation functions in the near-field and the far-field
egimes.
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ensitive correlation’s isocontour we get inverted behavior, with its minor axis
ow aligned with the sum coordinate and its major axis along the difference co-
rdinate. Thus, the far-field phase-insensitive correlation function is dominated
y a narrow function in the difference coordinate ��d�, whereas the far-field
hase-sensitive correlation function is a narrow function in the sum coordinate

�s�.

. Far-Field Ghost Imaging with Quantum and
lassical Light

e will now utilize the framework we have developed thus far to derive the far-
eld ghost images obtained with three different Gaussian-state sources: phase-

nsensitive light (e.g., pseudothermal or true thermal-state light), classically cor-
elated phase-sensitive light (e.g., two laser beams with phase-conjugate
odulations imposed on them), and maximally entangled phase-sensitive light

e.g., the output of ideal SPDC). In all of these cases, we shall assume that the
hase-insensitive autocorrelation functions specified in Eq. (13) are the
aussian–Schell model

Km,m
�n� ��1,�2�Rm,m

�n� �t2 − t1� =
2P

�a0
2
e−���1�2+��2�2�/a0

2−��2 − �1�2/2	0
2
e−�t2 − t1�2/2T0

2
,

�36�

or m=S ,R. Each source will therefore be distinguished by its (phase-insensitive
nd phase-sensitive) cross-correlation functions, which will be specified in the
ubsections that follow.

e also assume, for analytic convenience, that the baseband impulse response of
he photodetectors, hB�t�, is Gaussian with e−2-attenuation bandwidth �B, i.e.,

HB��� 	 F�hB�t�� = e−2�2/�B
2
, �37�

here F� · � denotes the Fourier transform.

.1. Thermal-State Light

ensless ghost imaging with thermal-state light usually derives its signal and
eference sources from 50:50 beam splitting of a single zero-mean Gaussian-
tate beam possessing a phase-insensitive autocorrelation function but no phase-
ensitive autocorrelation function. Taking the post-splitter signal and reference
elds to have the Gaussian–Schell model autocorrelations from Eq. (36), it fol-

ows that these fields have the maximum phase-insensitive cross correlation,
iven by

KS,R
�n� ��1,�2�RS,R

�n� �t2 − t1� =
2P

�a0
2
e−���1�2+��2�2�/a0

2−��2 − �1�2/2	0
2
e−�t2 − t1�2/2T0

2
, �38�

nd a vanishing phase-sensitive cross correlation, viz., KS,R
�p� ��1 ,�2�RS,R

�p� �t2− t1�
0. Because the target is in the far field of the source, i.e., D0�1, we use the

ropagated source correlations from Section 4, i.e.,

dvances in Optics and Photonics 2, 405–450 (2010) doi:10.1364/AOP.2.000405 424



w
(

E
g
e
[
s
c
fi

w
t

f
e

W
c

T
t
t
f

w
b

w

A

�K1,2
�n���1,�2�R1,2

�n��t2 − t1�� =
2P

�aL
2
e−���1�2+��2�2�/aL

2−��2 − �1�2/2	L
2
e−�t2 − t1�2/2T0

2
,

�39�

here aL=�0L /�	0 and 	L=�0L /�a0, and the ghost image signature, from Eq.
22), becomes

�Ĉ��1�� = C0��1� + Cn� 2P

�aL
2�2

e−2��1�2/aL
2�

A2

d�e−��1 − ��2/	L
2
e−2���2/aL

2
�T����2.

�40�

quation (40) reveals three significant features of the far-field thermal-state
host image. First, the ghost image is space-limited by the reference beam’s av-
rage intensity profile, so that the object must be placed in the field of view aL

64]. Second, the useful transverse scanning range of the pinhole detector is re-
tricted to the field of view aL. Finally, and most important, the finite cross-
orrelation coherence length 	L limits the resolution of the image. When the
eld-of-view limitations can be neglected, the image signature simplifies to

�Ĉ��1�� = q2�2A1� 2P

�aL
2�2��

A2

d��T����2 + Ct
�n��

A2

d�e−��1 − ��2/	L
2
�T����2� ,

�41�

here Ct
�n�	1/�1+16/�B

2T0
2. So, the ghost image is proportional to the convolu-

ion of the object’s intensity transmission, �T����2, with the Gaussian point-spread

unction e−���2/	L
2
, which limits the spatial resolution, defined here as the radius to the

−2 level in the point-spread function, to �2	L.

e can use the ghost-image expression from Eq. (41) to calculate the resulting
ontrast via the following definition:

C�n� 	
max�1

��Ĉ��1��� − min�1
��Ĉ��1���

C0�0�
. �42�

he numerator in Eq. (42) quantifies the dynamic range of the image-bearing
erm, while its denominator is the featureless background that is present within
he observation region. With this definition we find that this contrast factors as
ollows:

C�n� = Cs
�n�Ct

�n�, �43�

here the temporal �t� factor is defined above, and the spatial �s� factor is given
y

Cs
�n� =

max�1
�Ic��1�� − min�1

�Ic��1��

�
A2

d��T����2
, �44�
ith
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Ic��1� 	 �
A2

d�e−��1 − ��2/	L
2
�T����2 �45�

enoting the point-spread-degraded image of �T����2. To obtain a closed form
ontrast expression, we will assume that T��� is a binary amplitude mask, as has
ften been the case in ghost-imaging experiments. It follows that

Cs
�n� � �	L

2/AT � 1, �46�

here

AT 	� d��T����2, �47�

nd the inequality in (46) holds because AT /�	L
2 is approximately the number of

esolution cells in the ghost image. Combined with the fact that Ct
�n��1, Eq. (46)

hows that classical-source ghost imaging always has low contrast. This is why
hermal-state ghost imaging has been performed with AC coupling of the pho-
ocurrents to the correlator [15]. Thermalized laser light is a narrowband source,
or which �BT0�1 so that Ct

�n��1. The use of AC coupling implies that the cor-
elator is estimating the cross covariance between the photocurrents produced
y detectors 1 and 2, rather than their cross correlation. This ensemble-average

ross covariance is given by �Ĉ��1��−C0��1�; so it might seem that covariance
stimation alleviates all concerns with the background term. Such is not the
ase, as we shall show in the following section. In particular, despite the absence
f the background term from the photocurrents’ cross covariance, its shot noise
nd excess noise still affect the image’s SNR.

.2. Classically Correlated Phase-Sensitive Light

et us now consider a source state that has the maximum phase-sensitive cross
orrelation permitted by classical physics, given the autocorrelation functions in
q. (36), but has no phase-insensitive cross correlation, i.e.,

KS,R
�p� ��1,�2�RS,R

�p� �t2 − t1� =
2P

�a0
2
e−���1�2+��2�2�/a0

2−��2 − �1�2/2	0
2
e−�t2 − t1�2/2T0

2
, �48�

nd KS,R
�n� ��1 ,�2�RS,R

�n� �t2− t1�=0, where we have assumed the phase-sensitive
ross correlation function is real valued. When the source-to-object separation is
n the far-field regime for phase-sensitive coherence propagation, i.e., when

F�1 as discussed in Section 4, the source-plane phase-sensitive cross corre-
ation in Eq. (48) gives rise to the following far-field cross-correlation function
63]:

�K1,2
�p���1,�2�R1,2

�p��t2 − t1�� =
2P

�aL
2
e−���1�2+��2�2�/aL

2−��2 + �1�2/2	L
2
e−�t2 − t1�2/2T0

2
,

�49�

ith aL and 	L as defined above [see below Eq. (39)]. Hence, the ghost image

btained with classical phase-sensitive light is
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�Ĉ��1�� = C0��1� + Cp� 2P

�aL
2�2

e−2��1�2/aL
2�

A2

d�e−��1 + ��2/	L
2
e−2���2/aL

2
�T����2.

�50�

nce again, we will assume that the region of interest for T��� is well within the
eld of view, i.e., �� � �aL, so that we can express the ghost image as

�Ĉ��1�� = q2�2A1� 2P

�aL
2�2��

A2

d��T����2 + Ct
�p��

A2

d�e−��1 + ��2/	L
2
�T����2� ,

�51�

here Ct
�p�=Ct

�n� from the previous subsection. Comparing Eq. (51) with Eq.
41), we see that the far-field ghost image formed with classical phase-sensitive
ight and that formed with phase-insensitive light are identical except that the
ormer is inverted; i.e., the ghost image with phase-sensitive light has field of
iew aL and spatial resolution �2	L, but the image-bearing term is proportional to

T�−���2 convolved with e−���2/	L
2
. Consequently, ghost imaging with classical phase-

ensitive light suffers from the same low contrast as ghost imaging with thermal
ight, which is given in Eq. (46) for a binary amplitude mask.This could be remedied
y use of AC coupling as explained in the previous subsection.

.3. Maximally Entangled Phase-Sensitive Light

e continue to consider signal and reference beams in a zero-mean jointly
aussian state with no phase-insensitive cross correlation, but now we take the
hase-sensitive cross correlation to be the maximum permitted by quantum
hysics. Because quantum ghost-imaging experiments have used the signal and
dler outputs from SPDC for its two source fields, we shall focus on that case
ere. The output field operators of SPDC can be expressed as [65,66]

Êm��,t� = A���Êm��,t� + L̂m��,t� �52�

or m=S ,R, where �A��� � �1 is an aperture function representing the finite

ransverse extent of the interaction medium and the L̂m�� , t� are auxiliary

acuum-state operators, so that the Êm�� , t� satisfy the free-space field commu-

ator relations [67]. The operator-valued Fourier transforms of �Êm�� , t� ,m

S ,R, denoted �Âm�k ,�� ,m=S ,R, are given by a two-field Bogoliubov trans-
ormation of vacuum-state input field operators, âm�k ,��, i.e.,

ÂS�k,�� = µ�k,��âS�k,�� + �k,��âR
†�− k,− �� , �53�

ÂR�− k,− �� = µ�k,��âR�− k,− �� + �k,��âS
†�k,�� . �54�

ere �k ,���R and µ�k ,��	1+ i�k ,�� are the canonical transformation
oefficients. In accordance with the Gaussian-Schell model treatment intro-
uced earlier, we set [68]

�k,�� = 2�2��1/4
PT0	0

2

e−	0
2�k�2/4−T0

2
�2/4, �55�
�

a0
2
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A��� = exp�− ���2/a0
2 , �56�

uch that the Êm�� , t�, for m=S ,R, are in a zero-mean jointly Gaussian state,
ith phase-insensitive autocorrelation functions given by Eq. (36), and the
aximum permissible phase-sensitive cross-correlation function,

ÊS��1,t1�ÊR��2,t2�� =
2P

�a0
2
e−���1�2+��2�2�/a0

2
��ie−��2 − �1�2/2	0

2
e−�t2 − t1�2/2T0

2

+ �2/��1/4� a0
2

PT0	0
2
e−��2 − �1�2/	0

2
e−�t2 − t1�2/T0

2� . �57�

ll other second-order moments, i.e., the phase-sensitive autocorrelation func-
ions and the phase-insensitive cross-correlation function, are zero. It is worth-
hile to point out that when the source brightness I	PT0	0

2 /a0
2�1, the first

erm in the square brackets dominates, and Eq. (57) approaches the classical
hase-sensitive cross correlation given in Eq. (48). However, when I�1, the
econd term is much larger than the first, resulting in a much stronger phase-
ensitive cross correlation than permitted in a classical state. If the brightness is
owered to the limit in which there is on average much less than one photon each
n the signal and the idler beams during a measurement interval, then the state of
hese SPDC outputs is well approximated by a dominant vacuum component
lus a weak pair of entangled photons, viz., the biphoton state [17,65].

ote that outside its low-brightness and high-brightness asymptotic regions, the
hase-sensitive cross-correlation function given in Eq. (57) is not cross-
pectrally pure as we assumed in Eq. (14). So we cannot immediately apply the
q. (22) ghost image result. However, the squared magnitude of Eq. (57) is the
um of two cross-spectrally pure terms, so it is straightforward to derive the
host image signature starting from Eqs. (11) and (12). Following this procedure
nd using the detection-plane phase-sensitive cross correlation, obtained by
ropagating each term in Eq. (57) according to Eq. (21), leads to the following
esult for the far-field ghost image:

Ĉ��1�� = C0��1� + Ct
�p�� 2P

�aL
2�2

e−2��1�2/aL
2�

A2

d�e−��1 + ��2/	L
2
e−2���2/aL

2
�T����2

+� 2

�

a0
2

PT0	0
2
Ct

�q�� P

�aL
2�2

e−��1�2/aL
2�

A2

d�e−��1 + ��2/	L
2
e−���2/aL

2
�T����2,

�58�

here C0��1� is given in Eq. (23), Ct
�p�=Ct

�n� is as given in the previous subsec-
ions [see below Eq. (41)], and Ct

�q�	1/�1+32/�B
2T0

2.Therefore, the ghost image
btained with SPDC is, in general, the superposition of two image-bearing terms.
onetheless, in the two asymptotic limits of the source brightness I, one image-
earing term is much stronger than the other. In particular, when I�1, the middle
erm in Eq. (58) dominates the last term, and the ghost image becomes approxi-
ately

�Ĉ��1�� � C0��1� + Ct
�p�� 2P

�aL
2�2

e−2��1�2/aL
2�

A2

d�e−��1 + ��2/	L
2
e−2���2/aL

2
�T����2.
�59�
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his image signature is identical to that obtained with classical phase-sensitive
ight. Hence in the limit of bright signal and idler outputs from SPDC, the ghost
mage approaches the classical limit.

n the low source-brightness limit, when I�1, we have that the last term in Eq.
58) dominates the middle image-bearing term, yielding the ghost image

�Ĉ��1�� � C0��1�

+� 2

�

a0
2

PT0	0
2
Ct

�q�� P

�aL
2�2

e−��1�2/aL
2�

A2

d�e−��1 + ��2/	L
2
e−���2/aL

2
�T����2.

�60�

he field of view of the source in this limit is given by �2aL; i.e., it is a factor of
2 larger than that obtained with the two classical sources considered before. If we
ssume that the target and the pinhole scanning area are both well within this field-
f-view, we can further simplify the image signature to

�Ĉ��1�� = q2�2A1� 2P

�aL
2�2

���
A2

d��T����2 +
1

�8�

a0
2

PT0	0
2
Ct

�q��
A2

d�e−��1 + ��2/	L
2
�T����2� ,

�61�

hich shows that the ghost image is a convolution of �T�−���2 with the point-

pread function e−���2/	L
2
. In words, the far-field resolution achieved with this non-

lassical source equals those realized with the classical sources considered ear-
ier, so, there is no quantum signature in the far-field image resolution.

he image contrast, however, has distinctly different behavior. Starting from Eq.
61), we find that the contrast factors into

C�q� 	 Ct
�q�Cs

�q�, �62�

here the temporal term Ct
�q� is defined above, and the spatial term is given by

Cs
�q� =

1

�8�

a0
2

PT0	0
2

max�1
�Iq��1�� − min�1

�Iq��1��

�
A2

d��T����2
, �63�

ith

Iq��1� 	 �
A2

d�e−��1 + ��2/	L
2
�T����2 �64�

eing the point-spread degraded image of �T�−���2. Using the previous assump-

ion of a binary amplitude mask, we obtain
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Cs
�q� �

1

�8�
�

�aL
2

PT0AT

� 1/PT0 �65�

ecause of our �aL
2 /AT�1 field-of-view assumption. Thus, in the broadband

�BT0�1�, low-brightness, low-flux limit, wherein the SPDC output becomes a
ominant vacuum state plus a weak biphoton component, the image contrast be-
omes

C�q� � �B/P � 1, �66�

here the last inequality follows from the low-flux condition. This is why
iphoton-state ghost-imaging experiments have yielded background-free ghost
mages [1,9,10], despite SPDC’s being a broadband process.

. Signal-to-Noise Ratio

he low cross-correlation contrast of classical-state ghost images—which origi-
ates from the appreciable featureless background in which the desired image is
mbedded—is easily remedied by forming cross-covariance images, rather than
ross-correlation images [9,10,17]. This can be accomplished by AC coupling
he photocurrents into a correlator, or by background subtraction. Nevertheless,
hese techniques do not eliminate the shot noise and excess noise [69] associated
ith the featureless background, which affect the integration time needed to ob-

ain an accurate cross-covariance estimate. Therefore it is important to quantify
he performance of classical and quantum ghost imagers via their SNRs. Fur-
hermore, pursuing closed-form analytic expressions for their SNRs is beneficial
n identifying the most critical source and detector parameters that affect image
uality.

n this section we will analyze the SNRs obtained with the three ghost-imaging
ources that we have considered in the previous section. Unlike in the previous
ection, we will assume—for analytic simplicity—that AC coupling has been
mplemented to eliminate the background term C0��1� seen in Eqs. (40), (50),
nd (58). We will also assume that the composite baseband frequency response
f the photodetectors and their AC-coupling is given by the difference of two
aussian functions [70],

HB��� = F�hB�t�� = e−2�2/�B
2

− e−2�2/�N
2
, �67�

here �B is the baseband bandwidth of the detector as before, �N��B is the
topband bandwidth of the AC-coupling notch around �=0, and F�hB�t�� de-
otes the Fourier transform of the composite filter’s impulse response, hB�t�. In
rder to minimize suppression of the baseband photocurrent fluctuations—
hose cross correlation yields the ghost image—the notch bandwidth will be

aken to be much smaller than the bandwidth of the impinging fields; i.e.,

NT0�1 will be assumed in all that follows.
n order to evaluate the ghost image SNR at �1, where
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SNR 	
�Ĉ��1��2

��Ĉ2��1��
, �68�

nd �Ĉ���	 Ĉ���− �Ĉ����, the variance term appearing in the denominator
ust be evaluated. This term can be expressed as

��Ĉ2��1�� =
1

TI
2�

−TI/2

TI/2

dt�
−TI/2

TI/2

du�ı̂1�t�ı̂2�t�ı̂1�u�ı̂2�u�� − �Ĉ��1��2, �69�

hich reveals the primary challenge in evaluating the measurement variance:
he fourth-moment of the photocurrents in the integrand is an eighth-order mo-
ent of the field operators. Fortunately, the moment-factoring theorem for
aussian-state optical fields—which we used earlier in Section 3 to find

Ĉ��1��—allows all field moments to be expressed in terms of second-order mo-
ents. This procedure is straightforward but tedious, and we therefore confine

ur discussion to a description of the procedure, rather than a lengthy derivation.
irst, we express the integrand on the right-hand side of Eq. (69) in terms of the
eld-operator moments, as we have done in Eq. (11) for the mean. We then use

he commutator relations, Eqs. (4) and (5), to put the integrand into normal or-
er. This procedure yields the sum of four normally ordered field moments: one
ighth-order moment, two sixth-order moments, and one fourth-order moment.
ext, the Gaussian-state moment-factoring theorem is applied to each term, re-
lacing higher-order moments with expressions that depend only on the second-
rder moments of the fields. Finally, by employing the coherence-separability of
he correlation functions [71], the spatial and temporal integrals in each term are
valuated separately.

ith all of the auto- and cross-correlation functions already specified in Section
, evaluating the spatial and temporal integrals in the moment-factored variance
xpression is a straightforward exercise. For the spatial integrals, we assume that

L exceeds the transverse extent of the transmission mask by an amount suffi-

ient to permit the approximation e−���2/aL
2
�T��� � ��T����. For convenience, we

efine

AT� 	� d��T����4, �70�

hich we will regard as the effective area of the transmission mask. Our AT� in-
erpretation follows by analogy with the case of a binary ��T����� �0,1� mask,
or which AT� is the area over which �T����=1. With this interpretation we have
hat AT� /�	L

2 is approximately the number of spatial resolution cells in the ghost
mage [17]. We also note that the small-pinhole approximation introduced in the
revious section requires 	L

2 /A1�1 for its validity in far-field operation. Finally,
e identify the two assumptions employed in evaluating the variance expres-

ion’s temporal integrals: TI�T0 and �BTI�1. Neither of these averaging-time
onditions is at all surprising. The former states that we must average over many
ource coherence times to form a high-quality ghost image. The latter states that
e must average over many photodetector response times to achieve this same
urpose.

s a final note, we will evaluate the ghost-imaging SNR behavior that prevails
nder narrowband and broadband illumination conditions. A source state is said

o be narrowband if �BT0�1, so that the coherence time of the impinging field
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tate T0 greatly exceeds the �1/�B integration time of the photodetectors. Con-
ersely, a broadband source state is one that satisfies �BT0�1, so that the
ource’s coherence time is much shorter than the photodetector’s integration
ime.

sing the procedure described above, the SNR can be derived in a closed—
lbeit complicated—form for each of the sources considered below. The full
orm of the SNR expressions are presented in previous work [24], but in this pa-
er we opt to skip them. Instead, we limit our presentation to the low- and high-
rightness asymptotic expressions, which are simpler to interpret and gain in-
ight from.

.1. Thermal-State Light

e first consider the ghost-image SNR in the narrowband limit ��BT0�1� as a
unction of source brightness I	PT0	0

2 /a0
2=PT0	L

2 /aL
2. The contributions to the

easurement variance (the SNR denominator) can be written as the sum of three
erms: the variance contribution coming from excess noise alone, that from shot
oise alone, and a term arising from beating between excess noise and shot
oise. As the source brightness grows without bound, the SNR increases until it
aturates at its maximum value,

SNR = �2�
TI

T0

	L
2

AT�
�T��1��4, �71�

or AT� /	L
2 �1, which is limited by the excess-noise contribution [72]. Roughly

peaking, this maximum SNR equals the number of source coherence times in
he averaging interval divided by the number of spatial resolution cells in the im-
ge and multiplied by the square of the object’s intensity transmission. Recall
rom Eq. (46) that �	L

2 /AT� is the image contrast for DC-coupled ghost-image
ormation in the far field with narrowband thermal-state light and a binary trans-
ission mask (for which AT=AT�). Hence, the SNR of AC-coupled, high-

rightness, thermal-state ghost imaging is proportional to the image contrast re-
lized by using the same setup with DC coupling.

n the low-brightness asymptote, i.e., when I�1, the shot-noise contribution
ominates the SNR noise denominator, yielding an expression quadratic in
hoton-flux, i.e.,

SNR =
16�2

��

TI

T0

�PA1

�BaL
2

�I�T��1��2. �72�

n Fig. 5(a) we have plotted the narrowband thermal-state ghost-imaging SNR,
long with its high-brightness and low-brightness asymptotes, for several nar-
owband ghost-imaging scenarios.

e now turn our attention to broadband sources, which satisfy �BT0�1, and
e assume that the ghost imager resolution satisfies AT� /	L

2 �1. Here, too, SNR

ncreases with increasing source brightness until it reaches its maximum value,
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SNR =
��

2�2
�BTI

	L
2

AT�
�T��1��4, �73�

here it is limited by excess noise alone. At very low source brightness, the SNR
f the broadband thermal-state ghost imager becomes limited by shot noise
lone and is given by

SNR =
4

��
�BTI

�PA1

�BaL
2

�I�T��1��2. �74�

igure 5(b) shows several plots of broadband thermal-state ghost-imaging SNR,
ogether with its high-brightness and low-brightness asymptotes. Aside from in-
ignificant numerical factors, the broadband SNR expressions differ from the

Figure 5
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(b)

hermal-state ghost-imaging SNR, normalized by TI /T0, plotted as a function of
ource brightness I	PT0	0

2 /a0
2=PT0	L

2 /aL
2, for a far-field configuration

�a0	0 /�0L�1� with �T��1��=1, AT� /	L
2 =104, 	L

2 /A1=10, and �=0.9. Various

BT0 values are shown in the (a) narrowband and (b) broadband limits. Dashed–
otted lines represent low-brightness asymptotes, and dashed lines correspond to
igh-brightness asymptotes.
arrowband SNR expressions only through replacement of 1 /T0 from the nar-
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owband expression with �B in the broadband expression. This replacement is to
e expected. In the narrowband case TI /T0 is the number of photocurrent coher-
nce times that are being averaged by the correlator. This is because the narrow-
and condition �BT0�1 ensures that the photon-flux fluctuations are not af-
ected by the photodetector’s baseband bandwidth limit. However, under the
roadband condition, �BT0�1, the photocurrent fluctuations have a much
onger ��1/�B� coherence time than that of the photon flux illuminating the de-
ectors, so it is �BTI that appears in the broadband SNR formulas.

.2. Classically Correlated Phase-Sensitive Light

or phase-sensitive coherence, the far-field regime corresponds to �a0
2 /�0L�1.

s stated in Section 4, the only difference between the classical far-field phase-
ensitive and phase-insensitive Gaussian-Schell model correlation functions is
he swapping of ��2+�1�2 and ��2−�1�2. It follows that the far-field SNR expres-
ions for classical phase-sensitive light are obtained from their phase-insensitive
ounterparts—Eqs. (71) and (72) for narrowband case and Eqs. (73) and (74) for
he broadband case—by using �T�−�1�� in lieu of �T��1��.

.3. Maximally Entangled Phase-Sensitive Light

o evaluate the entangled source’s ghost-image SNR in the far-field regime
�a0

2 /�0L�1� we utilize the same approximations that we have used for classi-
al phase-sensitive light, but now we use the cross-correlation function from Eq.
57) in lieu of Eq. (48) when integral expressions are explicitly evaluated. The
ull closed-form solution for the SNR, which is derived by following the proce-
ure described earlier in this section, is plotted for several scenarios in Fig. 6.
ach of these plots captures the full quantum-to-classical transition seen in
host imaging with maximally entangled phase-sensitive light (the output fields
rom SPDC) as the source brightness—mean photon-number per spatiotemporal
ode—increases.

e begin our survey of the SNR results with the narrowband case. When the
ource is bright, i.e., I�1, the SNR equals that obtained with narrowband,
right, classical, and maximally correlated phase-sensitive light; i.e., it equals

SNR = �2�
TI

T0

	L
2

AT�
�T�− �1��4. �75�

or dim-source �I�1� ghost imaging with �T�−�1���1, the SNR becomes lin-
ar in photon flux,

SNR =
8

�

TI

T0

�2PA1�T�− �1��2

�BaL
2

. �76�

n this regime the SNR is limited by the very low number of photon pairs de-
ected over a detector integration time. The SNR achieved with narrowband
aximally entangled phase-sensitive light is plotted in Fig. 6(a) for several �BT0

alues. The plots verify the linear low-brightness regime and the high-brightness
aturation towards the classical asymptote. However, as shown in the plotted
urves, the SNR can exceed the bright-source asymptote. When this occurs,

here is a finite source brightness that yields the maximum SNR, and increasing
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beyond this threshold will decrease the SNR with increasing photon flux.

f the low-brightness condition on the source �I�1� is augmented with the low-
ux condition

�PAT�

�BaL
2

� 1, �77�

hen the average number of photons per integration time impinging on either de-
ector becomes much less than unity. It follows that the photodetectors can be
eplaced with non-photon-resolving photodetectors without appreciable loss in
maging functionality, thereby rendering the Fig. 1 ghost-imaging configuration
quivalent to biphoton-state ghost imaging with coincidence-counting circuitry
instead of photocurrent correlation). Thus, narrowband biphoton-state ghost
maging is also governed by the linear photon-flux SNR formula from Eq. (76)
or �T�−�1���1. In the biphoton regime, we can interpret �2PA1�T�−�1��2 /�BaL

2

Figure 6
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onclassical phase-sensitive Gaussian-state ghost-imaging SNR, normalized by

I /T0, plotted versus source brightness I	PT0	0
2 /a0

2=PT0	L
2 /aL

2 for a far-field
onfiguration ��a0

2 /�0L�1� with �T�−�1��=1, AT� /	L
2 =104, 	L

2 /A1=10, and �
0.9. Various �BT0 values are shown in the (a) narrowband and (b) broadband lim-

ts. Dashed–dotted lines represent low-brightness asymptotes, and dashed lines cor-
espond to high-brightness asymptotes.
s the mean number of photon coincidences per integration time of the detector,
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hich is then multiplied by the number of coherence intervals within the inte-
ration window, TI /T0, to obtain the final SNR expression.

et us next shift our attention to the broadband ��BT0�1� limit. When I�1,
he SNR approaches the SNR of classical ghost imaging with a bright, phase-
ensitive, and maximally correlated broadband source, i.e.,

SNR =
��

2�2
�BTI

	L
2

AT�
�T�− �1��4. �78�

n the other hand, if the low-brightness condition, I�1, and the low-flux con-
ition, as given in Eq. (77), are both satisfied, and �T�−�1���1, then

SNR =
1

�
�BTI

�2PA1�T�− �1��2

�BaL
2

. �79�

his expression corresponds to the broadband biphoton-state SNR. It equals the
roduct of the mean number of coincidences per photodetector integration time
ultiplied by the number of independent observations within the integration
indow, �BTI. As in the narrowband case, the SNR in this regime suffers from

he paucity of photon pairs detected within the photodetector’s �1/�B integra-
ion time, which is compensated by averaging the photocurrent product over
any temporal coherence bins, i.e., employing TI�B�1. Figure 6(b) shows

lots of the SNR for several values of �BT0. It is seen that the linear photon-flux
ependence of the SNR extends well beyond the low-flux regime. Furthermore,
he SNR achieved in the low-brightness regime [i.e., Eq. (79)] can exceed the
right classical-source asymptote given in Eq. (78). Similar to what we found for
arrowband operation, the broadband SNR has a well-defined maximum
chieved at finite source brightness. Increasing the brightness beyond this opti-
al value reduces the SNR, which ultimately converges to the SNR attained
ith classical sources. All three of these SNR regimes are clearly identifiable in

he Fig. 6(b) SNR plots. For example, for �BT0=10−2, the SNR is linear in photon
ux until I�10−3, its maximum occurs at I�10−2, and then the SNR decreases
ith increasing I until at I�10 it converges to the bright-source asymptote.

n summary, we have found that classical-state ghost imager SNRs (thermal-
tate and classical phase-sensitive Gaussian state) saturate—with increasing
ource brightness—to maximum values that are inversely proportional to the
umber of resolution cells on the imaged object. Biphoton-state ghost imagers
ere shown to have SNRs that are typically proportional to their low photon
ux. However, our analysis revealed that as the source brightness increases be-
ond the biphoton regime, the SNR typically reaches a well-defined maximum,
fter which increasing flux reduces the SNR. This may seem counterintuitive,
ut it is consistent with the fact that the SNR must approach the bright classical-
tate SNR as the source brightness increases beyond unity. Because this
lassical-state limit is in general lower than the maximum of the SNR achieved
t lower brightness values, the SNR must have a decreasing trend as source
rightness increases without bound.

. Image Acquisition Time

ll of the SNR expressions in the previous section are proportional to the cross-
orrelation averaging time TI, so it is meaningful to compare the averaging times

equired in order to achieve a desired SNR value with different ghost-imaging

dvances in Optics and Photonics 2, 405–450 (2010) doi:10.1364/AOP.2.000405 436



s
q
c
t
i

I
a
s
i
t
e
m
s

N
t
t
c
fi
(
u
m
c
w

w
�
c
(
c
e
E
q
v
g
r
�
a
(
b
�
T

F
n
p
�

A

ources. Note that because the far-field ghost image obtained from a (classical or
uantum) source with phase-sensitive cross correlation is inverted, we shall
ompare the imaging time for a ghost image at the spatial coordinate �1 using a
hermal-state source with that for a ghost image at the spatial coordinate −�1 us-
ng a source with phase-sensitive coherence.

t should be no surprise that if all parameters are set equal, the SNR of ghost im-
ging with an SPDC source is always greater than the SNR of a classical-state
ource, because the cross correlation between the two source beams is stronger
n the former case. Furthermore, it follows from the results in the previous sec-
ion that the image acquisition time is significantly shorter with the maximally
ntangled Gaussian-state source when I�1, but the acquisition times of the
aximally entangled and maximally correlated (classical) ghost-imaging

ources are similar when I�1.

onetheless, because the primary advantage of classical-state ghost imaging is
he abundance of photon flux, it is more interesting to compare the SNRs when
he source fluxes (and possibly other parameters) are allowed to vary. Let us first
onsider the case in which all parameters except photon flux are equal in the con-
gurations of interest. Because the classical sources we have considered thus far
thermal light and classical phase-sensitive light) yield identical SNRs, we shall
se P�c� to denote their photon fluxes, reserving P�q� for the photon flux of the
aximally entangled (nonclassical) state. Likewise, the averaging time for the

lassical-state ghost imagers to achieve the desired SNR will be denoted TI
�c�,

hile that for the entangled-state source will be designated TI
�q�. Then, we obtain

TI
�q�

TI
�c� =

��3

x�8

�BaL
2

�2P�q�A1

	L
2

AT�
�T��1��2, �80�

here x=2 in the narrowband ��BT0�1� limit, and x=1 in the broadband
�BT0�1� limit. In obtaining this expression we have assumed that the
lassical-state sources are bright enough to achieve the saturation SNR in Eqs.
71) and (73), but the quantum source is limited to low brightness; so the non-
lassical signature of the source prevails. In general, the comparison may favor
ither source. However, in the biphoton-state (low-flux) limit with �T��1���1,
q. (80) implies that TI

�q��TI
�c�, i.e., the cross-correlation averaging time re-

uired for narrowband biphoton-state ghost imagers to achieve a desired SNR
alue is much longer than that for bright classical-state ghost imagers to do so,
iven that all other system parameters are equal. Nevertheless, in a very high-
esolution ghost-imaging configuration, high illumination flux
P�q�AT� /�BaL

2 �1� may be achievable with low-brightness �P�q�T0	0
2 /a0

2�1�
nd maximally entangled phase-sensitive Gaussian-state light. In this case Eq.
80) implies that the averaging time for the nonclassical-state ghost imager can
e shorter than that for the classical-state ghost imager [73]. For example,

T��1��=1, AT� /	L
2 =104, �BT0=10−2, P�q�T0	0

2 /a0
2=10−3, and 	L

2 /A1=10 will yield

I
�q��TI

�c� /100�2.

inally, we compare ghost imaging with a broadband biphoton state (low bright-
ess and low flux) to that with a bright narrowband classical state. Denoting the
arameters specific to the classical and quantum sources with the superscripts

c� and �q� respectively, we obtain
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TI
�q�

TI
�c� = �2�3

�B
�q�aL

2

�2P�q�AT�

	L
2

A1

�T��1��2

�B
�q�T0

�c� . �81�

ecause the last factor on the right is typically less than unity, for �T��1���1,
hereas the remaining factors are greater than unity, the cross-correlation aver-

ging time may favor either source state. As an example, consider �T��1��=1,

T� /	L
2 =104, P�q�T0

�q�	0
2 /a0

2=10−6, 	L
2 /A1=10. Then a biphoton-state source with

THz bandwidth and a 1 MHz thermal-state source will result in TI
�q��8

10−3TI
�c� /�2, which shows that the biphoton-state imager enjoys an enormous ad-

antage in averaging time as compared with the classical-state imager when the
uantum efficiency is not unduly low.

he conclusions to be drawn from our treatment of image-acquisition time are
he following. We showed that with equal bandwidth sources, and all system pa-
ameters being equal unless otherwise noted, bright classical-state ghost imagers
ypically reach the desired SNR value with a much shorter averaging time than
hat needed by a biphoton-state ghost imager. Therefore, despite the biphoton
tate’s yielding images with high contrast even in DC-coupled operation, its
hoton-starved nature makes the total time duration it requires to accumulate the
host image far in excess of what is necessary with a bright classical-state
ource. Nevertheless, we saw that there is a broadband, low-brightness, high-flux
egime of nonclassical phase-sensitive light that may get by with much shorter
ross-correlation averaging times than those needed by bright classical-state im-
gers. The notable drawback to reaping this quantum advantage, however, is the
ecessity for high quantum efficiency photon-number resolving detectors. Fi-
ally, we showed that there is no clear winner between ghost imaging with a
roadband biphoton state and a narrowband bright classical state.

. Computational Ghost Imaging

t this juncture, it is worthwhile to review the underlying physics of thermal-
tate ghost imaging in terms of the correlation of intensity fluctuations in the sig-
al and reference arms. It is well known that a partially coherent thermal-state
ptical beam (whether it is true thermal light or pseudothermal light) has a
peckled transverse intensity profile that fluctuates in time, with the speckles ap-
roximately the size of the spatial coherence diameter (at the transverse plane of
nterest) and the fluctuations occurring on a time scale approximately equal to
he coherence time, as exemplified in Fig. 7. Therefore, after 50:50 beam split-
ing and propagation through L meters of free space, identical speckle patterns
re generated on the signal- and reference-arm detection planes. The pinhole de-
ector in the signal arm is smaller than a coherence diameter; thus it observes the
uctuations in only one speckle cell. The reference-arm bucket photodetector,
n the other hand, measures a weighted-sum of the fluctuations from all of the
peckle cells, where the weights correspond to the photon-flux transmissivity of
he mask at the transverse spatial position of each speckle cell. Hence, when the
peckle fluctuations seen by the single-pixel detector are correlated with the
hotocurrent from the bucket detector, the strength of the correlation is propor-
ional to the weight of the corresponding speckle-cell contribution to the bucket
etector output. In other words, the correlation is proportional to the object’s
hoton-flux transmissivity at the transverse position illuminated by the speckle

ell whose fluctuations are being measured by the signal-arm pinhole detector.
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e can now better appreciate the role of the signal arm in ghost imaging: the
hotocurrent from the pinhole detector provides a measurement of the intensity
uctuations occurring in one speckle cell on the detection plane. This measure-
ent is critical in conventional thermal-state ghost imaging, because there is no
priori knowledge of the detector-plane speckle pattern that the thermal source
ill produce. It turns out, however, that imposing a deterministic spatiotemporal
odulation on a coherent laser is a viable alternative to having true randomness

n the source. In this case, because the intensity fluctuations are known a priori,
he signal arm can be replaced with numerical computation.

o expand on this point, consider the configuration shown in Fig. 8. Here, we
ransmit a cw laser beam through a SLM whose inputs are chosen to create the

Figure 7
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patiotemporal speckle of partially coherent light. (a) The transverse speckle
attern generated by illuminating a sheet of paper with a cw laser beam that has
een rendered spatially incoherent by transmission through a ground-glass dif-
user, and (b) the temporal fluctuations seen in a single speckle cell of a cw laser
eam that has been transmitted through a rotating ground-glass diffuser. T0 de-
otes the coherence time, and the dashed line (red) indicates the dark baseline.

Figure 8
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Ghost imaging with a cw laser and a SLM.
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esired coherence behavior. Let us assume an idealized SLM consisting of d
d pixels arranged in a �2M+1�� �2M+1� array with 100% fill factor within a
�D pupil, where D= �2M+1�d and M�1. We use this SLM to impose a

hase �nm�t� on the light transmitted through pixel �n ,m�.

uppose we have that �ei�nm�t� :−M�n ,m�M are independent identically dis-
ributed random processes obeying �ei�nm�t��=0 and �ei��nm�t2�−�jk�t1���
�jn�kme−�t2−t1�/T0. These statistics prevail if, for example, �ei�nm�t� is a set of

dentically distributed random telegraph waves [74]. We focus on the narrow-
and case in which T0 is long compared with the response time of the photode-
ectors, 1 /�B. After the beam splitter and the free-space propagation into the far

eld, the preceding source leads to zero-mean Ê1�� , t� and Ê2�� , t� with a phase-
nsensitive correlation function of the form given in Eq. (17), where Rm,�

�n� �t2

t1�=e−�t2−t1�/T0 and

Km,�
�n� ��1,�2� =

P

2
� d2

D�0L
�2

eik0���2�2−��1�2�/2L

� � �
u=x,y

sin��du1/�0L�

�0du1/�0L

sin��du2/�0L�

�du2/�0L
�

�� �
u=x,y

sin��D�u1 − u2�/�0L�

sin��d�u1 − u2�/�0L� � , �82�

here m ,�=1,2. Although it is not a Gaussian–Schell form, the preceding spa-
ial correlation function has an intensity width ��0L /d and a coherence length

�0L /D, which is similar to our Section 5 conclusions, if we identify d�	0 and
�a0. Furthermore, using a central limit theorem argument, we can approxi-

ate the joint state of Ê1�� , t� and Ê2�� , t� as Gaussian. Hence the Fig. 8 con-
guration will produce a ghost image

�Ĉ��1�� = q2�2A1�� dthB�t��2

K1,1
�n���1,�1��

A2

d�K2,2
�n���,���T����2

+ Cn�
A2

d��K1,2
�n���1,���2�T����2, �83�

here, once again, the first term is a featureless background that can be sup-
ressed by means of a DC block, and the second term is the point-spread-
unction degraded image, which has spatial resolution �0L /D within a spatial re-
ion of width �0L /d [75].

he possibility of using noise generators to drive the SLM leads to the more in-
eresting observation that deterministic near-orthogonal driving functions can be
mployed to achieve the same objective. The desired property at the SLM’s out-
ut is a narrowband, zero-mean field state whose spatial coherence—inferred
ow from a time average, rather than an ensemble average, because there is no
rue randomness—is limited to field points within a single pixel. Employing
inusoidal modulation, �nm�t�=� cos���0+��n,m�t�, with a different ��n,m for
ach pixel is one possibility. Let � · �TI

denote time averaging over the TI-second in-
erval employed in obtaining the ghost image. We have that �ei�n,m�t��TI

�2J0���
0 when ��0+��n,m�TI�2� and ���, where J0� · � is the zeroth-order Bessel

unction of the first kind. With the additional condition ���n,m�, ���j,k���0, and
i��n,m�t�−�jk�t��
TI���n,m−��j,k��1 when �n ,m�� �j ,k�, we have �e �TI

�0, unless
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=n and k=m. Finally, the narrowband requirement is met if the modulation periods
� / ��0+��n,m� are all much longer than the response time of hB�t�. Thus, this de-

erministically modulated source will also yield a ghost image of spatial resolution

0L /D within a spatial region of width �0L /d embedded in a background that can
e suppressed by means of a DC block.

t this point, the computational ghost-imaging configuration we introduce in
ig. 9 is easily understood. We use deterministic modulation of a cw laser beam

o create the reference-arm field that illuminates the target transparency, and, as
sual, we collect the light that is transmitted through the transparency with a
ucket (single-pixel) detector. Knowing the deterministic modulation applied to
he original cw laser beam allows us to use diffraction theory to compute the in-

ensity pattern, I1��1 , t�	�Ê1
†��1 , t�Ê1��1 , t��, that would have illuminated the

inhole detector in the usual lensless ghost-imaging configuration. Furthermore,
e can subtract the time average of this intensity, in our computation, and elimi-
ate the prevalent background term from the ghost image. To distinguish these

omputed values from actual light-field quantities, we will denote them Ĩ1��1 , t�
nd �Ĩ1��1 , t�, respectively. The time-and-ensemble averaged correlation func-
ion [76],

��C̃��1�� 	 �� d�1q�A1�Ĩ1��1,t − �1�hB��1� � d�2q�P2�t − �2�hB��2��
TI

,

�84�

ith P2�t�	�A2
d��Ê2

†�� , t�Ê2�� , t�� being the ensemble-average photon flux il-
uminating the bucket detector, will then be a background-free ghost image—
ith spatial resolution �0L /D over a spatial extent of width �0L /d—akin to what
ould be obtained from pseudothermal ghost imaging with d�	0, D�a0, and a
C block applied to the pinhole detector. It is worthwhile to emphasize that, be-

ause only one photodetector has been employed, it is impossible to interpret this
omputational ghost image as arising from nonlocal two-photon interference.

n summary, the Fig. 9 setup shows how ghost imaging can be performed with
nly a bucket (single-pixel) detector by precomputing the intensity fluctuation
attern that would have been seen by the scanning pinhole detector (or high-
patial-resolution camera). This computational ghost imager results in
ackground-free images whose resolution and field of view can be controlled by
hoice of SLM parameters. Finally, this computational ghost-imaging configu-
ation underscores the classical nature of ghost-image formation.

Figure 9

CW
Laser

Spatial light
modulator

correlator
( )C
�

� � �

Bucket detector
( )T �

Object,
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propagation
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� �
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Computational ghost-imaging setup.
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. Discussion

host imaging has captured the attention and interest of the quantum imaging
ommunity since its first demonstration with entangled photons over a decade
go. In Section 1 we summarized the theoretical and experimental milestones of
host imaging prior to delving into its detailed treatment. The core of this paper
as a development of the fundamental properties of the conventional dual-arm

ensless ghost-imaging configuration. In particular, we analyzed the ghost image
ignature obtained with three classes of Gaussian-state sources. Two used
lassical-state light, specifically a joint signal-reference field state that has either
he maximum phase-insensitive or the maximum phase-sensitive cross correla-
ion consistent with having a proper P representation. The third used nonclassi-
al light, in particular an entangled signal-reference field state, obtained from
PDC, with the maximum phase-sensitive cross correlation permitted by quan-

um mechanics. In Section 5 we examined ghost-imaging performance in the far
eld. There we showed that the nonclassical source yields a slightly larger field-
f-view, but the resolution from all three sources are equal. Image contrast, how-
ver, is dramatically better with an SPDC source in its usual low-brightness op-
rating regime. The SNR analysis we reported in Section 6 and the image-
cquisition-time analysis presented in Section 7 showed that neither bright
lassical-state sources nor dim quantum sources universally yield superior SNR,
r equivalently, shorter image-acquisition times. The particular source band-
idth, brightness, and resolution values determine which state gives better per-

ormance in these regards. We departed from the conventional dual-arm ghost-
maging setup in Section 8, where we showed that imposing a spatiotemporally
arying deterministic modulation on a cw laser beam facilitates a single-arm
host-imaging configuration (having only a single-pixel detector), in which the
host image is extracted from the photodetector current via signal processing.

s our analysis in Section 3 shows, the fundamental source property that enables
cquisition of a ghost image—whether the source is classical or quantum—is
he nonzero cross covariance between the photon-flux densities of the two de-
ected fields, i.e., the cross correlation of the photon-flux densities minus the
roduct of their mean values. The product of the mean values generates a fea-
ureless background, while the cross covariance produces the image-bearing
erms. For zero-mean Gaussian-state sources—including both thermal-state
ources and the SPDC-generated biphoton-state sources—the point-spread
unction of the image is expressible as a sum of terms involving only the second-
rder moments of the field operators. As a result, we find that the phase-sensitive
nd phase-insensitive field-operator cross correlations are the primary
aussian-state parameters that determine the ghost-image point-spread func-

ion. In [17] we showed that any pair of phase-sensitive and phase-insensitive
ross-correlation functions can be obtained, in principle, from two classical
aussian-state fields, so long as there are no restrictions on these fields’ autocor-

elation functions. In this respect, the image-bearing term alone does not contain
ny quantum signature per se. However, if we compare sources that have identi-
al autocorrelation functions (thus, identical ghost-image backgrounds in DC-
oupled operation), we find that nonclassical fields with low brightness and
aximum phase-sensitive cross correlation offer a higher contrast image (when
C-coupling is used), a higher SNR, and some field-of-view expansion in the

ar field. We found that classical-state ghost imager SNRs saturate—with in-

reasing source brightness—to a maximum value that is inversely proportional
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o the number of resolution cells in the imaged object. In this high-brightness
imit the classical ghost-imaging SNR is thus proportional to the contrast
chieved in DC-coupled operation. The contrast can be improved by removing
he featureless background via AC-coupled photodetectors or background sub-
raction, but SNR improvements, at high source brightness, require increasing
he cross-correlation averaging time.

lthough we consider the debate on the fundamentals of ghost imaging to be re-
olved, it is relevant to dispel some of the recent myths regarding the physics of
hermal-state ghost imaging. In some recent publications it has been implied that
host imaging with thermal-state light cannot be explained by classical electro-
agnetic theory in combination with semiclassical photodetection theory, but

hat nonlocal interference of photon pairs must be used to understand such ex-
eriments [15,31,77]. Although we have no dispute that all optical phenomena
re fundamentally quantum mechanical, we strongly disagree that invoking non-
ocal two-photon interference is compulsory to explain thermal-state ghost im-
ging. We have presented several explanations in this paper to support this view.
irst, we have reiterated the fact that a thermal state is a mixed state with a proper
representation, so classical stochastic-field electromagnetism combined with

he semiclassical (shot noise) theory of photodetection yields thermal-state
host-imaging predictions that are quantitatively identical to those obtained with
uantum field operators and quantum photodetection theory. Second, and per-
aps more critically, the proper P representation also implies that there is no
onlocal interaction in thermal-light ghost imaging in the sense of violating the
lauser–Horne–Shimony–Holt inequality [78]. Computational ghost imaging,

tudied in Section 8, precisely demonstrates this point by utilizing a single de-
ector, which eliminates all possibility of nonlocal interactions. [79]. Two dis-
inct fields propagating paraxially in two different directions can exhibit spa-
iotemporal correlations on transverse planes that are equidistant from the
ource. This concept is both well known in and central to classical statistical op-
ics [44,52]. The physical separation between the two measurement planes does
ot automatically imply a signature of nonlocality in quantum mechanics.

ne significant component of our analysis is the source referred to as classical
hase-sensitive light, and merits a discussion in its own right. Specifically, it is a
wo-beam Gaussian state with the maximum phase-sensitive cross correlation
ermissible in classical statistical optics. This classical state is critical to prop-
rly delineating the classical–quantum boundary in most quantum imagers (e.g.,
ee [17,80,81]) because it represents the Gaussian state that is most similar to
he nonclassical Gaussian state of the signal and idler outputs from SPDC
51,55], which is currently the primary source for obtaining biphotons (en-
angled photon pairs). As such, there is an intimate physical connection between
he phase-sensitive and phase-insensitive coherence duality [63], and the duality
etween the partial entanglement of biphotons and the partial coherence of clas-
ical phase-insensitive fields [6]. In particular, the biphoton state is the low-
rightness, low-flux limit of the zero-mean jointly Gaussian state with maxi-
um phase-sensitive cross correlation and zero phase-insensitive cross

orrelation. In this limit, the biphoton wave function is the phase-sensitive cross-
orrelation function between the signal and reference fields (e.g., see [17]).
ence, the duality between biphoton wave function propagation and phase-

nsensitive coherence propagation is rooted in the duality between phase-
ensitive and phase-insensitive coherence propagation. Because classical
elds—such as classical phase-sensitive Gaussian-state light—may also have
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hase-sensitive coherence, it is imperative to distinguish features that are due to
he presence of this phase-sensitive correlation from those that require this
hase-sensitive correlation to be stronger than what is possible with classical
tates. The following examples illustrate our point. When ghost imaging is per-
ormed with phase-sensitive light, image inversion occurs in the far field for
oth classical and quantum sources. This inversion is entirely due to the differ-
nce between the free-space propagation of phase-sensitive and phase-
nsensitive correlations, and it is not necessary for the phase-sensitive coherence
o be stronger than classical. On the other hand, the high contrast of DC-coupled
host images formed with SPDC light arises from that source’s phase-sensitive
ross correlation’s being much stronger than the classical limit, and this feature
s not reproducible with classical phase-sensitive light.

ecause of its significance, it is worthwhile to briefly consider how classical
hase-sensitive light may be generated. The key ingredient to generating two
eams with a phase-sensitive cross correlation is utilizing a process that imparts
hase-conjugate modulations on the two beams. Thus narrowband classical
hase-sensitive light can be generated by dividing a cw laser beam with a 50:50
eam splitter and imposing complex-conjugate modulations on the two beams,
or example, by using telecommunications-grade electro-optic modulators. To
btain broadband classical phase-sensitive light one could utilize SPDC, but
ave thermal-state signal and idler inputs (instead of the vacuum-state inputs
sed to obtain an entangled signal-idler output), such that the joint signal and
dler output state is a classical zero-mean Gaussian state with a phase-sensitive
ross correlation.

n addition, we emphasize that Gaussian-state analysis provides a robust and
ersatile framework for answering some of the most fundamental questions as-
ociated with developing practical ghost imagers. We have utilized the versatil-
ty of this framework in our prior work and in this paper to obtain quantitative
nd comparable performance metrics for classical and quantum ghost imagers,
hus unambiguously delineating the classical and quantum features of ghost im-
ging. The same framework can be applied to other imaging configurations as
ell, thereby establishing a methodology for investigating the boundary be-

ween their classical and quantum behavior.

e close with a final brief summary of what we have presented. We have used
aussian-state analysis to establish a unified treatment of classical and quantum
host imaging. Our analysis has revealed that ghost-image formation is due to
hase-sensitive and phase-insensitive cross-correlations between the signal and
eference fields. Because arbitrary cross-correlations can be achieved by classi-
al and quantum sources alike, image contrast and SNR are the only distinguish-
ng features between classical and quantum behavior. In particular, a classical
ource with phase-sensitive cross-correlation can produce an image identical to
hat obtained with a biphoton source—up to a different contrast and hence
NR—even for ghost-imaging configurations that utilize lenses, mirrors, or
ther linear optical elements. If we compare ghost images from classical and
uantum sources having identical autocorrelations, then the low-brightness limit
f the nonclassical source, in general, yields a field-of-view enhancement in far-
eld operation, but the image resolution (which is governed by the source diam-
ter) is unaffected.
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