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ABSTRACT

Ghost imaging is a transverse imaging technique that relies on the correlation between a pair of light fields, one
that has interacted with the object to be imaged and one that has not. Most ghost imaging experiments have
been performed in transmission, and virtually all ghost imaging theory has addressed the transmissive case. Yet
stand-off sensing applications require that the object be imaged in reflection. We use Gaussian-state analysis
to develop expressions for the spatial resolution, image contrast, and signal-to-noise ratio for reflective ghost
imaging with a pseudothermal light source and a rough-surfaced object that creates target-returns with fully-
developed speckle. We compare our results to the corresponding behavior seen in transmissive ghost imaging,
and we develop performance results for the reflective form of computational ghost imaging. We also provide
a preliminary stand-off sensing performance comparison between reflective ghost imaging and a conventional
direct-detection laser radar.
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1. INTRODUCTION

Ghost imaging exploits the correlation between two light fields to create an image that neither field alone could
provide. In pseudothermal ghost imaging—the primary case we shall consider—a continuous-wave (cw) laser
beam is rendered spatially incoherent by passage through a rotating ground-glass diffuser, after which it is divided
into signal and reference beams by a 50-50 beam splitter. The signal beam does not interact with the object of
interest; after free-space propagation its transverse power distribution is measured using a high-spatial-resolution
detector. The reference beam interacts with the object after free-space propagation and is then measured by
a single-pixel (bucket) detector.1,2 It follows that neither detector output alone suffices to produce an image;
the bucket detector has no spatial resolution and the high-spatial-resolution detector senses light that has not
interrogated the object. Cross correlating the photocurrents from the two detectors yields the ghost image, whose
physical origin lies in the perfect correlation between the spatial fluctuations imposed by the rotating ground
glass on the signal and reference beams. The first ghost imaging experiment was performed using biphotons
obtained by post-selection from spontaneous parametric downconversion.3 Because biphotons are entangled
states, for which the quantum theory of photodetection is needed to calculate the measurement statistics, it was
initially thought that ghost imaging was a quantum phenomenon. Gaussian-state analysis, however, has enabled
a unified treatment of biphoton and pseudothermal ghost imaging that shows the image formation process is one
of classical coherence propagation, with high contrast in dc-coupled biphoton ghost images being the principal
ghost-image signature of that nonclassical source.4 In particular, identical statistics for pseudothermal ghost-
imaging result from the use of quantum photodetection theory, in which the light beams are treated quantum
mechanically and photodetectors perform a quantum measurement, and semiclassical photodetection theory, in
which the light beams are treated classically but photodetectors inject shot noise on top of any fluctuations in
the illumination. For a thorough review of these considerations, see the recent paper by Erkmen and Shapiro.5

For our purposes, it suffices to note that we can—and we will—use semiclassical photodetection theory in all
that follows.
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Figure 1. Setup for pseudothermal reflective ghost imaging.

To date, Gaussian-state analysis of transmissive pseudothermal ghost imaging has provided expressions for
its spatial resolution, image contrast and signal-to-noise ratio behaviors, i.e., a complete characterization of
its performance.4,6 However, one of the more interesting potential applications of ghost imaging is stand-off
sensing, in which the bucket detector observes the object in reflection, not transmission. Preliminary table-
top experiments have demonstrated the feasibility of this approach,7 but there has been little exploration of
the statistical characteristics of these images. Developing that theory within the Gaussian-state framework,
which is the topic of this paper, must confront an additional complication not seen in previous work, viz., the
speckle induced by reflection from rough-surfaced objects. In particular, we shall report expressions for the
spatial resolution, image contract, and signal-to-noise ratio of pseudothermal reflective ghost imaging of speckle
targets. These will be compared with the corresponding results for the transmissive case, in which there is no
target-induced speckle. We will also use this framework to obtain performance results for the reflective form of
computational ghost imaging,8 in which the signal beam is dispensed with. Finally, we will provide a preliminary
stand-off sensing performance comparison between reflective ghost imaging and a conventional direct-detection
laser radar.

2. ANALYSIS OF PSEUDOTHERMAL REFLECTIVE GHOST IMAGING

2.1 Theoretical Setup

The configuration we shall consider for pseudothermal reflective ghost imaging is shown in Fig. 1. A cw laser
beam is passed through a rotating ground-glass diffuser followed by a 50–50 beam splitter to produce identical,
spatially-incoherent signal and reference beams whose temporal bandwidths are much lower than those of the
single-pixel (bucket) and high-spatial-resolution (CCD array) detectors. The reference beam illuminates a rough-
surfaced planar target at distance L from the beam splitter, and some of the light reflected from that target is
collected, after L-m propagation, by the bucket detector. The signal light directly illuminates the CCD array,
which for theoretical convenience, we have placed L-m away from the beam splitter.∗ The photocurrents from

∗This assumption implies that we will form a 1:1 ghost image. In an actual implementation of reflective ghost imaging
the CCD array would be in the focal plane of a lens located near the transmitter and we would obtain a minified ghost
image.
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the bucket detector and each pixel on the CCD are sent to a correlator, whose output for the CCD pixel located
at transverse coordinate ρ1 is

C(ρ1) =
1
TI

∫ TI/2

−TI/2

dt i1(t)i2(t), (1)

where TI is the averaging time and we have suppressed an L/c time delay in i1(t) that is needed to account for
the delay incurred by the light reflected from the target.

The configuration and notation we are using parallels the semiclassical treatment of transmissive ghost imag-
ing,8 with the principal distinction being that in the transmissive case the bucket detector would be behind a
transmission-mask target L-m from the reference source, whereas here that target is viewed in reflection. Thus
all the fields shown in Fig. 1 are complex envelopes about center frequency ω0 of linearly-polarized light fields
normalized to have

√
photons/m2s units as functions of their transverse coordinate vectors and time. As a

result, under the assumption of shot-noise limited detectors with quantum efficiency η, the photocurrents from
the bucket and the CCD can be written as

im(t) =
∫

dτ [qηPm(τ) + Δim(τ)]h(t − τ), for m = 1, 2. (2)

Here: Pm(t) =
∫
Am

dρ |Em(ρ, t)|2 is the photon flux on the circular active region Am of detector m; q is the
electron charge; Δim(t) is the shot noise from detector m; and h(t) is the detector’s baseband impulse response,
normalized to satisfy

∫
dt h(t) = 1. Physically, qηPm(t) is the conditional mean of im(t), given the illumination,

so that Δim(t) is the photocurrent fluctuation conditioned on knowledge of the illumination. Note that given
the photon-flux waveforms {Pm(t)}, the shot-noise currents Δi1(t) and Δi2(t) are statistically independent,
zero-mean, random processes whose correlation functions are 〈Δim(t1)Δim(t2)〉 = q2ηPm(t1)δ(t1 − t2).

The fields that determine the preceding photon fluxes are found from diffraction theory. Given ES(ρ, t), the
signal field emerging from the beam splitter in Fig. 1, we have that the field illuminating the CCD is

E1(ρ, t) =
∫

dρ′ ES(ρ′, t)
k0e

ik0(L+|ρ−ρ′|2/2L)

i2πL
, (3)

where k0 = ω0/c is the wave number at the center frequency ω0, and we have neglected the L/c propagation
delay. The reference field is identical to the signal field, because they are both obtained from 50-50 beam splitting
of the output from the ground-glass diffuser. Thus this same E1(ρ, t) illuminates the target in Fig. 1. After
reflection from that target, the light arriving at the bucket detector is

E2(ρ, t) =
∫

dρ′ E1(ρ′, t)T (ρ′)
k0e

ik0(L+|ρ−ρ′|2/2L)

i2πL
, (4)

where T (ρ′) is the target’s field-reflection coefficient,† and we have again neglected time delays. Whereas in
transmissive ghost imaging it is ordinarily the case that the target’s field-transmission coefficient is taken to be
deterministic, the targets of interest for reflective ghost imaging will have microscopic surface variations—from a
nominal, smooth surface profile—whose standard deviations can greatly exceed the illumination wavelength and
whose transverse correlation scale can be sub-wavelength. When such a surface is illuminated by laser light it
gives rise to laser speckle in the target return, and a reasonable statistical model for that behavior is to take T (ρ′)
to be a zero-mean, complex-valued, Gaussian random process that is completely characterized by the correlation
function9

〈T ∗(ρ′
1)T (ρ′

2)〉 = λ2
0T (ρ′

1)δ(ρ
′
1 − ρ′

2), (5)

where λ0 is the center wavelength of the illumination and T (ρ′) is the target’s intensity-reflection coefficient,
which is nonrandom and the quantity that we are seeking to image with the Fig. 1 setup.

At this point, we need to specify the source-field characteristics in order to proceed further. Following the
Gaussian-state analysis of Erkmen and Shapiro,4,6, 8 we shall assume that ES(ρ, t) and ER(ρ, t)—the identical

†We have assumed a stationary target, so that its field-reflection coefficient is constant in time.
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outputs from the 50–50 beam splitter in Fig. 1—are zero-mean, complex-valued Gaussian random fields that are
completely characterized by their common cross-spectrally pure phase-insensitive correlation function,

〈E∗
S(ρ1, t1)ES(ρ2, t2)〉 = 〈E∗

R(ρ1, t1)ER(ρ2, t2)〉 = K(ρ1,ρ2)R(t2 − t1), (6)

where
K(ρ1,ρ2) =

2P

πa2
0

e−(|ρ1|2+|ρ2|2)/a2
0−|ρ1−ρ2|2/2ρ2

0 (7)

is a Gaussian-Schell model spatial correlation with photon-flux P , e−2 intensity radius a0, and coherence length
ρ0, and

R(t2 − t1) = e−(t2−t1)
2/T 2

0 (8)

is the normalized temporal correlation with correlation time T0.

The preceding setup fully specifies all that is needed to compute the spatial resolution, image contrast, and
signal-to-noise ratio of the pseudothermal reflective ghost image. Before doing so, however, let us introduce one
final condition. We shall assume that the CCD pixel area, A1, is sufficiently small that |E1(ρ, t)|2 is essentially
constant over each pixel, allowing us to use P1(t) = A1|E1(ρ, t)|2 in lieu of Eq. (2). This condition ensures that
the spatial resolution we obtain is limited by the field statistics, not by the CCD’s pixel size.

2.2 Spatial Resolution and Image Contrast
The spatial resolution and image contrast of the pseudothermal reflective ghost image are properties of the
ensemble-averaged photocurrent cross correlation, i.e., Eq (1) averaged over the shot noise and the fluctuations
in the fields that illuminate the two detectors. Those field fluctuations arise from the randomness imposed by
the ground-glass diffuser and, for the field illuminating the bucket detector, the target’s surface roughness. It
is easy to see that the fields illuminating the detectors are zero-mean random processes that are statistically
stationary in time, thus the ensemble-averaged ghost image satisfies

〈C(ρ1)〉 = 〈i1(t)i2(t)〉

= A1q
2η2

∫
dτ1

∫
dτ2

∫
A2

dρ′
∫

dρ2

∫
dρ3 〈|E1(ρ1, τ1)|2E∗

1 (ρ2, τ2)E1(ρ3, τ2)〉〈T ∗(ρ2)T (ρ3)〉

× k0e
−ik0|ρ′−ρ2|2/2L

−i2πL

k0e
ik0|ρ′−ρ3|2/2L

i2πL
h(t − τ1)h(t − τ2), (9)

where we have employed Eqs. (2) and (4), and exploited the statistical independence of E1(ρ, t) and T (ρ), i.e.,
the fluctuations due to propagation through the ground glass and those induced by the target’s surface roughness.
Making use of Eq. (5) then leads to

〈C(ρ1)〉 =
A1A2q

2η2

L2

∫
dτ1

∫
dτ2

∫
dρ2 〈|E1(ρ1, τ1)|2|E1(ρ2, τ2)|2〉T (ρ2)h(t − τ1)h(t − τ2), (10)

which clearly indicates the role of photon-flux correlation in ghost-image formation.

Equation (3) shows that E1(ρ, t) is a linear transformation of the zero-mean Gaussian random process
ES(ρ, t), hence it too is a zero-mean, Gaussian random process. Thus, as in Gaussian-state analysis of transmis-
sive ghost imaging,4 we can employ Gaussian moment-factoring to reduce Eq. (10) to

〈C(ρ1)〉 =
A1A2q

2η2

L2

∫
dτ1

∫
dτ2

∫
dρ2 [〈|E1(ρ1, τ1)|2〉〈|E1(ρ2, τ2)|2〉 + |〈E∗

1 (ρ1, τ1)E1(ρ2, τ2)〉|2]T (ρ2)

× h(t − τ1)h(t − τ2). (11)

Pseudothermal ghost imaging is performed with spatially incoherent light, i.e., ρ0 � a0 holds in the source’s
Gaussian-Schell model spatial correlation. Moreover, stand-off sensing pseudothermal ghost imaging will be
performed in the far field, for which k0a0ρ0/2L � 1 prevails. Following Erkmen and Shapiro,5 we then get

〈E∗
1 (ρ1, t1)E1(ρ2, t2)〉 = K ′(ρ1,ρ2)R(t2 − t1), (12)
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i.e., propagation only affects the spatial coherence, which retains the Gaussian-Schell model form,

K ′(ρ1,ρ2) =
2P

πa2
L

eik0(|ρ2|2−|ρ1|2)/2Le−(|ρ1|2+|ρ2|2)/a2
L−|ρ1−ρ2|2/2ρ2

L , (13)

with aL = 2L/k0ρ0 and ρL = 2L/k0a0 being the new intensity and coherence radii, respectively.

The final ingredient we need to reduce Eq. (10) to a form in which we can easily assess the reflective ghost
image’s spatial resolution and image contrast is the detector’s impulse response, h(t). For now, let us take this
to be a dc-coupled Gaussian of bandwidth ΩB ,‡ i.e.,

h(t) =
ΩB√
8π

e−Ω2
Bt2/8. (14)

Because we have assumed that the detector bandwidth is sufficient to follow the temporal behavior of the light
emerging from the ground glass, we have that ΩBT0 � 1. Thus we get rid of the temporal integrals and obtain

〈C(ρ1)〉 =
A1A2q

2η2

L2

(
2P

πa2
L

)2 ∫
dρ2 [1 + e−2(|ρ1|2+|ρ2|2)/a2

Le−|ρ1−ρ2|2/ρ2
L ]T (ρ2). (15)

When the intensity radius aL is much larger than the target’s transverse extent, so that the entire target is
uniformly illuminated on average, we get our final form for the ensemble-averaged photocurrent cross correlation,

〈C(ρ1)〉 =
A1A2q

2η2

L2

(
2P

πa2
L

)2 ∫
dρ2 [1 + e−|ρ1−ρ2|2/ρ2

L ]T (ρ2). (16)

Equation (16) shows that the ensemble-average photocurrent cross correlation consists of a featureless back-
ground term,

C0 =
A1A2q

2η2

L2

(
2P

πa2
L

)2 ∫
dρ2 T (ρ2), (17)

plus the ghost-image term,

C1(ρ1) =
A1A2q

2η2

L2

(
2P

πa2
L

)2 ∫
dρ2 T (ρ2)e−|ρ1−ρ2|2/ρ2

L . (18)

Moreover, the ghost-image term can be seen to be the target’s intensity-reflection coefficient T (ρ2) convolved
with a Gaussian point-spread function that limits the spatial resolution to the target-plane coherence length
ρL = λ0L/πa0. This is the same spatial resolution that was previously found via Gaussian-state analysis for
far-field transmissive ghost-imaging with a pseudothermal source.4 Indeed, the only difference between Eq. (18)
and the corresponding result for the transmissive case is the factor A2/L2 that appears in the former. In
transmissive ghost imaging all the light that passes through the target is collected by the bucket detector, but
the quasi-Lambertian nature of the rough-surfaced target combines with the stand-off measurement by the bucket
detector to introduce the solid-angle subtense factor A2/L2 � 1 in Eq. (18).

Turning now to the image contrast implied by Eq. (16), we will employ the contrast definition4

C =
maxR[C(ρ1)] − minR[C(ρ1)]

C0
, (19)

with the assumption that the target is entirely contained within a region R centered at the origin in transverse
coordinates and having diameter that is much smaller than aL. For simplicity, we will also assume that ρL is
small enough to resolve all features in the target’s intensity-reflection coefficient, so that∫

dρ2 T (ρ2)e−|ρ1−ρ2|2/ρ2
L ≈ πρ2

LT (ρ1), (20)

‡The frequency response associated with this impulse response is H(Ω) =
R

dt h(t)e−iΩt = e−2Ω2/Ω2
B
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whence
C ≈ πρ2

L/AT , (21)

where AT =
∫

dρ2T (ρ2) is the effective area of the target. Thus C ≈ 1/number of on-target resolution cells.
This image contrast coincides with what was previously derived for dc-coupled transmissive ghost imaging in
far-field operation.4

2.3 Signal-to-Noise Ratio

The featureless background that we encountered in the preceding subsection can be eliminated by means of
ac-coupling one or both of the photodetectors in the Fig. 1 setup, as has sometimes been done in pseudothermal
ghost-imaging experiments.10 Signal-to-noise ratio analysis for transmissive ghost imaging is simplified substan-
tially by inclusion of such ac-coupled detectors,6 so we shall take the same route here by assuming that the
photodetectors’ baseband frequency response include a dc block. Specifically, the detectors’ frequency response
is now modeled by

HB(Ω) = e−2Ω2/Ω2
B − e−2Ω2/Ω2

N , (22)

where the dc-notch bandwidth, ΩN , is much smaller than both ΩB , the detectors’ high-frequency cutoff, and
1/T0, the source bandwidth.§ With this ac-coupling we have that the average photocurrent cross correlation is
background free, viz., Eq. (16) becomes

〈C(ρ1)〉 =
A1A2q

2η2

L2

(
2P

πa2
L

)2 ∫
dρ2 e−|ρ1−ρ2|2/ρ2

LT (ρ2). (23)

Thus it is appropriate to define the ghost image’s signal-to-noise ratio (SNR) at the image point ρ1 via

SNR =
〈C(ρ1)〉2

Var[C(ρ1)]
=

〈C(ρ1)〉2
〈C2(ρ1)〉 − 〈C(ρ1)〉2

, (24)

i.e, it is the ratio of the squared strength of the image component of the photocurrent cross correlation divided
by the variance of that cross correlation.

Equation (23) provides an expression for the numerator in Eq. (24) and the second term in its denominator.
However, to simplify our results, we shall assume that ρL is sufficiently small to resolve all features in T (ρ),
reducing Eq. (23) to

〈C(ρ1)〉 =
A1A2q

2η2

L2

(
2P

πa2
L

)2

πρ2
LT (ρ1). (25)

This leaves us with the formidable task of evaluating

〈C2(ρ1)〉 =
1

T 2
I

∫ TI/2

−TI/2

dt

∫ TI/2

−TI/2

du 〈i1(t)i2(t)i1(u)i2(u)〉, (26)

which requires us to determine an eighth moment of the fields and a fourth moment of the target’s field-reflection
coefficient. Fortunately, Gaussian-moment factoring can be applied to both of these moment evaluations, but
the Fresnel-propagation kernels that cancelled out in finding the average photocurrent cross correlation do not
do so here. We can simplify the analysis by using the difference coordinates ν = ρLk0(ρ′ − ρ′′)/L, where ρ′ and
ρ′′ are coordinates at the bucket detector, and defining A′

T =
∫

dρ|T (ρ)|2 and

Γ = π

∫
|ν|≤4α

dν e−|ν|2/2O(ν), (27)

§Because we have assumed a narrowband pseudothermal source, ΩNT0 � 1 is a more stringent condition than ΩN �
ΩB .
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where O(ν) is the dimensionless version of the two-circle overlap function,

O(ν) =

[
cos−1

( |ν|
4α

)
− |ν|

4α

√
1 − |ν|2

16α2

]
2
π

, (28)

with α =
√

A2/πa2
0. Next, we assume that A′

T /ρ2
L � 30, which is equivalent to saying that the ghost-image

consists of at least 10 × 10 resolution cells. Finally we assume that A2/πa2
0 ≥ 1, which amounts to saying that

the bucket detector collects light from a region whose area is at least as big as the source area. With these
conditions in hand, we find that

SNR =
T 2(ρ1)

TI
T0

A′
T√

2πρ2
L

+ T 2(ρ1)
TI
T0

Γa2
0

4πA2
+ T (ρ1)

ηI
L2

A2
+ 4πρ2

LT 2(ρ1)
3A1ηI + T (ρ1)T0ΩBρ2

L

√
π

16
√

2A1η
2I2

L2

A2

, (29)

where I = PT0ρ
2
0/a2

0 is the source brightness in photons per spatiotemporal mode.

The terms in the noise denominator of Eq (29), which originate from different combinations of field variations
and shot noises, have important physical interpretations. From left to right in that denominator we have:
the noise contributed by target-plane speckle from the pseudothermal illumination: the noise contributed by
the speckle on the bucket detector arising from the target’s surface roughness; the beat noise between the
pseudothermal speckle on the CCD pixel and the bucket detector’s shot noise; the beat noise between the CCD
pixel’s shot noise and the pseudothermal speckle on the bucket detector; and the beat noise between the shot
noises on the two detectors. From here it is of interest to look at the low-brightness (I � 1) and high-brightness
(I � 1) SNR asymptotes. These are given by

SNRL =
16
√

2√
π

TI

T0

A1η
2I2

ΩBT0ρ2
L

T (ρ1)
A2

L2
, (30)

and

SNRH =
T 2(ρ1)

TI
T0

A′
T√

2πρ2
L

+ T 2(ρ1)
TI
T0

Γa2
0

4πA2

, (31)

respectively. The low-brightness SNR is dominated by the beat noise between the detectors’ shot noises. It
coincides with the low-brightness SNR found for transmissive ghost imaging,6 except for the following two
differences: the reflective case has the target’s average intensity-reflection coefficient, T (ρ1), appearing in lieu of
transmissive target’s |T (ρ1)|2; and the reflective case includes the solid-angle scaling factor, A2/L2, previously
encountered in our comparison of the these ghost imager’s spatial resolutions.

The reflective ghost imager’s high-brightness SNR asymptote is controlled by the two speckle terms from Eq
(29), i.e., the speckle arising from the pseudothermal source’s spatial incoherence and the speckle arising from the
target’s surface roughness. Neither speckle noise can be said to universally dominate the high-brightness SNR
asymptote, as their relative strengths are governed by both spatial and temporal factors. We need to look at two
limiting cases: when the integration time is short enough that the purely spatial term in the noise denominator
dominates, and when the integration time is long enough that the other denominator term dominates. These
short-time and long-time high-brightness SNR asymptotes are

SNRH, short-TI
=

√
2π

TI

T0

ρ2
L

A′
T

T 2(ρ1), (32)

and
SNRH, long-TI

=
4πA2

Γa2
0

. (33)

Here we see the short-integration-time, high-brightness SNR for reflective ghost imaging equals the high-brightness
SNR for transmissive ghost imaging with T 2(ρ1) appearing instead of |T (ρ1)|4. This agreement is to be expected,
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as both of these SNRs are limited by the speckle created by the pseudothermal illumination. However, as the in-
tegration time increases, the high-brightness SNR for the reflective case saturates at the value given by Eq. (33).
Here the SNR is limited by the target-induced speckle. Because we have assumed a stationary target whose
field-reflection coefficient is constant, no amount of post-detector integration will reduce its speckle noise, hence
SNR saturation occurs. Furthermore, this effect can be severe: for A2/πa2

0 = 1 we get SNRH,longTI
= 3.266,

and for A2/πa2
0 = 2 we find SNRH,longTI

= 5.54. So, for realistic stand-off sensing, the SNR will be limited to
single-digit values if no further measures are taken to average out the target-induced speckle.

3. COMPUTATIONAL GHOST IMAGING IN REFLECTION

Ghost imaging requires knowledge of the time-varying speckle pattern illuminating the target. Because the
ground-glass diffuser in Fig. 1 randomly modulates the source field, we measure the signal field’s speckle pattern
with the CCD array, and exploit its correlation with the speckle pattern impinging on the target to form the
ghost image. Suppose, however, that the source is subjected to a deterministic spatiotemporal modulation,
through use of a spatial light modulator (SLM), in a manner that projects a time-varying but deterministic
speckle pattern on the target. In this case the speckle pattern at the target can be computed from diffraction
theory, and we do not need the signal arm to form a ghost image.8 As shown in Fig. 2, we form a computational
ghost image by cross correlating the computed signal-arm photocurrent,

ĩ1(t) =
∫

dτ qηP̃1(τ)h(t − τ), (34)

with the measured photocurrent, i2(t), from the bucket detector. Here,

P̃1(t) = A1|Ẽ1(ρ1, t)|2, (35)

gives the computed photon flux for a CCD pixel located at ρ1 in terms of the computed speckle pattern
|Ẽ1(ρ1, t)|2.

For comparison with the pseudothermal ghost imager, we would like to derive the spatial resolution, image
contrast, and signal-to-noise ratio of its computational counterpart. To do so, we shall assume that the deter-
ministic field pattern Ẽ1(ρ1, t) cast by the SLM in Fig 2 can be treated, for this analysis, as though it were
a zero-mean, complex-valued Gaussian random process that is completely characterized by the same Gaussian-
Schell model we found for the target-plane field in the pseudothermal case. With this assumption, all the
derivations from Sec. 2 carry over to computational ghost imaging by simple omission of the CCD array’s shot
noise. Hence, the spatial resolution of the computational ghost imager is identical to that of the pseudothermal
ghost imager, and, for dc-coupled operation, they have the same image contrast. Moreover, ac-coupling of the
bucket detector’s photocurrent or the CCD array’s computed photocurrent will eliminate the featureless back-
ground term in the photocurrent cross correlation, giving the computational ghost imager the same high-contrast
behavior seen earlier for ac-coupling in pseudothermal ghost imaging.

There is an interesting difference between computational and pseudothermal ghost imaging that appears
when we compare their SNR formulas. As there is no longer any signal-detector shot noise, we find that the
computational ghost image’s SNR is given by

SNRcomp =
T 2(ρ1)

TI
T0

A′
T√

2πρ2
L

+ T 2(ρ1)
TI
T0

Γa2
0

4πA2
+ T (ρ1)

ηI
L2

A2

. (36)

Comparing this formula with the pseudothermal result from Eq. (29) we see that the noise denominator for the
computational ghost image’s SNR contains, from left to right, terms that represent: the noise from the speckle
pattern cast on the target; the noise from the speckle on the bucket detector arising from the target’s surface
roughness; and the beat noise between the computed speckle on the CCD pixel and the bucket detector’s shot
noise. It follows that the high-brightness SNR asymptote for computational ghost imaging is identical to that for
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Figure 2. Setup for computational reflective ghost imaging.

pseudothermal ghost imaging. However, the computational ghost image’s SNR enjoys a considerable advantage
at low source brightness, viz., its low-brightness asymptote,

SNRcomp, L = T (ρ1)
TI

T0
ηIA2

L2
, (37)

is significantly higher than that for the pseudothermal ghost image because it scales linearly, rather than quadrat-
ically, with source brightness.

4. COMPARISON TO A LASER RADAR SYSTEM

4.1 Theoretical Setup

The importance of ghost imaging for stand-off sensing rests on its offering some advantage over a comparable
laser radar system for the same application. Here we will use the results we have developed so far to provide
a preliminary comparison of ghost imaging versus laser radar as stand-off sensors. The laser radar system we
shall consider is shown in Fig. 3. It is a direct-detection system in which a cw laser beam is used to produce
a spatially-coherent beam at range L whose deterministic intensity pattern matches—in both photon flux and
intensity radius—the average intensity pattern of the Gaussian-Schell model we employed for the ghost imager.
A fraction of the laser light reflected by the target is focused by a lens that is co-located with the laser transmitter
onto a CCD array. A target image is then formed by TI -s time averaging of the output currents from each CCD
pixel. The entrance pupil for the laser radar’s receiving lens will be taken to coincide with the bucket detector’s
A2 active region in the ghost imager, and we will assume shot-noise limited CCD operation as was the case for
the Fig. 1.¶

The laser radar image for the CCD pixel at location ρ1 is

I(ρ1) =
1
TI

∫ TI/2

−TI/2

dt i3(t), (38)

where i3(t) is the photocurrent from that pixel. This photocurrent will have the same structure as seen, for
ghost imaging, in Eq (2), i.e., it will consist of a term driven by the photon flux P3(t) illuminating the pixel in
question plus the shot noise from that pixel. We shall assume the dc-coupled photodetector model from Eq. (14),
and we will assume the pixels are small enough that they do not limit the laser radar’s spatial resolution. Once
again we shall assume 1:1 imaging, although the actual system will cast a minified image on the CCD, and we
shall invert the image plane coordinates so as to obtain an erect image of the target. With these assumptions

¶We recognize that most laser radar systems employ pulsed sources. We have chosen the cw case to put the laser
radar on the most equal footing with the ghost imager for a baseline comparison between their spatial resolutions, image
contrasts, and signal-to-noise ratios.
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standard Fourier-optics thin lens theory leads to the following expression for E3(ρ1, t), the field illuminating the
CCD pixel at ρ1:

E3(ρ1, t) =
∫

dρ T (ρ)eik0|ρ|2/2L

√
2P

πa2
L

e−|ρ|2/a2
L

A2

λ2
0L

2

J1(πD2|ρ − ρ1|/λ0L)
πD2|ρ − ρ1|/2λ0L

, (39)

where D2 is the diameter of A2, J1 is the first-order Bessel function of the first kind, and we have suppressed
absolute and quadratic phase factors that do not contribute to |E3(ρ1, t)|2. The photon flux for the pixel at ρ1

is thus P3(t) = A1|E3(ρ1, t)|2, and the photocurrent i3(t) is

i3(t) = qηP3(t) + Δi3(t), (40)

where the second term is the shot noise. In keeping with what we did for ghost imaging, we shall assume that
the target is uniformly illuminated by the laser radar, so that we can use e−|ρ|2/a2

L ≈ 1 in Eq. (39).

4.2 Spatial Resolution and Image Contrast

To derive the laser radar’s spatial resolution and image contrast, we once again look at the ensemble-averaged
image. Averaging Eq. (38) over the target’s surface roughness and the detector’s shot noise we find

〈I(ρ1)〉 =
qηA1A

2
2

λ2
0L

4

2P

πa2
L

∫
dρ T (ρ)

(
J1(πD2|ρ − ρ1|/λ0L)
πD2|ρ − ρ1|/2λ0L

)2

, (41)

which shows that the target image is proportional to the target’s intensity-reflection coefficient convolved with the
familiar Airy disk point-spread function for incoherent imaging. Hence our laser radar has a spatial resolution
given by 1.22λ0L/D2. In our ghost imaging setup, with D2 = 2a0, the spatial resolution is given by ρL =
λ0L/πa0 = 2λ0L/πD2, which is comparable to that of the laser radar. Equation (41) also shows that our direct-
detection laser radar’s image is not embedded in a featureless background, making its image contrast superior
to that of dc-coupled pseudothermal ghost imaging but equivalent to that of the ac-coupled version.

4.3 Signal-to-Noise Ratio

We define the laser radar’s SNR by

SNR =
〈I(ρ1)〉2

Var[I(ρ1)]
=

〈I(ρ1)〉2
〈I2(ρ1)〉 − 〈I(ρ1)〉2

, (42)

to enable a direct comparison with the ghost imaging SNR from Eq (24). We will assume that the Airy disk
point-spread-function resolves all significant features in the target’s intensity-reflection coefficient, yielding

〈I(ρ1)〉 =
qηA1A2

L2

2P

πa2
L

T (ρ1). (43)
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The variance calculation we need is much simpler than what we performed for ghost imaging. Making use of the
iterated-expectation formula,

Var[I(ρ1)] = E{P3(t):−TI/2≤t≤TI/2}[Var( I(ρ1)) | {P3(t) : −TI/2 ≤ t ≤ TI/2} )]

+ Var{P3(t):−TI/2≤t≤TI/2}[E( I(ρ1) | {P3(t) : −TI/2 ≤ t ≤ TI/2} )], (44)

we can easily evaluate the noise denominator in Eq. (42). The first term on the right in Eq. (44) is due to the
target-induced speckle, and is given by 〈I(ρ1)〉2, and the second term on the right in that equation is due to the
shot noise, and is given by q〈I(ρ1)〉/TI . This leaves us with

SNR =
T (ρ1)

T (ρ1) + L2

ηA1A2

πa2
L

2PTI

. (45)

From this SNR expression we immediately see that when the combination of source brightness and integration
time is sufficiently high, the laser radar’s SNR saturates at a maximum value of unity, limited by the target-
induced speckle. With the small CCD pixels we have assumed, ghost imaging still experiences a spatial averaging
of the target speckle on the bucket detector, whereas no such effect is available for the laser radar system. Thus
when both systems have target-speckle limited SNRs, the laser radar’s performance is inferior to that of the
ghost imager. However, outside of this limiting scenario, the relationship between the two system’s SNRs is more
complicated, as we will now show.

To compare the stand-off sensing SNRs for ghost imaging and direct-detection laser radar in more detail,
consider the plots shown in Figs. 4(a) and 4(b). Both figures assume λ0 = 1.5 μm operation for ghost imaging
and laser radar, with their transmitters having the same photon flux. For ghost imaging we assume the source
parameters are a0 = 1 cm and ρ0 = 0.15/π mm. The target is assumed to be at L = 1 km range, with effective
area A′

T = 100m2. Thus aL = λ0L/πρ0 = 10m implies that the target illumination is nearly uniform on average,
with speckle-limited spatial resolution given by ρL = λ0L/πa0 = 0.15/π m. The CCD array’s pixel area will be
taken to satisfy A1 = 0.1ρ2

L, and the bucket detector’s area will be set to A2 = πa2
0. Both detectors will have

η = 0.9 quantum efficiency with bandwidths obeying ΩBT0 = 100. The laser radar’s transmitter will produce a
spatially-coherent Gaussian intensity pattern on the target with the same aL value, and its CCD array will be
identical to that of the ghost imager. Figure 4(a) plots the SNRs for pseudothermal ghost imaging, computational
ghost imaging, and direct-detection laser radar operation versus the normalized integration time, TI/T0, when
T (ρ1) = 1 and the ghost-imaging transmitter’s source brightness is I = 109 photons/mode. This figure shows a
slight SNR advantage for laser radar operation when TI/T0 < 104, with the ghost imagers offering higher SNRs
when all three systems reach their target-speckle limits. Figure 4(b) plots the three systems’ SNRs versus the
ghost imager’s source brightness assuming T (ρ1) = 1 and TI/T0 = 107. Here we see that computational ghost
imaging provides the best performance, while laser radar operation is the worst performer except for I ∼ 10−2.
Pseudothermal ghost imaging is outperformed by computational operation until both systems’ SNRs reach their
common target-speckle limit.

5. CONCLUSIONS

We have derived expressions for the spatial resolutions, image contrasts, and signal-to-noise ratios of pseudother-
mal and computational reflective ghost-imaging. The spatial resolutions of the pseudothermal and computational
cases coincide with each other and with that for pseudothermal ghost imaging in transmission. The image con-
trast for the pseudothermal case in dc-coupled operation matches that for the similar setup used in transmission,
while ac-coupled pseudothermal ghost imaging and computational ghost imaging have the same high contrast as
ac-coupled ghost imaging in transmission. Thus the principal performance difference between ghost imaging in
reflection and transmission lies in the SNR behavior, with the former suffering from the ill-effects of target-induce
speckle that are absent in the latter. Moreover, because of the absence of signal-light shot noise, computational
ghost imaging in reflection can have an appreciably higher SNR than its pseudothermal counterpart. We then
used our results to develop the first rigorous performance comparison for stand-off sensing using ghost imaging
versus stand-off sensing using a direct-detection laser radar. It turned out that ghost imaging and laser radar
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Figure 4. Signal-to-noise ratio comparison between pseudothermal ghost imaging, computational ghost imaging, and laser
radar operation. The parameter values assumed are given in the text.

offer nearly equivalent spatial resolutions, but there were differences in their SNR behaviors, with the pseu-
dothermal ghost imager offering an SNR advantage when both systems reached their target-speckle limits, and
the computational ghost imager outperforming the laser radar at low source-brightness.

There are still several techniques that could improve ghost imaging for stand-off sensing which we have yet to
incorporate into our performance analysis. An array of bucket detectors could provide additional spatial averaging
of the target-induced speckle. Multiple-wavelength operation could be used to provide spectral averaging of the
target-induced speckle. Both such techniques would then increase the saturation SNR in both pseudothermal
and computational ghost imaging. Compressed sensing has been shown, empirically, to reduce the time needed
to achieve a desired subjective quality in transmissive ghost imaging,11 but its applicability to the reflective case
and especially the SNR analysis for that case are open questions.
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