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Abstract: In this paper, we propose a novel two-stage transformer with GhostNet, which improves
the performance of the small object detection task. Specifically, based on the original Deformable
Transformers for End-to-End Object Detection (deformable DETR), we chose GhostNet as the back-
bone to extract features, since it is better suited for an efficient feature extraction. Furthermore, at
the target detection stage, we selected the 300 best bounding box results as regional proposals, which
were subsequently set as primary object queries of the decoder layer. Finally, in the decoder layer,
we optimized and modified the queries to increase the target accuracy. In order to validate the
performance of the proposed model, we adopted a widely used COCO 2017 dataset. Extensive
experiments demonstrated that the proposed scheme yielded a higher average precision (AP) score
in detecting small objects than the existing deformable DETR model.

Keywords: small object detection; GhostNet; regional proposals; two-stage transformer

1. Introduction

In the realm of natural language processing (NLP), the transformer model has become
the preferred solution to tackle tasks such as question answering, text classification, ma-
chine translation, and document summary [1–5]. The ability of transformer modules to
learn complex relationships between input sequences via self-attention is critical for its
success [6,7]. Inspired by the success of the transformer in the NLP research area, Dosovit-
skiy et al. proposed The Vision Transformer (ViT) to tackle the image recognition task in
the image domain [8]. Recently, the pyramid vision transformer (PVT), which overcame
the difficulties of porting tranformer to various dense prediction tasks, was proposed [9].
In addition, the authors in [10] proposed a texture transformer network for image super-
resolution (TTSR), which was the first scheme to utilize transformer architecture for image
generation tasks. However, transformers that effectively utilize low-level image features
require further investigation [11].

Current object detection pipelines, such as End-to-End Object Detection with Trans-
formers (DETR) and Deformable Transformers for End-to-End Object Detection (deformable
DETR) combine transformers with a backbone model based on convolutional neural net-
works (CNNs) to extract features; then, they exploit the modified encoder–decoder archi-
tecture of the transformer module to categorize and detect objects within an image [12–15].

Most of the current state-of-the-art models based on transformers tend to use ResNet50
as a backbone network, which was proposed by He et al. to address the vanishing gra-
dient problem through the residual connections that enable designing deep networks.
Despite its good performance in image recognition tasks, it requires a long time to converge,
due to its model size. The GhostNet model is proposed to replace the computationally
heavy standard convolution operation with a more efficient Ghost module. More pre-
cisely, the Ghost module initially generates some part of the total output feature map,
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while the rest of the feature maps are generated through a cheap linear operation, i.e.,
depthwise separable convolutions. Finally, the feature maps generated through two stages
are concatenated [16–18]. In comparison to standard CNNs, GhostNet’s total number of
parameters and computational complexity are reduced without affecting the size of the
output feature maps.

The function of the transformer models is to calculate the spatial position of the
input image. The goal of the encoder is to determine the features of the image, and the
object detection is performed by the decoder [13]. In the image domain, object queries
in the decoder are not related to the current image, so the accuracy rate is low. Here,
we adopt regional proposals to ensure object queries have a stronger relationship with an
image [13]. Traditional end-to-end convolutional models and transformers with CNN
based feature extractors perform well on tasks that include the recognition and detection of
large objects [13,19,20]. However, the previously proposed transformer models struggle to
yield desirable results in the presence of small objects within an image [12].

We aim to address this critical issue by proposing a novel two-stage transformer
that is robust to detecting small objects. Our proposed method increased small-object
detection accuracy through a more efficient network, namely GhostNet, which generates
more features using fewer parameters. Furthermore, we added one more stage after the
encoder that generated regional proposals to refine object queries before they entered the
decoder layer [21]. Extensive experiments demonstrated that our proposed model yielded
superior results in the detection of small objects compared to deformable DETR.

The remainder of this paper is organized as follows: Section 2 discusses related works.
Sections 3 and 4 present the proposed approach and the experimental results, respectively.
Finally, Section 5 concludes this paper.

2. Related Work

Most object detection models based on CNNs exploit several hand-crafted techniques
such as anchor generation and non-maximum suppression (NMS) postprocessing methods
to improve performance [21–23]. DETR proposed by Carion et al. effectively eliminates the
need for such techniques; thus, it is considered the first end-to-end object detector in the
image domain [12]. The architecture of the DETR includes a backbone network based on
CNNs that generate feature maps and a transformer encoder–decoder model that accepts
the output feature maps of the backbone for further processing. Despite its end-to-end
nature and competitive performance, DETR contains some critical issues that need to be
addressed. Specifically, it exhibits relatively slower convergence than modern CNN-based
object detectors due to the difficulty in training attention models that process the image
features. Furthermore, DETR suffers from inferior performance in small object detection
task compared to the most modern object detectors. These utilize high-resolution feature
maps that result in better detection of small objects. However, high-resolution feature
maps lead to an unacceptable complexity for DETR, as the encoder part of DETR has a
quadratic complexity with the spatial size of input feature maps. In order to address the
abovementioned issues of DETR, Zhu et al. proposed a deformable DETR that achieved
better results in detecting small objects and also converged faster than DETR [13]. Inspired
from deformable convolutions, the authors introduced a deformable attention module that
focused only on a small set of key sampling points in the neighborhood that were not fixed
in position but learnable (as deformable convolution), enabling a local and sparse efficient
mechanism. The slow convergence issue can be alleviated by attending only to a small
portion of keys for each query.

The deformable attention module is calculated as follows:

De f ormAttn(zq, tq, x) =
M

∑
m=1

Wm[
K

∑
k=1

AmqkW
′
mx(tq + ∆tmqk)]

(1)
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where q and k represent query and key, respectively. zq stands for a query generated by x
through linear transformation. tq indexes a 2-D reference point, and ∆tmqk represents the
location offset of the sampling collection point with respect to the reference points, named
offsets, which is obtained from the query feature through the fully connected layer.

Furthermore, m denotes attention head, and Wm is the result of a linear transformation
of attention after the value is applied to the output of different heads. Wk is used to trans-
form xk into value. Amqk represents a normalized weight of attention. In fact, each query
samples K positions in each head, only interacting with the features of those locations, and
x(tq + ∆tmqk) represents the value interpolated based on the location of the sampling point.

In the encoder part of the deformable DETR, the transformer attention modules are
substituted for the proposed multiscale deformable attention module. Specifically, the
encoder of the model accepts a multiscale feature map and generates another multiscale
feature map with the same resolution size as the input. The input feature maps of the
encoder are extracted from the output feature maps of stages C3 to C5 (transformed by a
1× 1 convolution), where Cl is of resolution 2l lower than the input image. The lowest
resolution feature map xL is obtained via 3× 3 convolution with stride 2 on the final C5
stage, denoted as C6. The channel sizes of multiscale feature maps are equal to 256. Finally,
in addition to the positional embedding, scale-level embeddings are adopted in order to
identify the location of query pixels.

Combining deformable attention with multiscale features, the multiscale deformable
attention module is calculated as follows:

MSDe f ormAttn(zq, tq, (xl)L
l=1) =

M

∑
m=1

Wm[
K

∑
k=1

L

∑
l=1

AmqkW
′
mxl(φl(t̂q) + ∆tmqk)]

(2)

where m indicates the attention head, l stands for the input feature level, and k represents
the sampling point. (xl)L

l=1, here, we set L = 4. The normalized coordinates t̂q are rescaled
to the input feature map of the l-th level through function φl(t̂q), so that each reference
point has a corresponding (normalized) coordinate at all feature layers to facilitate the
calculation of the locations of those points sampled at different feature layers. The rest of
Equation (2) is processed consistent with the deformable attention module formula in (1).

The decoder of the DETR consists of self-attention and cross-attention modules. How-
ever, the authors of the deformable DETR propose to replace the cross-attention module
with the introduced multiscale attention module, as their model is designed for processing
convolutional feature maps as key elements. For each object query, the 2-dimensional
(2-D) normalized coordinate of the reference point t̂q is predicted from its object query
embedding via a learnable linear projection followed by a sigmoid function.

3. Proposed Approach

Although the capability of ResNet has been proven in many applications, it has a
significant drawback in that the deep network usually requires several weeks of training
time. As a result, the cost of training is very high. In addition, object queries in the
decoder of the deformable DETR are not correlated to the image. In order to mitigate these
shortcomings effectively, we selected GhostNet as the feature extractor, and we employed
regional proposals to feed object queries into the decoder and refined the object queries six
times during the decoding.

3.1. GhostNet

The GhostNet generates more feature maps with fewer parameters, which makes it a
better option for extracting small target feature maps. In this paper, due to its efficiency, we
adopted GhostNet as a backbone network instead of the traditional ResNet. GhostNet is
mostly made up of Ghost bottlenecks, with Ghost modules serving as the building blocks.
The first layer is a typical convolutional layer with 16 filters, followed by a sequence of
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Ghost bottlenecks with increasing channel counts. These Ghost bottlenecks are classified
into stages based on the sizes of their input feature maps. The Ghost bottleneck can be
considered as the basic residual block in ResNet, in which several convolutional layers and
shortcuts are integrated. The Ghost bottleneck, as shown in Figure 1, is mostly made up of
two stacked Ghost modules.

Ghost Module

Ghost Module

Add

X

BN

BN ReLU

Ghost Module

Ghost Module

Add

X

BN

BN ReLU

DWConv Stride=2

BN

Stride=1 expand the number of channels Stride=2 reduce the number of channels

Figure 1. Ghost bottleneck.

The first Ghost module’s task is to operate as an expansion layer, increasing the number
of output and input channels as the expansion ratio increases. To match the shortcut path,
the second Ghost module reduces the number of channels. Batch normalization and ReLU
nonlinearity operations are performed after each layer, except that ReLU is not used after
the second Ghost module [24,25]. Further, the shortcuts between the input and output of
the two Ghost modules are concatenated. All Ghost bottlenecks are applied with a stride
rate set to 1, except the last one of each stage at which the stride rate is set to 2. Finally, the
global average pooling and convolutional layer are used to convert the feature map into
the final 1280-dimensional feature vector. The computational cost of the Ghost module is
significantly lower than the direct usage of conventional convolution.

In order to generate multiscale feature maps, which were used as an input to the
encoder layer, we adopted GhostNet as a backbone network. Unlike ResNet, in GhostNet,
we extracted four layers of feature maps from C2 to C5, and the downsampling rates were
set to 8, 16, 32, and 64, respectively. The resolution of the multiscale feature maps’ input
and output was the same as in the encoder layer. In addition, the number of channels in all
multiscale feature maps was set to 256 (see Figure 2).
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C4

C3

C2

stride1 conv1 × 1

stride1 conv1 × 1

stride1 conv1 × 1

stride1 conv1 × 1

Based on Ghostnet feature maps

L1

L2

L3

L4
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H/64 ×W/64 × 256H/64 ×W/64 × 4096
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Figure 2. Generation of multiscale feature maps.

3.2. Two-Stage Transformer

The proposed scheme had a two-stage transformer (see Figure 3) process: (a) gener-
ating region proposals at the end of the encoder layer and (b) fine-tuning object queries
several times in the decoder layer.

Region proposal

Top-k

Transformer

Feed-forward Network

ClassificationRegression

bbox

refine
×6

Encoder
feature maps

Decoder

Query 
embedding

Object query+

+

Figure 3. The details of the two-stage transformer with GhostNet in an encoder and a decoder layer.

3.2.1. The First Stage

Compared to the original deformable DETR, we removed the primary decoder and
formed an encoder-only deformable DETR’s candidate area. Since our goal was to improve
the correlation between the encoder and the object query in decoder, 300 top-scoring
bounding boxes were selected as the regional proposals. In other words, the encoder
layer output an object query for each pixel in the regional proposal, predicted a bounding
box directly, and selected the highest scoring 300 bounding boxes as region proposals
to be transferred to the next stage. In the encoder, the multiscale feature maps were
mapped to a channel size of 256 dimensions in each layer. We set i as a pixel from feature
level li ∈ 1, 2, . . . , L and 2-D normalized coordinates t̂i = (tix, tiy). The bounding box
∆bi(x,y,w,h) ∈ R was predicted by the branch of the bounding box regression as follows:
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b̂i = σ(∆bix + σ−1(t̂ix)), σ(∆biy + σ−1(t̂iy)),

σ(∆biw + σ−1(s2ll−1)), σ(∆biw + σ−1(s2ll−1))

where s is the target ratio, since the task was focused on small object detection. During the
first stage, we generated different scales of bounding boxes starting from the earlier stages
of feature maps to capture more fine-grained region proposals of small objects. However,
the increased number of proposed bounding boxes led to the following issues: (a) the
number of positive and negative samples were not evenly distributed, and (b) matching all
of the assigned proposals to the ground truth resulted in slower convergence At the next
stage, we addressed these issues.

3.2.2. The Second Stage

In contrast to the deformable DETR, which employs self-attention modules and cross-
attention techniques in the decoder part, we simply used the transformer itself as self-
attention modules, as we changed the object query before entering the decoder. Addition-
ally, we did not consider the reference point as the initial guess of the box center. Since the
multiscale deformable attention module extracts image features around the reference point,
offsets can be used to represent the difference between the predicted bounding box and the
reference point.

We set the reference point, which is the output of the encoder, as the initial box center
t̂i = (tix, tiy); then, we normalized it using the sigmoid function and the inverse sigmoid
function, denoted by σ(·) and σ−1(·), respectively. The parameterizations of the four
coordinates are as follows:

σ(bix + σ−1(t̂ix)), σ(biy + σ−1(t̂iy)), σ(biw), σ(bih).

Then, we used a forward iterative bounding box correction mechanism to improve the
detection performance. We considered D = 6 decoder layers, where the predicted layer
was the (d− 1)-th decoder layer; the coordinates of d-th decoder layer’s refined box are
as follows:

b̂d
z = σ(∆bd

zx + σ−1(b̂d−1
zx )), σ(∆bd

zy + σ−1(b̂d−1
zy )),

σ(∆bd
zw + σ−1(b̂d−1

zw )), σ(∆bd
zh + σ−1(b̂d−1

zh ))

where d ∈ (1, 2, . . . , D), σ(·) and σ−1(·) are the sigmoid function and the inverse sigmoid
function, respectively, and D stands for the number of decoder layers. ∆bz(x,y,w,h) ∈ R are
predicted by the branch of bounding box regression in different decoder layers.

4. Experimental Results

We conducted all the experiments using the COCO 2017 dataset [26]. The standard
mean average precision (AP) metric was used to report results under different IoU (Inter-
section over Union) thresholds. The model was trained on the training set and evaluated
on the validation set. There is a considerable number of small objects in the COCO 2017
dataset. Therefore, we reported the AP for comparison, especially APs, APm, and APl , which
stand for the average precision of small objects, medium objects, and large objects, respec-
tively. Specifically, small objects refer to the objects smaller than 32 × 32 pixels or objects
which cover less than only 10% of the image, medium objects refer to the objects between
32 × 32 pixels and 96 × 96 pixels, and large objects refer to those more than 96 × 96 pixels.

Following the deformable DETR, we set M as the head of the multiscale deformable
attention, which was equal to 8, and K = 4 represented the index of the sample keys,
which was the same as in the deformable attention. The parameters of the deformable
transformer encoder were shared among different feature levels. By default, we used the
Adam optimizer with a base learning rate set to 2× 20−4, β1 = 0.9, β2 = 0.999, and weight
decay equal to 10−4 [27]. All models were trained for 50 and 100 epochs. The learning rates
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of the fully connected layers that were used for predicting object query reference points
and sampling offsets were multiplied by 0.1.

We first demonstrated the compatibility of a one-stage transformer (without the
proposed method) with different backbones. As shown in Table 1, we evaluated the
performance of the model equipped with ResNet-50 and GhostNet backbones, keeping the
same training settings for both models. The experiments revealed that the model withthe
GhostNet backbone took 85 h and showed 24.8%, 45.6%, 56.88% in the APs, APm, APl ,
respectively, improving from the original DETR model, which exploited ResNet-50 as a
backbone network; meanwhile, the time was reduced by 7 h.

Table 1. Performance comparison of the proposed two-stage and conventional one-stage methods
with Resnet-50 and GhostNet as a backbone.

Method Times Backbone Epochs APs APm APl

One-stage 92 h ResNet-50 50 24.5 45.4 56.5

One-stage 85 h GhostNet 50 24.8 45.6 56.8

Two-stage 96 h ResNet-50 50 27.9 48.6 60.5

Two-stage 89 h GhostNet 50 28.3 49.1 61.0

Two-stage 173 h GhostNet 100 28.9 49.3 61.2

Furthermore, the regional proposal generation stage led to a boost in performance
across all sizes when using the GhostNet as a backbone network, with the highest improve-
ment of 3.5% detected in small objects compared to the conventional method. Increasing
the number of epochs from 50 to 100 resulted in 28.9% APs, which was 1% better than that
in the case of 50 epochs of training.

Figure 4 highlights the visual results of the original deformable DETR and the pro-
posed two-stage transformer on two randomly chosen images from the validation set. As is
evident from the Figure 4, the proposed model was able to detect more small objects than
the deformable DETR.

Ground Truth Without Proposal With Proposal

Figure 4. Comparison of visual results.
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As mentioned in the above sections, the number of positive and negative samples was
not balanced for small object detection. We set different sample ratios between positive and
negative under the same epoch according to the experimental experience of the previous
two groups. To carry out our testing, we chose 100 epochs and the GhostNet as backbone.

Table 2 highlights that our proposed method led to improved results for small and
medium targets by 0.3% and 0.1%, respectively. However, the AP value for the large objects
was not affected by altering the sample locations.

Table 2. Comparison with samples ratio.

Method Samples Ratio Epochs APs APm APl

Two-stage 0.5 100 28.9 49.3 61.2

Two-stage 0.7 100 29.2 49.4 61.2

Overall, when all the proposed techniques were included, the final experimental
results for small object detection were 4.4% higher than the existing methods.

5. Conclusions

In this paper, we proposed a two-stage transformer combined with a GhostNet back-
bone network for the small object detection task. In order to capture more small objects, we
extracted four layers of feature maps from the GhostNet backbone. Furthermore, in order
to improve the performance, we first generated regional proposals at the end of the encoder
layer and then finetuned the object queries in the decoder layer. The proposed method
achieved superior results in terms of the average precision of small objects compared to the
deformable DETR on the challenging COCO 2017 dataset. As a future research topic, we
will study a lightweight small object detection scheme by accelerating the training process
and evaluate it on practical application scenarios, e.g., risk detection for airport runways.
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