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GhostKnockoff inference empowers identifi-
cation of putative causal variants in genome-
wide association studies

Zihuai He 1,2 , Linxi Liu3, Michael E. Belloy1, Yann Le Guen 1,4, Aaron Sossin5,
Xiaoxia Liu1, Xinran Qi1, Shiyang Ma 6, Prashnna K. Gyawali1,
Tony Wyss-Coray 1, Hua Tang 7, Chiara Sabatti5, Emmanuel Candès8,9,
Michael D. Greicius1 & Iuliana Ionita-Laza6

Recent advances in genome sequencing and imputation technologies provide
an exciting opportunity to comprehensively study the contribution of genetic
variants to complex phenotypes. However, our ability to translate genetic
discoveries into mechanistic insights remains limited at this point. In this
paper, we propose an efficient knockoff-based method, GhostKnockoff, for
genome-wide association studies (GWAS) that leads to improved power and
ability to prioritize putative causal variants relative to conventional GWAS
approaches. Themethod requires only Z-scores from conventional GWAS and
hence can be easily applied to enhance existing and future studies. The
method can also be applied to meta-analysis of multiple GWAS allowing for
arbitrary sample overlap. We demonstrate its performance using empirical
simulations and two applications: (1) a meta-analysis for Alzheimer’s disease
comprising nine overlapping large-scale GWAS, whole-exome and whole-
genome sequencing studies and (2) analysis of 1403 binary phenotypes from
the UK Biobank data in 408,961 samples of European ancestry. Our results
demonstrate that GhostKnockoff can identify putatively functional variants
with weaker statistical effects that are missed by conventional
association tests.

Recent advances in genome sequencing technologies and improve-
ment in genotype imputation accuracy enable large-scale genetic
studies with hundreds of thousands of samples and tens of millions of
variants. The ultimate goal of such studies is to provide a credible set
of putative causal variants that could lead to novel targets for the
development of genomic-driven medicine. However, our ability to
identify causal genetic variants and to translate genetic discoveries
into mechanistic insights and drug targets remains limited at this

point1. Conventional genome-wide association studies (GWAS) are
based on marginal association models that regress an outcome of
interest on a single genetic variant at a time, using Bonferroni cor-
rection for the number of independent tests to control the family-wise
error rate (FWER). Although this approach based on marginal test
statistics has successfully discovered many disease-associated var-
iants, its statistical power can be suboptimal, and it often identifies
proxy variants that are only correlated with the true causal variants2.
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Multiple lines ofgenetic research suggest that small effect risk loci
that currently lie below the genome-wide significance threshold even
in large GWAS can be informative to understand complex phenotypes.
First, the widely used polygenic models for complex phenotypes are
based on the idea that heritability can be explained by a large number
of loci, each with small or infinitesimal effects3,4. Second, because of
the polygenic nature of complex traits, inclusion of loci of small effects
improves the predictive power of polygenic risk scores (PRS) formany
traits5. Third, although the effect sizes of such loci are small in popu-
lations, they can still provide important biological insights. In parti-
cular, their effect on molecular phenotypes can be large and they can
lead to effective drug targets (e.g. statins)6. However, small effect loci
are difficult to distinguish from noisy loci, especially with suboptimal
marginal association tests commonly used in GWAS.

Knockoff inference is a recently proposed statistical framework
for variable selection in high-dimensional settings7,8. Unlike marginal
association testing in GWAS, the knockoff-based inference performs
genome-wide conditional tests that account for linkage disequilibrium
(LD) thereby reducing false positive findings due to LD confounding. It
provides rigorous control of the false discovery rate (FDR), i.e. the
expected proportion of discoveries which correspond to truly null
hypotheses. The idea of the knockoff-based inference is to generate
synthetic, noisy copies (knockoffs) of the original genetic variants that
resemble the true variants in terms of preserving correlations but are
conditionally independent of the disease phenotype given the original
variants. The knockoffs serve as negative controls for the conditional
tests to select significant genetic risk loci and to attenuate the con-
founding effect of LD. Unlike the conventional Benjamini-Hochberg
procedure that does not account for LD, the knockoff framework
appropriately accounts for arbitrary correlations among the condi-
tional tests while guaranteeing control of the FDR9.

Several knockoff-based methods have already been proposed for
genetic studies including Candès et al.7, Sesia et al.10, Sesia et al.11, He
et al.12 and Sesia et al.13. These showed that controlling FDR can be
more powerful to identify causal variants with weaker effect sizes
relative to conventional GWAS, under the assumption of a polygenic
model. In particular, they demonstrated that the variants identified by
the knockoff inference are more likely to be the causal ones. Despite
these appealing features, individual level data needed for the knockoff
generation are often not available in large meta-analyses GWAS;
instead, summary statistics that do not contain individual identifiable
information are usually available. Furthermore, the high computa-
tional and memory cost needed to generate individual data knockoffs
represents a major bottleneck to achieve its full potential. Finally,
unlike for the traditional GWAS, there is currently a lack of standar-
dized, efficient pipelines to facilitate the application of knockoff-based
inference to genetic studies.

In this paper, we propose a novelmethod,GhostKnockoff, to allow
efficient knockoff-based inference using freely available GWAS sum-
mary statistics for enhanced locus discovery and genome-wide prior-
itization of causal variants. Methodologically, we show that for the
conventional score test in genetic association studies, one can directly
generate the knockoff feature importance score per variant without
the need to generate individual-level knockoffs for hundreds of
thousands of samples. The method requires only summary statistics
(i.e., Z-scores) from conventional GWAS while retaining the useful
features of knockoff-based inference. The method additionally allows
meta-analysis of studies with arbitrary sample overlap. We demon-
strate its performance in empirical simulations and two applications:
(1) meta-analysis study of Alzheimer’s disease (AD) aggregating five
genome-wide association studies, three whole-exome sequencing
studies and one whole-genome sequencing study; (2) analysis of 1403
individual binary phenotypes from UK Biobank data on 408,961 sam-
ples with European ancestry. These analyses demonstrate the appeal-
ing properties of the proposed method for robust discovery of

additional loci and ability to localize putative causal variants at each
locus. Additional discoveries made by the proposed method are fur-
ther supported by functional enrichment analyses and single-cell
transcriptomic analyses. The method is computationally efficient and
required only 5.45 h on one central processing units (CPU) to analyze
genome-wide summary statistics from the nine AD studies.

Results
Summary statistics-based multiple knockoff inference
We assume a study population of n independent individuals and p
genetic variants. Let Xi = Xi1, . . . ,Xiq

� �
be a vector of covariates,

Gi = Gi1, . . . ,Gip

� �
be a vector of genotypes for the ith individual, and Y i

be the phenotype with conditional mean μi given Xi and Gi . A com-
monly used statistical model for modeling genetic association is the
generalized linear model:

g μi

� �
=α0 +α

TXi +β
TGi, ð1Þ

where g μð Þ=μ for a continuous trait, and g μð Þ= logit μð Þ for a binary
trait. Without loss of generality, we assume that both phenotype and
genotype are centered and standardized to have mean 0 and variance
1. If there are covariates involved, Y can be centered at the conditional
mean given the covariates. Conventional GWAS performs a marginal
association test for each variant and controls for FWER. It tests against
hypothesis H0 : Y i ? Gij for j = 1, . . . ,p via a score test. The per-sample
score statistic can be written as GT

i Y i. The Z-scores aggregating all
samples can be written as

Zscore =
1ffiffiffi
n

p GTY ð2Þ

whereG is a n×p genotypematrix; Y = Y i, . . . ,Yn

� �T . Typical knockoff-
based inference contains four main steps: (1) generate one or multiple
knockoffs per variant and per sample; (2) calculate the feature
importance score for both original and knockoff variants, e.g. square
of a Z-score, Z2

score and the knockoff counterpart eZ2
score; (3) calculate

the feature statistic by contrasting the feature importance scores for
the original and knockoff variants; (4) implement the knockoff filter
procedure to select significant variants with FDR control7. Although
the Z-scores above are derived from a generalized linear model, it is
worth noting that knockoff inference holds without the explicit model
assumption. Unlike conventional score test or permutation analysis,
knockoff-based inference performs conditional tests that account for
linkage disequilibrium and controls FDR. It tests against hypothesis
H0 : Y i ? Gij ∣Gi,�j for j = 1, . . . ,p, where Gi,�j includes all genetic
variants except the jth variant.

The knockoff generation in step (1) can be computationally inten-
sive. The main contribution of this paper is to show that for this parti-
cular formof feature importance score (e.g., the conventional score test
as in genetic association studies), one candirectly generate the knockoff
feature importance score per variant without the need to generate
individual-level knockoffs for hundreds of thousands of samples. Our
method takes simple Z-scores as input and retains many useful features
of knockoff-based inference, except for the flexibility to incorporate
more sophisticated (non-linear) machine learning algorithms.

For a multiple-knockoff-based inference where each genetic var-
iant is pairedwithM knockoffs, we show that the knockoff counterpart
for Zscore can be directly generated by

eZscore =PZscore + E, with E ∼N 0,Vð Þ, ð3Þ

where eZscore = ðeZm
scoreÞ1mM is a pM dimensional vector and each eZm

score is
a p dimensional vector of Z-scores corresponding to themth group of
knockoffs; P and V are pM ×p and pM ×pM matrices respectively
obtained by solving a convex optimization problem (see “Methods”
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section). Note that the matrices P and V are derived from the LD
structure of the variants, which can be estimated by means of an
external reference panel when individual-level data are not available.
Intuitively, P can be viewed as a “projection matrix” that maps each
Z-score fromamarginal test to a Z-score that quantifies indirect effects
through other variants due to linkage disequilibrium. Therefore, the
contrast between Zscore and eZscore can prioritize causal variants that
have a direct effect on the outcome of interest. This way, the Z-scores
for knockoff variants can be efficiently obtained by “projecting” and
sampling from a multivariate normal distribution. We show that the
knockoff Z-scores generated by this approach are equivalent in
distribution to those calculated based on individual-level knockoffs,
thus enjoying all the desirable properties thereof. We present the
details of knockoff filter in “Methods” and the workflow in Fig. 1.

GhostKnockoff was derived for a particular form of Z-score
described above. In practice, we may obtain p-values from different
statistical models (e.g. linear model, logistic model, mixed model etc.,
with different covariate adjustments) and from different tests (e.g.
Wald’s test, likelihood ratio test, score test etc.). In such cases, we can
apply GhostKnockoff to Z-scores obtained by an inverse normal
transformation of p-values multiplied by the direction of effect, i.e.,
sign ×Φ�1 pvalue=2

� �
. In simulations, we have observed that the FDR

control remained robust as long as the p-values were computed using
tests with valid type I error rate. For example, for studies with related
samples, the p-values can be computed using a mixed model that
accounts for sample relatedness, such as GMMAT14, SAIGE15 and
fastGWA-GLMM16.We further discuss the robustnessofGhostKnockoff
in the Discussion section.

Meta-analysis of possibly overlapping studies
Suppose Z-scores from K independent studies with sample sizes
n1, . . . ,nK are available. We denote them as Z1,score,. . .,ZK ,score;
N =n1 + . . . +nK is the total number of samples including possible
duplicates. In general, the meta-analysis Z-score can be written as a
weighted sum of individual study Z-scores

Zscore =
X
k

wkZk,score ð4Þ

where wk is the weight assigned to the kth study17,18. The choice
wk =

ffiffiffiffiffiffiffiffiffiffiffiffi
nk=N

p
corresponds to a conventional meta-analysis Z-score

weighted by sample size. Studies with overlapping samples are common
in meta-analyses of genetic data, therefore we consider a weighting
scheme that accounts for possible sample overlap and that maximizes
the power of the meta-analysis. Intuitively, the optimal weights will up-
weight those studies with higher independent contribution and down-
weight the studies that largely overlap with others. In the “Methods”
section, we show that the optimal weights wk are given by solving

minimize
X

1 ≤ i,j ≤K

wiwjcor:Sij , subject to
X
k

wk
ffiffiffiffiffiffi
nk

p
= 1,wk ≥ 0, ð5Þ

where cor:Sij quantifies the study correlations due to sample overlap.
We propose a method based on the knockoff framework to estimate
cor:Sij (see “Methods” section). Note that, for case-control studies, nk

can be replaced by 4=ð 1
nk,case

+ 1
nk,control

Þ to better account for case-control
imbalance17.

Our proposal formeta-analysis of possibly overlapping studies via
knockoffs is tomimic a pooledmega-analysis, by revising the knockoff
generation to account for the possibility of duplicated samples. We
first consider a scenario where all studies in the meta-analysis are
homogeneous and have a shared LD structure. In the meta-analysis
setting we compute the knockoff Z-scores as

eZscore =
X
k

wk � PZk,score + γEk

� �
,Ek ∼N 0,Vð Þindependently for all k

ð6Þ

where

γ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

N

N̂ef f

� N̂ef f

N

vuut ,
N̂ef f

N
=

P
k
w2

kP
1≤ i,j ≤K

wiwjcor:Sij
ð7Þ

cor:Sij quantifies the correlation between studies i and j; wk

� �
1≤ k ≤K

are the solution of the above quadratic optimization problem. Note
that γ ≥ 1 can be thought of as a “dependency factor” that accounts for
sample overlap; meta-analysis of independent studies corresponds to
γ = 1, when cor:Sij =0, i≠j and subsequently N̂ef f =N. We present the
details in the “Methods” section.

Next, we consider a more general scenario where there are L
groups of studies with different LD structures across groups (e.g. each

Fig. 1 | Overview of GhostKnockoff.We present the workflow of GhostKnockoff
compared to conventional GWAS and knockoff inference based on same marginal
test statistics using individual level data. A Conventional GWAS. B Knockoff

inference using individual level data. We present the approach based on marginal
test statistics. C The proposed GhostKnockoff using Z-scores from conventional
GWAS as input.
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group could be of a different ancestry). We assume that each group l
includes Kl (homogenous) possibly overlapping studies with sample
sizes nlk and Z-scores Zlk,score; nl =

P
k
nlk . In the “Methods” section, we

show that the overall Z-score and its knockoff counterpart can be
computed as

Zscore =
1ffiffiffiffi
N

p
X

1≤ l ≤ L

ffiffiffiffiffi
nl

p � Zl,score, eZscore =
1ffiffiffiffi
N

p
X

1 ≤ l ≤ L

ffiffiffiffiffi
nl

p � eZl,score ð8Þ

where for the lth group Zl,score =
P
k
wlkZlk,score; eZl,score =

P
k
wlk �

PlZlk,score + γlElk

� �
with Elk ∼N 0,Vl

� �
independently for all l and k; Pl

and Vl can be obtained by solving the same convex optimization
problem in “Methods” section, using the LD structure of the corre-
sponding group. Intuitively, we perform the knockoff generation for
each group separately, and then aggregate the group Z-scores to
compute an overall Z-score and its knockoff.

Computational efficiency
GhostKnockoff is computationally efficient. Empirically, it only
required 11.5 hours on average with one CPU to analyze a pheno-
type from the UK Biobank, and 5.45 hours to meta-analyze the nine
AD genetic studies. This is significantly faster than the existing
knockoff methods that require individual level data, which can
take several days as reported in Sesia et al.11 and He et al.12. Note
that both the HMM method and the SCIT method for individual
level knockoff generation has a model complexity O npð Þ. By com-
parison, directly generating knockoff Z-scores as in GhostKnock-
off has a model complexity O pð Þ. A primary gain of computational
efficiency is from using a reference panel to pre-compute required
matrices (P and V as described above) for generating knockoff Z-
scores; P and V are pre-computed using the correlation (LD)
structure estimated from a reference panel. Moreover, the random
Gaussian term E can be pre-sampled given V . Therefore, the gen-
eration of knockoff Z-scores for a new study only involves few
steps of simple matrix multiplications. For scenarios where we
have Z-scores from multiple phenotypes or from multiple studies
that share the same LD structure, the same pre-calculated matrices
can be simultaneously applied. For new studies where the Z-scores
are not readily available, there are many new advances in com-
puting variant-level Z-scores and p-values efficiently for biobank
scale data. The proposed method can leverage other analytical
tools that efficiently compute variant-level Z-scores.

Power and FDR simulations
We performed simulations to empirically evaluate the performance of
GhostKnockoff, which include: (1) comparing knockoff inference
basedonsummary statistics vs. knockoff inference basedon individual
level data; (2) evaluating the proposed method that accounts for
sample overlap; (3) comparing multiple-knockoff inference vs. single
knockoff inference; (4) comparing knockoff inference vs. conventional
marginal association tests in terms of the prioritization of causal var-
iants. Note that the power comparisons between knockoff FDR control
and usual FWER control in a genome-wide setting have been exten-
sively studied by Sesia et al. (2020) and He et al. (2021), and therefore
we did not focus on these existing comparisons in this paper. Instead,
our simulation study focuses on method comparison in a local region.
We simulated genetic data directly using whole-genome sequencing
(WGS) data from the Alzheimer’s Disease Sequencing Project (ADSP).
The ADSP WGS data (NG00067.v5) are jointly called by the ADSP
consortium following the SNP/Indel Variant Calling Pipeline and data
management tool (VCPA)19. We restricted the sampling to individuals
with >80% European ancestry (estimated by SNPWeights v2.1 using
reference populations from the 1000 Genomes Consortium20,21). For
each replicate, we randomly drew individuals for two overlapping
studies with 2500 individuals per study and 2000 genetic variants

randomly selected from a 1Mb region near the APOE region
(chr19:44,909,011-45,912,650; hg38). We then restricted the simula-
tion studies to variants with minor allele counts > 25 and to variants
that are not tightly linked. We considered three levels of sample
overlap: 0% (independent), 25% (moderate) and 50% (high), with 0%,
25% and 50% samples in each study being present in the other study.
Details on the simulation studies can be found in the “Methods”
section.

First, we compare GhostKnockoff (GhostKnockoff-S and Ghost-
Knockoff-M, where S or M represents single and multiple knockoff
(five knockoff copies per variant), respectively) with the second-order
knockoff generator proposed by Candès et al. that requires individual-
level data (IndividualData Knockoff-S). We also extend the second-
order knockoff generator to the multiple knockoff setting and include
it in the comparison (IndividualData Knockoff-M). The methods that
require individual level data were applied to an oracle pooled dataset
that only contains unique samples. For a fair comparison, all methods
are based on the same feature importance scores, i.e. the squared
Z-scores from a marginal score test for association. We present the
results in Fig. 2 (A–F). As shown, allmethods have valid FDR control. In
terms of power, the proposed methods based on summary statistics
(GhostKnockoff-M/S) have consistent power as methods that require
individual level data (IndividualData Knockoff-M/S). The results also
hold when there is 25%/50% sample overlap. When there is sample
overlap, the power of GhostKnockoff-M/S becomes slightly lower than
IndividualData Knockoff-M/S. A likely explanation is that the study
correlation in this simulation setting is over-estimated and, subse-
quently, the proposed method becomes slightly conservative. In real
data applications, we will use genome-wide Z-scores to estimate the
sample correlation, which should be more accurate. This simulation
study also confirms the higher power of multiple knockoff inference
(GhostKnockoff-M) relative to single knockoff inference (Ghost-
Knockoff-S) at low target FDR (e.g. 0.05/0.10) and in the scenario with
small number of causal variants (10 in our setting) as shown by
Gimenez and Zou (2018)22. This is because the detection threshold of
the knockoff filter (the necessary number of independent signals
≈ 1

M × target FDR, whereM is the number of knockoff copies per variant) is
lower for multiple knockoffs compared to single knockoff. The power
of multiple knockoff inference will be eventually comparable to single
knockoff inference at high target FDR or in a genome-wide analyses of
polygenic traits as shown in He et al.12.

Second, we compare GhostKnockoff-M (target FDR = 0.1) with
conventional marginal tests used in GWAS, adjusted by Bonferroni
correction for FWER control (IndividualData marginal test-Bonferroni;
target FWER=0.05)or Benjamini-Hochbergprocedure for FDRcontrol
(IndividualData marginal test- Benjamini-Hochberg; target FDR = 0.1).
We show results for the settingwith 25% sample overlap. Since the FDR
control is more liberal than the FWER control, we focus on the prior-
itization of causal variants in this simulation study. For each replicate,
we calculate the proportion of identified variants being causal (1-FDR)
for each method. We observed that the causal proportion for
GhostKnockoff-M is substantially higher than for conventional mar-
ginal tests, because GhostKnockoff-M performs a conditional test, and
therefore can properly account for LD (Fig. 2G, H). Furthermore, the
causal proportion using the Benjamini–Hochberg procedure is lower
than that using the Bonferroni correction. Since the Benjamini-
Hochberg procedure assumes positive dependence among tests, it
may fail to control FDRundermore complex LD structure,whichmight
result in increased false positive rates. Therefore the conventional
marginal testing with Benjamini-Hochberg adjustment does not pro-
vide a valid approach for GWAS.

Finally, we compare multiple knockoff inference (GhostKnockoff-
M) with single knockoff inference (GhostKnockoff-S) in terms of the
randomness due to sampling knockoff copies, referred to as stability
of knockoff inference.We show results for the setting with 25% sample
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overlap. We fixed the genotype data and phenotype data, and
repeatedly performed knockoff inference. For each replicate, we
computed the W-statistic for each variant. Then we calculated the
standard deviation of the W-statistics per variant to quantify the var-
iation due to sampling knockoffs. The multiple knockoff procedure
shows less randomness due to sampling knockoffs compared to single
knockoff inference (Fig. 2I–J).

We have also performed additional comparisons with other
existing knockoff generators that require individual level data,
including the knockoff generator for Hidden Markov Models

(HMMs) proposed by Sesia et al. (2019) with number of states S =
50, and the sequential knockoff generator proposed by He et al.
(2021). We observed similar results as in comparison with the
second-order knockoff generator above (Supplementary Fig. 1). In
Supplementary Fig. 2, we present an empirical evaluation of the
robustness to study-specific rare variants, where 10%/20% rare
variants (minor allele frequency < 0.01) are randomly set to be
unobserved in each cohort. We observed that the method
remains valid, but requires slight modifications as described in
the “Methods” section.

Fig. 2 | Empirical simulation studies for power, FDR and stability. Two cohorts
are randomly sampled from the same population. A–F. Power and FDR based on
1000 replicates for different types of traits (quantitative and dichotomous) and
different levels of sample overlap (0%/25%/50%), with different target FDR varying
from 0 to 0.2. GhostKnockoff-M/S: the proposedmultiple/single knockoff method
based on the meta-analysis of Z-scores calculated separately from each individual

cohort. IndividualData Knockoff-M/S: knockoff inference based on individual level
data.G,H. Prioritization of causal variants. I, J. Stability of knockoff inference, with
25% overlap and 20% unobserved variants per study. The stability is quantified as
the standard deviation of feature statistics across 1000 replicates due to randomly
sampling knockoffs for a given dataset.
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Meta-analysis of Alzheimer’s disease genetics
We applied GhostKnockoff to aggregate summary statistics from nine
overlapping large-scale array-based genome-wide association studies,
and whole-exome/-genome sequencing studies. Specifically, the stu-
dies include (1) The genome-wide survival association study per-
formed on 14,406 AD case samples and 25,849 control samples by
Huang et al.23; (2) The genome-wide meta-analysis of clinically diag-
nosed AD and AD-by-proxy (71,880 cases, 383,378 controls) by Jansen
et al.24; (3) The genome-wide meta-analysis of clinically diagnosed AD
(21,982 cases, 41,944 controls) by Kunkle et al.25; (4) The genome-wide
meta-analysis by Schwartzentruber et al.26, aggregating Kunkle et al.
2019 and UK Biobank based on a proxy AD phenotype; (5) In-house
genome-wide associations study of 15,209 cases and 14,452 controls
aggregating 27 cohorts across 39 SNP array datasets, imputed using
the TOPMed reference panels27; (6, 7) Two whole-exome sequencing
analyses of data from The Alzheimer’s Disease Sequencing Project
(ADSP) by Bis et al.28 (5740 cases, 5096 controls), and Le Guen et al.29

(6008 cases, 5119 controls); (8) In-house whole-exome sequencing
analysis of ADSP (6155 cases, 5418 controls); (9) In-house whole-gen-
ome sequencing analysis of the 2021 ADSP release30 (3584 cases, 2949
controls). All studies focused on individuals with European ancestry.
We used LD matrices estimated using the high coverage whole-

genome sequencing data of the expanded 1000 Genomes Project31.
Due to the relatively small sample size of the 1000 Genomes Project
(503 individuals of European ancestry) used to estimate the LD
matrices, we restrict the analyses to common and low-frequency var-
iants with minor allele frequency >1%.

We present the estimated study correlations cor:Sijin Fig. 3A, and
the estimated optimal weights in Fig. 3B. The correlation results are
consistent with our knowledge of overlap and other factors, such as
differences in phenotype definition, analysis strategies (e.g. statistical
model), and quality control, that can affect the correlations between
these studies (see more details in Supplementary Materials). Similarly,
the weighting scheme up-weighted studies that are large in size and
carry independent information, and down-weighted studies that lar-
gely overlap with others. In the Supplementary Materials, we discuss
the consistency between the estimated study correlations and simila-
rities in the design of these studies.

We present the results of the meta-analyses of the nine studies in
Fig. 3C.We define two loci as independent if they are at least 1Mb away
fromeachother.We adopt themost proximal gene’s name as the locus
name, recognizing that it is not necessarily themost likely causal gene.
Our analysis identified in total 34 loci significant at FDR 0.05 and 50
loci significant at FDR 0.1. Supplementary Table 2 summarizes the 34

Fig. 3 | Meta-analysis of Alzheimer’s disease studies. A Study correlations esti-
mated using the proposed method. For each study, we present sequencing tech-
nology, sample size and number of variants. B Optimal combination of studies
estimated using the proposed method. Each bar presents the weight per study in
percentage, i.e. weight per study divided by the summation of all weights. C We

present theManhattan plot of W statistics (truncated at 100 for clear visualization)
from GhostKnockoff with target FDR at 0.05 (red) and 0.10 (blue). The results are
based on the optimal weights combining the nine studies. Variant density is shown
at the bottom of Manhattan plot (number of variants per 1Mb).
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loci at FDR 0.05. The results show thatmost of the associations exhibit
suggestive signals in individual studies, and most identified loci,
including existing and new ones, have the same direction of effects
across all studies, except very few loci where one dataset has an
opposite direction of effect, although not significant, relative to other
studies. Several new genes that were not reported in the latest AD
meta-analyses including Jansen et al. (2019), Kunkle et al. (2019) and
Schwartzentruber et al. (2021) are worth mentioning. For example,
LRPPRC (leucine-rich pentatricopeptide repeat motif containing pro-
tein) and APP (Amyloid beta precursor protein) have support for their
possible involvement in AD from multiple studies32. Furthermore,
Hosp et al. (2015) identified LRPPRC as a preferential interactor of APP
carrying the so-called Swedish mutation (APPsw), which causes early-
onset AD33. Among the new genes, TREM1, CYP3A7, SIGLEC11, IL34,
RBCK1,C16orf92,WWOX arewithin 1MBof novel loci reported in recent
studies by Wightman et. al. (2021)34 and Bellenguez et al.35.

To validate the results from the knockoff inference, we adopted
an alternative strategy when an independent replication study is not
available. Specifically, we applied the method to a subset of samples
and show that the identified variants are also replicated when we
increase the sample size. We considered GhostKnockoff analysis of
Kunkle et al. (2019), Schwartzentruber et al. (2021), and all nine studies.
Note that data from Kunkle et al. (2019) is a subset of Schwartzen-
truber et al. (2021); Schwartzentruber et al. (2021) is a subset of the
meta-analysis. We considered the replication of genetic variants. A
genetic variant is replicated if the same variant is also identified in the
larger studywith the samedirection of effect and a smaller p-value.We
present the results for FDR =0.05 and FDR =0.10 in Supplementary
Table 1 and Supplementary Fig. 3.

At FDR=0.05, we observed that 338 out of 385 (87.8%) variants by
GhostKnockoff analysis of Kunkle et al. (2019) are also replicated in the
analysis of Schwartzentruber et al. (2021); 447 out of 634 (70.5%) var-
iants identified by GhostKnockoff analysis of Schwartzentruber et al.
(2021) are also replicated in the proposed meta-analysis of all nine stu-
dies. At FDR=0.10, 370 out of 448 (82.6%) variants identified by
GhostKnockoff analysis of Kunkle et al. (2019) are also replicated in the
analysis of Schwartzentruber et al. (2021); 510 out of 724 (70.4%) variants
identified by GhostKnockoff analysis of Schwartzentruber et al. (2021)
are also replicated in the proposed meta-analysis of all nine studies.
Overall, we conclude that the proposed GhostKnockoff (conditional test
+ FDR control), though systematically different from the conventional
GWAS, is a valid approach to make reproducible genetic discoveries.

Finally, we present the results based on sample size weighted
combination as opposed to the proposed optimal weights in Supple-
mentary Fig. 4. We observed that GhostKnockoff with standard
weights identified 29 loci at FDR 0.05 and 46 loci at FDR 0.10, while
GhostKnockoff with proposed weighting scheme identified 34 loci at
FDR 0.05 and 50 loci at FDR 0.10.

Single-cell transcriptomics differential expression analyses
validate proximal AD genes
For the proximal genes (nearest genes to the lead variant) corre-
sponding to the 50 loci identified at FDR 0.10 in Fig. 3, we performed
differentially expressed gene (DEG) analyses using single-cell RNA
sequencing data (scRNAseq) from 143,793 single-nucleus tran-
scriptomes from 17 hippocampus (8 controls and 9 AD cases) and 8
cortex samples (4 controls and 4 AD cases)36. We performed the DEG
analysis stratified by 14 cell types, spanningmajor brain cell types (e.g.,
neurons, astrocytes, microglia) and cell types that reside in the vas-
cular, perivascular, and meningeal compartments, including endo-
thelial cells, pericytes and smooth muscle cells, fibroblasts,
perivascular macrophages and T cells. We adjusted for age, batch,
cellular detection rate, and for within-sample correlation by including
sample dummy variables as covariates.We used this fixed effectmodel
instead of a random effect model because the number of clusters is

small relative to the total number of cells. Among the 50 proximal
genes, 38 had expression measurements in the scRNAseq dataset. We
considered p-value threshold 0.05 for suggestive signals and a more
stringent Bonferroni correction0.05/38 =0.0013 for significant signals
(more details on the analyses are available in the “Methods” section).

We show the scRNAseq results (−log10(p-value) vs. log2 fold
change) in Fig. 4A. Overall, we observed a consistently higher pro-
portion of differentially expressed genes for the proximal genes
compared to all other 23496 genes that are observed in the scRNAseq
data (background genes), across the 14 cell types (Fig. 4B). Specifically,
we found that 25/38 (65.79%) genes exhibit suggestive signal (p < 0.05)
in at least one cell type, a significantly higher proportion compared
with the background genes (41.73%; p=4:4× 10�3 by Fisher’s exact
test; Fig. 4C). Among the genes identified by GhostKnockoff at FDR =
0.05, 69.23% exhibit suggestive signals (p < 0.05), similar to the pro-
portion for the proximal genes identified at FDR =0.10. We also
observed that the DEG signals are more pronounced for the genes
identified by GhostKnockoff compared to background genes (Fig. 4D;
p-values are generally smaller), showing a strong enrichment of DEG
signals for the proximal genes that reside in the loci identified by
GhostKnockoff.

Phenome-wide analysis of UK Biobank data
We applied GhostKnockoff separately to each of 1403 binary pheno-
types from theUKBiobankdatawith 408,961white British participants
(European ancestry). In this analysis, GhostKnockoff reduces to a
knockoff inference based on summary statistics from a single study.
We collected existing Z-scores calculated by Zhou et al. (2018) using
SAIGE, a method that controls for case-control imbalance and sample
relatedness15. GhostKnockoff was applied to each phenotype sepa-
rately to select associated genetic variants at FDR0.1. Similar to the AD
genetics analysis, we restrict the analyses to common and low-
frequency variants with minor allele frequency >1%.

We aim to illustrate two properties of GhostKnockoff inference
that are systematically different from a conventional GWAS analysis.
First, GhostKnockoff controls for FDR while conventional GWAS con-
trols FWER; Second, GhostKnockoff performs a conditional test while
conventional GWAS performs a marginal association test. We expect
that the more liberal FDR control will lead to more associated loci, but
the conditional test will reduce false positive findings due to LD con-
founding at each locus. For each phenotype, we count the number of
independent associated loci, i.e. loci more than 1Mb away from each
other. Within each locus, we count the number of genetic variants
passing the FDR0.1 threshold.We compareGhostKnockoff results and
results from conventional GWAS using SAIGE (with p-value threshold
5 × 10�8) in termsof thenumber of identified independent loci (FDRvs.
FWER) and thenumberof identified variants per locus (conditional test
vs. marginal test) (Fig. 5).

GhostKnockoff identifies generally more loci per disease pheno-
type (4.18-fold more discoveries on average, Figs. 5A, C) relative to
GWAS. This is not surprising given that we identify significant variants
at a more liberal threshold of FDR 0.1. More interesting, Ghost-
Knockoff identifies less genetic variants within each locus (52% less
variants on average after accounting for LD, Fig. 5B, C), even though
FDR control is more liberal than the FWER control. We additionally
present the results stratified by phecode category (phecodes are
grouped into different categories as in SAIGE) in Fig. 5D, E15. Again, we
observed that the proposed method consistently exhibits more loci
and less genetic variants within each locus across disease categories.

To evaluate the functional effect of the identified variants, we
performed functional enrichment analysis using 19 functional scores
included in regBase37, including: CADD38, DANN39, FATHMM-MKL40,
FunSeq241, Eigen42, Eigen_PC42, GenoCanyon43, FIRE44, ReMM45,
LINSIGHT46, fitCons47, FATHMM-XF48, CScape49, CDTS50, DVAR51,
FitCons252, ncER53, Orion54 and PAFA55. All scores are on the Phred
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scale. We partitioned the identified variants into three sets: 1. Variants
identified by conventional GWAS only; 2. GWAS discoveries that
overlap with knockoff inference; 3. Additional discoveries made by
knockoff inference. Each identified variant was MAF matched with 10
randomly selected background variants on the samechromosome. For
each major disease category, we calculated the ratio between the
average functional score of variants in a set and the average functional

score of background variants. A ratio higher than one indicates enri-
ched functional effects of the identified variants. We present the
results in Fig. 5F.

We observed that the additional discoveries made by knockoff
inference are significantly enriched in higher functional scores of
FunSeq2, Eigen_PC, GenoCanyon, FIRE, ReMM, LINSIGHT, fitCons,
DVAR, fitCons2, and PAFA (p-values with one-sample t-test are shown

Fig. 4 | Single-cell RNAseq data (n = 143793) analysis of the identified proximal
AD genes. A Differentially expressed genes (DEG) analysis using MAST imple-
mented in Seurat, comparing Alzheimer’s disease cases (AD) with healthy controls.
Each dot represents a gene. Colors represent different cell types. OPC: Oligoden-
drocyte progenitor cell. The black dashed line corresponds to p-value cutoff 0.05;
the gray dashed line corresponds to p-value cutoff 0.05/38 (number of candidate
genes) which accounts for multiple comparisons. For visualization purposes,

−log10(p) values are capped at 15 and abs(log2(fold change)) values are capped at
1.0. Positive log2 fold change corresponds to higher expression level in AD.
B Proportionof suggestive genes stratifiedby cell types.C Proportionof suggestive
genes in at least one cell type. P-values are calculated with two-sided Fisher’s exact
test.D Enrichment analysis of DEG nominal p-values relative to background genes.
P-values are calculated by MAST implemented in Seurat.
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in Supplementary Fig. 5). Note that most of these functional annota-
tion scores were proposed to predict regulatory effects of non-coding
variants. This is expected given that most variants identified by GWAS
and knockoff inference are in non-coding regions. Interestingly, PAFA,
which prioritizes non-coding variants associated with complex dis-
eases, shows the highest enrichment. These results illustrate that the

additional discoveries made by knockoff inference, though weaker in
terms of effect sizes, have putative regulatory effects on traits.

Discussion
We have proposed GhostKnockoff to perform knockoff-based infer-
ence without generating any individual-level knockoff variants.
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GhostKnockoff can be applied to commonly available summary sta-
tistics from conventional GWAS to improve the power to identify
additional, potentially weaker, associations and to prioritize the causal
variants at each locus. Additionally, GhostKnockoff can be applied to
meta-analysis of possibly overlapping studies. In applications to
phenome-wide analyses of UK Biobank data and a meta-analysis of
Alzheimer’s disease studies, we identified loci that were missed by
conventional marginal association tests with improved precision. The
additional discoveries are supported by functional enrichment ana-
lyses and single-cell transcriptomic analyses. These results demon-
strate the improved performance of GhostKnockoff in distinguishing
small effect loci that are potentially functional from noisy background
genome.

As with fine-mapping studies, using in-sample LD information is
best56. Oftentimes with large meta-analyses in-sample LD is unavail-
able, then the LD structure can be estimated from an external refer-
ence panel. Similar to other summary statistics-based methods, the
current method assumes a matched reference panel to ensure the
equivalence between knockoff inference based on individual level data
andGhostKnockoff.Mismatchbetween the LD in the target cohort and
the reference panel can increase the FDR. In our empirical studies and
real data analyses, we found that the LD structure estimated from the
appropriate population in the 1000Genome data is a reasonably good
approximation for common and low-frequency variants (MAF ≥ 1%).
The effect of LD misspecification is local, and therefore may affect
more the ability to prioritize the causal variants at each locus, and less
so the genome-wide locus discovery. For lower frequency variants,
larger reference panels, such as the TOPMed, gnomAD and Pan UKBB,
have become increasingly available. Recent studies have shown that
imputation quality of rare variants can be significantly improved by
using these reference panels. We expect that the performance of
GhostKnockoff on lower frequency variants can be improved similarly
by leveraging these reference panels to better estimate the LD
structure57–59.

Another limitation of the current method is the practical aspect
on how to deal with highly correlated variants. Although the knockoff
method helps to prioritize causal variants over associations due to LD,
it is difficult or impossible to distinguish causal genetic variants from
highly correlated variants, e.g. the variants in regions of high LD such
as the major histocompatibility complex (MHC). The presence of
tightly linked variants can diminish the power to identify the causal
ones. The current implementation applied a hierarchical clustering of
genetic variants prior to the analysis and then randomly selected one
variant in each cluster. Although this strategy ensures that each variant
has a representative variant included in the analysis, the statistical
power can be suboptimal when the underlying causal variant is not
selected. Alternatively, the group knockoff filter which groups variants
and thus requires exchangeability at the group rather thanvariant level
can be used60,61. It would be of interest to incorporate group knockoffs
into GhostKnockoff for improved power.

We focus on sample overlap because it is one of the main sources
of study correlation, but the method can be more general to quantify
study correlation due to other factors such as data generation, geno-
type coverage, imputation, and phenotype definition. In fact, the
proposed estimation of study correlation is valid if the correlation of

genome-wide Z-scores is correctly inferred. Our proposed method for
estimating the correlation is data driven. If other factors increase/
decrease the correlation, we think that the data-driven estimation will
remain valid. However, we do require that i-values from different
datasets are valid, and correctly reflecting the same disease-genetic
association. If the p-values in the original study are deflated or inflated,
the meta-analysis results can be biased subsequently. In addition, the
dependency factor for knockoff generation was derived based on
sample overlapping. In practice, we found that the analysis based on
this dependency factor reasonably reflects other factors, but the the-
oretical guarantee will require future investigations.

We note that GhostKnockoff was derived for a particular form of
Z-score, where both features and outcomes are standardized with
mean zero and standard deviation one, and samples within each study
are assumed independent. In practice available Z-scores can be based
on different statistical models (e.g. linearmodel, logisticmodel, mixed
model etc., with different covariate adjustments) and different tests
(e.g. Wald’s test, likelihood ratio test, score test etc.). Using empirical
simulation studies, we observed that GhostKnockoff is robust to such
variations (Fig. 2). Intuitively, the Z-scores from different analytical
procedures share very similar joint distribution, with a similarmarginal
distribution and correlations mainly determined by LD. The proposed
generation of knockoff Z-scores derived based on a particular form of
Z-score 1ffiffi

n
p GTY provides a reasonable approximation and therefore

the empirical FDR is under control. However, the theoretical justifi-
cation of the robustness of GhostKnockoff remains unclear and it will
be important to study in the future.

Methods
Knockoff-based inference using summary statistics
Our meta-analysis method is based on the second-order knockoff
generator, which was initially developed for Gaussian distribution and
then shown to remain empirically robust to certain deviations if the
estimated second-order moments are sufficiently close to those of the
underlying distribution.

The proposed knockoff-based inference using summary statistics
attempts to mimic the inference based on individual-level data. For
single-knockoff, we show in Supplementary Materials that the two
methods are equivalent if we directly generate

eZscore =PZscore + E, with E ∼N 0,Vð Þ ð9Þ

P = I � DΣ�1
� �

,V =2D� DΣ�1D ð10Þ

where I is a p×p identity matrix; Σ is the correlation matrix of Gi that
characterizes the linkage disequilibrium; D =diagðs1, . . . ,spÞ is a diag-
onal matrix obtained by solving the following convex optimization
problem:

minimize
Xp
j = 1

∣1� sj ∣, subject to
2Σ � Dk0,

sj ≥0,1 ≤ j ≤p

(
ð11Þ

This way, we can directly simulate the knockoff Z-scores from a
multivariate normal distribution. For a given dataset, the knockoff

Fig. 5 | Phenome-wide Analysis of 1403 binary phenotypes from UK biobank
data with 408,961 white British participants with European ancestry.
A, B Comparison between conventional GWAS and GhostKnockoff. C Summary of
(A) and (B). For each phenotype, we calculated the ratio between the total number
of identified loci/ the average number of proxy variants per shared locus by
GhostKnockoff and by conventional GWAS (capped at 500 for better visualization).
Panel (C) presents the average ratio (as in (A) and (B)) across 1403 phenotypes. The
standard error is calculated as standarddeviation of the ratioffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

total numberof phenotypes�1
p . D Distribution of the num-

ber of identified loci. We present boxplot (median and 25%/75% quantiles) for each

disease category. E For loci identified by both conventional GWAS and the pro-
posed method, we present median and 25%/75% quantiles of the number of iden-
tified variants per locus. For visualization purposes, we present the results for
disease phenotypes with ≥ 5 loci identified by either conventional GWAS or the
proposed multiple knockoff inference for panels (D, E). F Functional score of var-
iants identified by GhostKnockoff compared to that of genome-wide background
variants. Each data point in the boxplot corresponds to the average score of one
disease category. The boxplot presents median and 25%/75% quantiles.
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Z-scores will follow the same distribution as those calculated based on
generating individual-level knockoffs. Therefore, the summary
statistics-based knockoff generation retains the properties of
knockoff-based inference.

When p is ultra-high-dimensional as in genetic studies with mil-
lions of variants, it is not feasible to operate with genome-wide cor-
relation matrix Σ. In practice, we divided the genome into blocks that
can be loaded into memory and performed the intermediate calcula-
tion of the knockoff statistics. Then the knockoff statistics from all
blocks are aggregated for a genome-wide feature selection. This
practical solution does not model inter-block correlation. Conse-
quently, the current method cannot attenuate the confounding effect
of long-range LD.

Extension to multiple knockoffs
Herewe extend the single-knockoff approach to the casewithmultiple
knockoffs where the original feature and multiple knockoffs are
simultaneously exchangeable12,62.We show in SupplementaryMaterials
that the multiple-knockoffs counterpart for a Z-score can be directly
generated by

eZscore =PZscore + E, with E ∼N 0,Vð Þ ð12Þ

P =
I � DΣ�1

. . .

I � DΣ�1

0
B@

1
CA,V =

C C � D . . . C � D

C � D C . . . C � D

. . . . . . . . . . . .

C � D C � D . . . C

0
BBB@

1
CCCA ð13Þ

where eZscore is a pM-dimensional vector; I is a p×p identitymatrix; Σ is
the correlation matrix of Gi that characterizes the linkage dis-
equilibrium; C =2D� DΣ�1D; D=diagðs1, . . . ,spÞ is a diagonal matrix
given by solving the following convex optimization problem:

minimize
X
j

∣1� sj ∣, subject to
M + 1
M Σ � Dk0,

sj ≥0, 1≤ j ≤p:

(
ð14Þ

Knockoff filter to define the threshold τ and Q-value for FDR
control
After the knockoff Z-scores are generated, we calculate the feature
importance score as the element-wise square of Z-scores,

T =Z2
score,T

m = eZm
score

� �2 ð15Þ

and the knockoff statistics

κj = argmax
0≤m≤M

Tm
j ,τj =T

0ð Þ
j �median

1≤m≤M
T ðmÞ
j ð16Þ

wherem indicates themth knockoff. For the jth variant, κj denote the
index of the original (denoted as0) or the knockoff feature that has the
largest importance score; τj denotes the difference between the lar-
gest importance score and the median of the remaining importance
scores; T mð Þ

j is corresponding to the order statistics with
T 0ð Þ
j ≥ . . . ≥ T mð Þ

j . κ and τ obey the a property similar to the “flip-sign”
property in the single knockoff scenario12,62. In the multiple knockoff
scenario, κj plays a role as the sign, and τj quantifies the magnitude
that is invariant to swapping. Subsequently, we define aW -statistic to
quantify the magnitude of effect on the outcome as

W = T �median
1 ≤m≤M

Tm
	 


IT ≥ max
1≤m≤M

Tm ð17Þ

Variants with W > τ are selected, where τ is the threshold calcu-
lated by the knockoff filter. We note that this W -statistic is different
from the knockoff statistics in the original model-X knockoff paper7.
Instead, it is a function of the exact knockoff statistics that obey the
“flip sign” property in the context of multiple knockoff inference. We
use it as a convenient and intuitive representation of themagnitude of
association.We present the exact knockoff statistics that obey the “flip
sign” property and the corresponding knockoff filter in the “Methods”
section.

We define the threshold for the knockoff filter as

τ =min t >0 :

1
M + 1

M # κj ≥ 1,τj ≥ t
n o

#fκj =0,τj ≥ tg
≤q

8<
:

9=
; ð18Þ

In addition, we define the Q-value for a variant with statistics κ =0
and τ as

q= min
t ≤ τ

1
M + 1

M # κj ≥ 1,τj ≥ t
n o

#fκj =0,τj ≥ tg
ð19Þ

where
1
M + 1

M# κj ≥ 1,τj ≥ tf g
#fκj =0,τj ≥ tg is an estimate of the proportion of false dis-

coveries if we are to select all variants with feature statistic κj =0,τj ≥ t,
which is the knockoff estimate of FDR. For variants with κ≠0, we define
q= 1 and they will never be selected. Selecting variants with W > τ
where τ is calculated at target FDR=α is equivalent to selecting variants
with q≤α.

Meta-analysis of independent studies via knockoffs
Suppose Z-scores from K independent studies with sample sizes
n1, . . . ,nK are available, denoted as Z1,score,. . .,ZK ,score. We define the
meta-analysis Z-score as

Zscore =
1ffiffiffiffi
N

p
X
k

ffiffiffiffiffiffi
nk

p � Zk,score =
1ffiffiffiffi
N

p
X
k

Sk ð20Þ

where N =
P

knk is the total number of samples; Sk is the score test
statistic for the k-th study. Note that themeta-analysis Z-score is also a
summation of sample score statistics, where the correlation structures
across different studies are assumed to be the same. Following the
same derivation for a single study, we can generate the knockoff
feature importance by

eZscore =
1ffiffiffiffi
N

p
X
k

ffiffiffiffiffiffi
nk

p � PZk,score + Ek

� �

=
1ffiffiffiffi
N

p P
X
k

ffiffiffiffiffiffi
nk

p � Zk,score +
1ffiffiffiffi
N

p
X
k

ffiffiffiffiffiffi
nk

p � Ek ,
ð21Þ

whereEk ∼N 0,Vð Þindependently for all k:
Given independence between studies, 1ffiffiffi

N
p
P
k

ffiffiffiffiffiffi
nk

p � Ek still follows
the normal distribution N 0,Vð Þ. Therefore, the knockoff feature
importance statistic at meta-analysis level can be equivalently gener-
ated as

eZscore =PZscore + E, whereE ∼N 0,Vð Þ ð22Þ

The same knockoff filter procedure as before can be applied in
this setting.

Meta-analysis of possibly overlapping studies via knockoffs
The principle for meta-analysis of overlapping studies is to mimic a
pooled mega-analysis where the knockoff generation should be
revised to account for the presence of possibly duplicated samples.
One sufficient condition for a valid knockoff inference is that for a
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sample that is present in more than one study its knockoff version for
different studies should be identical instead of being independently
generated for each study.

Let Nef f ect be the effective number of samples, i.e. the total
number of unique samples; N be the total number of records
(including duplicates); d1, . . . ,dNef f ect

be the number of occurrences for
each unique sample, N =d1 + . . . +dNef f ect

. The feature importance
score is then defined as

Zscore =
1ffiffiffiffi
N

p
X
k

Sk =
1ffiffiffiffi
N

p
X

1≤ i≤Nef f ect

di � GT
i Y i ð23Þ

Since eGi ∣Gi ∼GiP
T + eTi with ei ∼N 0,Vð Þ,

eZscore =
1ffiffiffiffi
N

p
X
k

eSk =
1ffiffiffiffi
N

p
X

1≤ i≤Nef f ect

di � PGT
i Y i + eiY i

� �
ð24Þ

As ei ’s are independent for all i, in distribution it is equivalent to
generate

eZscore =
1ffiffiffiffi
N

p P
X
k

Sk +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
1≤ i ≤Nef f ect

d2
i Y

2
i

N

vuuut
E≈

1ffiffiffiffi
N

p P
X
k

Sk

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
1 ≤ i≤Nef f ect

d2
i

N

vuuut
E =PZscore + γE

ð25Þ

where E ∼N 0,Vð Þ. The approximation “≈” is because

P
1≤ i ≤Nef f ect

d2
i Y

2
i

Nef f ect
is an

approximation of Eðd2
i Y

2
i Þ= Eðd2

i ÞEðY 2
i Þ= Eðd2

i Þ since Y i has mean 0 and

variance 1, and di and Y i are independent. Then Eðd2
i Þ can be approxi-

mated by

P
1≤ i≤Nef f ect

d2
i

Nef f ect
; andwedefine γ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
1≤ i≤Nef f ect

d2
i

N

s
, which can be thought

of as a “dependency” factor that accounts for sample overlapping.When
d1 = . . . =dNef f ect

= 1, we have Nef f ect =N and γ = 1, i.e. the scenario with

independent studies. It is worth noting that our derivation is based on
the following two assumptions: first, different studies are combined by

using weights proportional to
ffiffiffiffiffiffiffiffiffiffiffiffi
nk=N

p
; second, each data point can be

observed in different studies with the same probability.

Calculation of the dependency factor γ
The number of duplicates per sample is typically unknown. We pro-
pose an approximation of γ as

γ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
1≤ i≤Nef f ect

d2
i

N

vuuut
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nef f ect

N
�

P
1≤ i ≤Nef f ect

d2
i

Nef f ect

vuuut
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nef f ect

N
� �d2

i

r
ð26Þ

Under the assumption that the N � Nef f ect duplicates are randomly
distributed, di follows a distribution 1 +BðN � Nef f ect ,

1
Nef f ect

Þ, where B �ð Þ
denotes a binomial distribution with N � Nef f ect trials and success
probability 1

Nef f ect
. Thus

d2
i ≈E d2

i

� �
= var di

� �
+ E di

� �2 = N � Nef f ect

� �
Nef f ect � 1
� �

Nef f ect
2 +

N
Nef f ect

 !2

ð27Þ

Since N is sufficiently large,

γ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N

Nef f ect
+

N
Nef f ect

� 1

 !
Nef f ect

N
� 1

N

	 
vuut ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

N
Nef f ect

� Nef f ect

N

s
ð28Þ

Study correlations and effective sample size
We propose a technique based on the proposed knockoff framework
to identify study correlations due to sample overlap. The method
requires GWAS summary statistics only and it naturally accounts for
LD. Specifically, we first calculate the study correlation matrix

cor:S = cor Z1,score � PZ 1,score, . . . ,ZK ,score � PZK ,score

� � ð29Þ

where Zk,score � PZk,score =DΣ
�1Zk,score, which is the expected differ-

ence between the original Z-score and the knockoff Z-score. It
quantifies the putative causal effect adjusting for nearby correlated
variants. Under the null hypothesis that genetic variants are indepen-
dent of the outcome of interest, the correlation between two
independent studies is expected to be 0. Thus non-zero off-diagonal
elements of cor:S quantifiy the sample overlap. In practice, we use
variants with |Z-score|≤ 1.96 to calculate cor:S to remove the
correlation due to polygenic effects.

We then estimate Nef f ect in a similar way as when estimating
effective sample sizes in association studies with sample relatedness63.
We calculate effective sample size as

N̂ef f ect =N � NP
1≤ i,j ≤K

ffiffiffiffiffiffiffiffiffi
ninj

p
cor:Sij ð30Þ

where ni is the sample size of the ith study. For example, N̂ef f ect =N if

all studies are independent; N̂ef f ect =N=K if all studies are identical.
NP

1≤ i,j ≤K

ffiffiffiffiffiffi
ninj

p
cor:Sij

is the ratio of the variance of
P
k
Sk ignoring sample

overlap over that accounting for sample overlap. Thus, we propose an
approximation of γ as

γ ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

N

N̂ef f ect

� N̂ef f ect

N

vuut ,
N̂ef f ect

N
=

NP
1≤ i,j ≤K

ffiffiffiffiffiffiffiffiffi
ninj

p
cor:Sij

ð31Þ

Connection with existing meta-analysis methods that allow
overlapping samples
A common approach in meta-analysis is to sum Z-scores and weight
them properly based on sample sizes, i.e.16,17.

Zscore =
1ffiffiffiffi
N

p
X
k

ffiffiffiffiffiffi
nk

p � Zk,score ð32Þ

When the Z-scores are independent, Zscore follows N 0,1ð Þ under the
null hypothesis. When there are overlapping samples, the variance is
no longer 1. Instead,

var Zscore

� �
=

1
N

X
1≤ i,j ≤K

ffiffiffiffiffiffiffiffiffi
ninj

p
cov Zi,score,Zj,score

� �
ð33Þ

var Zscore

� �
> 1 when there are overlapping studies and can be used to

compute an effective sample size. Specifically, the Zscore should be
reduced to

Z 0
score =

ffiffiffiffiffiffiffiffiffi
Nef f

N

r
� 1ffiffiffiffi

N
p

X
k

ffiffiffiffiffiffi
nk

p � Zk,score ð34Þ
where

Nef f =
N

var Zscore

� � =N � NP
1≤ i,j ≤K

ffiffiffiffiffiffiffiffiffi
ninj

p
cov Zi,score,Zj,score

� � ð35Þ
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covðZi,score,Zj,scoreÞ quantifies the sample overlap between studies i and
j, and can be estimated using genome-wide Z-scores. Note that
individual Z-scores are normalized, therefore covðZi,score,Zj,scoreÞ=
corðZi,score,Zj,scoreÞ. As discussed above, in the proposed approach, we
estimate it using the knockoff method that accounts for LD.

Meta-analysis of overlapping studies with heterogeneous LD
structure
Suppose there are L groups (e.g. different ancestries) with different LD
structure Σ1,. . .,ΣL, and each group includes Kl overlapping studies
with sample size nlk and Z-scores Zlk,score; nl =

P
k
nlk . We assume that

each group contains studies with the same LD structure. The overall
Z-score is computed as

Zscore =
1ffiffiffiffi
N

p
X
l,k

ffiffiffiffiffiffiffi
nlk

p � Zlk,score =
1ffiffiffiffi
N

p
X
l

ffiffiffiffiffi
nl

p � Zl,score ð36Þ

where the Z-score for each group is Zl,score =
1ffiffiffiffi
nl

p
P
k

ffiffiffiffiffiffiffi
nlk

p � Zlk,score. Let
Ief f ect,l be the index of unique samples corresponding to the lth group,
and Nl be its size. The knockoff Z-score can be obtained as

eZscore =
1ffiffiffiffi
N

p
X

1≤ i ≤Nef f ect

di � eGT
i Y i =

1ffiffiffiffi
N

p
X

1≤ l ≤ L

X
i2Ief f ect,l

di � PlG
T
i Y i + eilY i

� �
,

ð37Þ
where eilN 0,Vl

� �
independently for all i and l. Note that

P
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diY ieil

still follows a normal distribution
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
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d2
i Y

2
i

s
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ð38Þ
where El ∼N 0,Vl

� �
independently for all l. Thus, the knockoff Z-score

can be generated by

eZscore =
1ffiffiffiffi
N

p
X

1≤ l ≤ L

ffiffiffiffiffi
Nl

p
� eZl,score ð39Þ

whichmeans that it can be generated by the weighted summation
of the knockoff Z-scores generated for each individual group.

Meta-analysis with optimal weights
Whenmeta-analyzing studies with overlapping samples, we would like
to down-weight studies that are largely overlapping with others. In
general, the proposed meta-analysis approach can be written as

Zscore =
X
k

wkZk,score =
X
k

wk
ffiffiffiffiffiffi
nk

p � 1ffiffiffiffiffiffi
nk

p Zk,score: ð40Þ

Assuming that the effect sizes per variant fromdifferent studies are the
same, 1ffiffiffiffi

nk
p Zk,score is entry-wise in the same order of μ where μ is

constant that quantifies themarginal association under the alternative
hypothesis. We aim to maximize

Zscore

sd Zscore

� � =
P
k
wkZk,scoreffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

1≤ i,j ≤K
wiwjcor:Sij

r ∼

P
k
wk

ffiffiffiffiffiffi
nk

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
1≤ i,j ≤K

wiwjcor:Sij
r � μ ð41Þ

which is equivalent to

minimize
X

1 ≤ i,j ≤K

wiwjcor:Sij , subject to
X
k

wk
ffiffiffiffiffiffi
nk

p
= 1,wk ≥0: ð42Þ

Wenote that this is similar to the optimal weights proposed by Lin
and Sullivan (2009), except for the additional constraintwk ≥017. It is a
convex optimization problem with a unique solution which can be
efficiently solved by standard software such as the CVXR package in R.
With the proposed weights, we revise the calculation above of the
dependency factor as

γ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 +

N

N̂ef f

� N̂ef f

N

vuut ,
N̂ef f

N
=

P
k
w2

kP
1≤ i,j ≤K

wiwjcor:Sij
ð43Þ

It is worth noting that the form of γ was derived for weights
ffiffiffiffi
nk
N

p
.

Theoretically, the exact form of γ should be further revised to reflect
the change in weights, which can be complicated to compute in
practice.Hereweuse this formasanapproximation, andwe found that
it empirically controls FDR verywell in the presence of sample overlap.

Practical strategy for study-specific rare variants
Another possible and often overlooked complication in meta-analyses
of genetic studies is the unequal coverage of variants across studies
due to different genotyping platforms and/or different imputation
panels for individual studies, which results in the presence of “study-
specific” rare variants (MAF < 0.01) that are measured in only some of
the studies. One suboptimal solution is to only include variants mea-
sured across all studies. Alternatively, to maximize the power of
genetic discovery, all variantsmay be included in themeta-analyses. In
the presence of study-specific rare variants, we propose to calculate
the overall Z-score and its knockoff counterpart as

Zscore =
X
k

wk � CkZk,score, eZscore ∼
X
k

wk � Ck PZk,score + γEk

� �
ð44Þ

whereCk is a diagonalmatrixwith ckj = 1 if the jth variant is observed in
study k and ckj =0 otherwise; Ek ∼Nð0,V Þ independently for all k.
Intuitively, we generate modified knockoff Z-scores PZk,score + γEk for
each study and combine them as one meta-analysis knockoff Z-score.
When a variant is notmeasured in a study, we propose coding both its
Z-score and knockoff Z-score for that study as 0. This way the study
does not contribute to themeta-analysis Z-score/knockoff Z-score. It is
worth noting that knockoff inference is scale-free because the feature
selection is based on a contrast between Zscore and eZscore. Therefore, it
does not require rescaling Zscore and eZscore to account for the reduced
variation due to study-specific variants.

Practical strategy for tightly linked variants
Although the knockoff method helps to prioritize causal variants over
associations due to LD, it is difficult or impossible to distinguish causal
genetic variants from highly correlated variants. The presence of
tightly linked variants can diminish the power to identify the causal
ones. We applied a hierarchical clustering of genetic variants prior to
the analysis, where variants in the same cluster have a pair-wise cor-
relation ≥0:75. Then we restricted the analysis to one randomly
selected representative variant in each cluster. This ensures that each
genetic variant in the genomehas a highly correlated representative to
be included in the analysis and the analysis is unbiased. On average
(based on the nine AD studies), we observed that 37.9% variants can be
matched with the 1000 Genome reference panel for the proposed
GhostKnockoff analysis after this pruning procedure. That is, on
average, each variant represents 2.64 variants in the same cluster.
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Empirical power and FDR simulations
For each replicate, we first generated two overlapping studies (2500
individuals per study) with genetic data on 2000 common and rare
genetic variants randomly selected from a 1Mb region near the APOE
region (chr19:44909011-45912650; hg38) in the ADSP study. We then
restricted the simulations to variants with minor allele counts >25 to
ensure stable calculation of summary statistics (e.g. p-values). Since
the simulations here focus onmethod comparison to identify relevant
clusters of tightly linked variants, we simplify the simulation design by
keeping one representative variant from each tightly linked cluster.
Specifically, we applied hierarchical clustering such that no two clus-
ters have cross-correlations above a threshold value of 0.75 and then
randomly choose one representative variant from each cluster to be
included in the simulation study. To simulate multiple causal variants,
we randomly set 10 variants in the 1Mb region to be causal, with a
positive effect on the quantitative/dichotomous trait as follows:

Quantitative trait : Y i =Xi1 +β1Gi,1 + . . . + β10Gi,10 + ε
Q
i ð45Þ

Dichotomous trait : g μi

� �
=β0 +Xi1 +Xi2 +β1Gi,1 + . . . + β10Gi,10 ð46Þ

where Xi1 ∼N 0, 1ð Þ, εQi ∼N 0, 3ð Þ, Xi2 ∼N 0,1ð Þ and they are all indepen-

dent; Xi1 is the observed covariate that is adjusted in the analysis; εQi
and Xi2 reflect variation due to unobserved covariates; ðGi,1, . . . ,Gi,10Þ
are selected risk variants; g xð Þ= logð x

1�xÞ and μi is the conditional mean
of Y i; for dichotomous trait, β0 is chosen such that the prevalence is
10%. We set the effect βj =

affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mj ð1�mj Þ

p , where mj is the MAF for the jth

variant. We define a such that the variance due to the risk variants,

β2
1var g1

� �
+ . . . +β2

10var g10

� �
, is 1. We applied the proposed methods

to the region as described before to analyze single variants. For each
replicate, the empirical power is defined as the proportion of detected
variants among all causal variants; the empirical FDR is defined as the
proportion of non-causal variants among all detected variants. We
simulated 1000 replicates and calculated the average empirical power
and FDR.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The manuscript used summary statistics from existing studies from
the UK Biobank available at https://pheweb.org/UKB-SAIGE/. The
summary statistics from each GWAS for Alzheimer’s disease can be
found at https://ctg.cncr.nl/software/summary_statistics, https://www.
niagads.org/datasets, andhttps://www.ebi.ac.uk/gwas/. Specifically, (1)
The genome-wide survival association studyperformedbyHuang et al.
2017 (NIAGADS ID: NG00058); (2) The genome-wide meta-analysis by
Jansen et al. 201944 (available through: https://ctg.cncr.nl/software/
summary_statistics); (3) The genome-wide meta-analysis by Kunkle
et al. 2019 (NIAGADS ID: NG00075); (4) The genome-wide meta-ana-
lysis by Schwartzentruber et al. 2021 (GWAS catalog ID:
GCST90012877); (5) In-house genome-wide associations study impu-
ted using the TOPMed reference panels (see Supplementary Table 3);
(6,7) Twowhole-exome sequencing analyses of data from ADSP by Bis
et al. 2020 (NIAGADS ID: NG00065), and Le Guen et al. 2021 (NIAGADS
ID: NG000112); (8) In-housewhole-exomesequencing analysis of ADSP
(NIAGADS ID: NG00067.v5); (9) In-house whole-genome sequencing
analysis of ADSP (NIAGADS ID: NG00067.v5). The single-cell RNASeq
data for the candidate genes are available in the GEO database under
accession code GSE163577. The results of our analysis of UK Biobank
and AD genetics can be downloaded at: zihuaihelab.github.io.

Code availability
We have implemented GhostKnockoff in a computationally efficient R
package that can be accessed at https://cran.r-project.org/web/
packages/GhostKnockoff/.
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