
This paper is included in the Proceedings of the

17th USENIX Symposium on Networked Systems Design

and Implementation (NSDI ’20)
February 25–27, 2020 • Santa Clara, CA, USA

978-1-939133-13-7

Open access to the Proceedings of the
17th USENIX Symposium on Networked

Systems Design and Implementation
(NSDI ’20) is sponsored by

Ghostor: Toward a Secure Data-Sharing
System from Decentralized Trust

Yuncong Hu, Sam Kumar, and Raluca Ada Popa, University of California, Berkeley

https://www.usenix.org/conference/nsdi20/presentation/hu-yuncong

Ghostor: Toward a Secure Data-Sharing System from Decentralized Trust

*Yuncong Hu, *Sam Kumar, and Raluca Ada Popa

University of California, Berkeley

Abstract

Data-sharing systems are often used to store sensitive data.

Both academia and industry have proposed numerous solu-

tions to protect the user privacy and data integrity from a

compromised server. Practical state-of-the-art solutions, how-

ever, use weak threat models based on centralized trust—they

assume that part of the server will remain uncompromised, or

that the adversary will not perform active attacks. We propose

Ghostor, a data-sharing system that, using only decentralized

trust, (1) hides user identities from the server, and (2) allows

users to detect server-side integrity violations. To achieve (1),

Ghostor avoids keeping any per-user state at the server, requir-

ing us to redesign the system to avoid common paradigms

like per-user authentication and user-specific mailboxes. To

achieve (2), Ghostor develops a technique called verifiable

anonymous history. Ghostor leverages a blockchain rarely,

publishing only a single hash to the blockchain for the entire

system once every epoch. We measured that Ghostor incurs a

4–5x throughput overhead compared to an insecure baseline.

Although significant, Ghostor’s overhead may be worth it for

security- and privacy-sensitive applications.

1 Introduction
Systems for remote data storage and sharing have seen

widespread adoption over the past decade. Every major cloud

provider offers it as a service (e.g., Amazon S3, Azure Blobs),

and it is estimated that 39% of corporate data uploaded to

the cloud is related to file sharing [51]. Given the relentless

attacks on servers storing data [45], a long-standing problem

in academia [14, 31, 35, 41, 49, 55, 60, 64, 75, 87] and indus-

try [27, 46, 52, 77, 98] has been to provide useful security

guarantees even when the storage server, and some users, are

compromised by an adversary.

To address this, early systems [35, 48] have users encrypt

and sign files. However, a sophisticated adversary can still:

• observe metadata about users’ identities [24, 38, 47, 102].

Even if the files are encrypted, the adversary sees which

users are sharing a file, which user is accessing a file at a

given time, and the list of users in the system. Fig. 1 shows

an example where the attacker can conclude that Alice has

cancer from such metadata. Further, this allows the attacker

to learn the graph of user social relations [81, 89].

• perform active attacks. Despite the signatures, an adversary

can revert a file to an earlier state as in a rollback attack,

or hide users’ updates from each other as in a fork attack,

without being detected. These are dangerous if, for example,

*Sam Kumar and Yuncong Hu contributed equally to this work. They

are listed in alphabetical order by last name.

E2EE Systems Ghostor's Anonymous E2EE
Alice and BobMD have accounts This system has unknown users
Alice owns medical profile file F
Alice and BobMD have access to F
Alice reads F at 2pm
BobMD writes to F at 3pm

File F exists with unknown owner
F's Access Control List is unknown
Unknown reads F at 2pm
Unknown (could be same as
above) writes to F at 3pmGoogle search says BobMD

is an oncologist. Each of
these tells me that Alice
might suffer from cancer.
Figure 1: An example of what a server attacker sees in a

typical E2EE system versus Ghostor’s Anonymous E2EE

the shared file is Alice’s medical profile, and she does not

learn that her doctor changed her treatment.

Research over the past 15 years has striven to mitigate these

attacks by providing anonymity—hiding users’ identities from

the storage server—or verifiable consistency—enabling users

to detect rollback and fork attacks. In achieving these stronger

security guarantees, however, state-of-the-art systems employ

weaker threat models that rely on centralized trust: a trust

assumption on a few specific machines. For example, they rely

on a trusted party [66,90], split the server into two components

assuming one is honest [49, 54, 74], or assume the adversary

is honest-but-curious (not malicious) [7, 16, 65, 104] meaning

the attacker does not change the server’s data or execution.

Attackers have notoriously performed highly targeted at-

tacks, spreading malware with the ability to modify software,

files, or source code [62, 106, 107]. In such attacks, a deter-

mined attacker can compromise any few central servers. Ide-

ally, we would avoid any trust in the server or other clients, but

unfortunately, that is impossible: Mazières and Shasha [69]

proved that, if one cannot assume that clients are reliably on-

line [55], clients cannot detect fork attacks without placing

some trust in the server. Hence, this paper asks the question:

Can we achieve strong privacy and integrity guarantees in a

data-sharing system without relying on centralized trust?

To answer this question, we design and build Ghostor,

an object store based on decentralized trust that achieves

anonymity and verifiable linearizability (abbreviated VerLin-

ear). At a high level, anonymity1 means that the protocol

does not reveal directly to the server any user identity with

any request, as previously defined in the secure storage litera-

ture [54, 65, 74, 104]. As shown in Fig. 1, the server does not

see which user owns which objects, which users have read or

1Outside of secure storage, anonymity is sometimes defined differently.

In secure messaging, for example, an anonymous system is expected to hide

the timing of accesses [97] and which files/mailboxes are accessed, but not

necessarily the system’s membership [26].

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 851

Hides which users are part of the system

Hides which user makes each access

Hides the ACL of each object

Hides which object is accessed

Hides the data in each object

Hides the type of each access (read or write)Gl
ob

al

Ob

liv
iou

sn
es

s

E2
EE

An
on

ym
ity

An
on

ym
ity

 +
 E

2E
E

(G
ho

sto
r)

M
et

ad
at

a-
Hi

din
g

(G
ho

sto
r-M

H)

Hides the timing of accesses

Figure 2: Information leakage in a data-sharing system and

associated privacy properties

write permissions to a given object, or even who are the users

of the system. The server essentially sees ghosts accessing the

storage, hence the name “Ghostor.” VerLinear means clients

can verify that each write is reflected in later reads, except

for benign reordering of concurrent operations as formalized

by linearizability [42]. To achieve these properties, we build

Ghostor’s integrity on top of a consistent storage primitive

based on decentralized trust, like a blockchain [17, 73, 105]

or verifiable ledger [30, 44], while using it only rarely.

1.1 Hiding User Identities

Achieving anonymity in practical data-sharing systems

like Ghostor is difficult because common system design

paradigms, like user login, per-user mailboxes on the server,

and client-side caching, let the server track users. We re-

architect the system to avoid these paradigms (§4), using

data-centric key distribution and encrypted key lists instead of

server-side ACLs. Like prior systems [4,33,57], Ghostor uses

cryptographic keys as capabilities, allowing the server and

other users to verify each access is performed by an autho-

rized user. Ghostor also leverages this technique to achieve

anonymity by having all users authorized in a particular way

share the same capability, and by distributing these capabili-

ties to users without revealing ACLs to the server. We find this

technique, anonymously distributed shared capabilities, inter-

esting because anonymity is not typically a goal of public-key

access control [4, 33] or capability-based systems [63, 72, 84].

An additional challenge is to guard against resource abuse

while preserving anonymity. This is typically done by en-

forcing per-user resource quotas (e.g., Google Drive requires

users to pay for additional space), but this is incompatible

with Ghostor’s anonymity. One solution is for users to pay

for each operation via an anonymous cryptocurrency (e.g.,

Zcash [105]), but this puts an expensive blockchain operation

in the critical path. To avoid this, Ghostor leverages blind sig-

natures [18, 22, 23] to allow a user to pay the Ghostor server

for service in bulk and in advance, while removing the linkage

between payments and operations.

Relationship to obliviousness. Fig. 2 positions Ghostor’s

anonymity with respect to other privacy properties. Global

obliviousness [7, 66], which hides which object is accessed

across all uncompromised objects and users in the system, is

orthogonal to Ghostor’s anonymity, which hides which user

performs each access. Obliviousness and anonymity are also

complementary: (1) In some cases, without obliviousness,

users may be identified based on access patterns. (2) Without

anonymity, knowing which user issued a request may reveal

information about what data that request may access. We view

Ghostor’s techniques for anonymity as a transformation:

• If applied to an E2EE system, we obtain Ghostor, an

anonymous E2EE system.

• If applied to a globally oblivious scheme, we obtain

Ghostor-MH, a data-sharing scheme that hides all

metadata (except when initializing a group of objects or

redeeming payments, as explained in Appendix D).

Hiding metadata from a malicious adversary, as in Ghostor-

MH, is a very strong guarantee—existing globally oblivious

schemes inherently reveal user identities [66] or assume the

adversary is honest-but-curious [7, 65]. However, globally

oblivious data-sharing schemes, like Ghostor-MH, are theo-

retical schemes that are far from practical. Thus, Ghostor-MH

is only a proof of concept demonstrating the power of Ghos-

tor’s techniques to lift a globally oblivious scheme all the way

to virtually zero leakage for a malicious adversary.

1.2 Verifiable Consistency
To provide VerLinear, prior work has clients sign hashes [55]

so the clients can verify that they see the same hash, or store

hashes on a separate hash server [49], trusted not to collude

with the storage server. Neither technique can be used in

Ghostor: client signatures are at odds with anonymity, and the

hash server is a trusted party, which Ghostor aims to avoid.

One way to adapt the prior designs to Ghostor’s decen-

tralized trust is to store hashes on a blockchain, which can

be accomplished by running the hash server in a smart con-

tract. Unfortunately, this design is too slow to be practical.

The client posts a hash on the blockchain for every object

write, which is expensive: blockchains incur high latency

per transaction, have low transaction throughput, and require

cryptocurrency payment for each transaction [17, 73, 105].

To sidestep the limitations of a blockchain, we design Ghos-

tor to only interact with the blockchain rarely and outside of

the critical path. Ghostor divides time into intervals called

epochs. At the end of each epoch, the Ghostor server publishes

to the blockchain a small checkpoint, which summarizes the

operations performed during that epoch for all objects and

users in the system. Each user can then verify that the re-

sults of their accesses during the epoch are consistent with the

checkpoint. The consistency properties of a blockchain ensure

all clients see the same checkpoint, so the server is committed

to a single history of operations and cannot perform a fork

attack. Commit chains [53] and monitoring schemes [15, 93]

are based on similar checkpoints, but Ghostor applies them to

object storage while maintaining users’ anonymity.

A significant obstacle is that a hash-chain-based history

is not amenable to concurrent appends. Each entry in the

history contains the hash of the previous entry, causing one

852 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Goal Technique

Anonymous user access

control

Anonymously distributed

shared capabilities (§4)

Anonymous server in-

tegrity verification

Verifiable anonymous history

(§5)

Concurrent operations

on a single object

Optimized GETs, two-phase

protocol for PUTs (§5.4)

Anonymous resource

abuse prevention

Blind signatures and proof of

work (§6)

Hiding user IP addresses Anon. network, e.g., Tor (§8)

Table 1: Our goals and how Ghostor achieves each one

operation to fail if a concurrent operation appends a new

entry. Existing techniques for concurrent operations, such

as SUNDR’s VSLs [64], reveal per-user version numbers

that would undermine Ghostor’s anonymity. Our insight in

Ghostor is to have the server, not the client, populate the

hash of the previous entry when appending a new entry. To

make this safe despite a malicious adversary, we carefully

design a conflict resolution strategy, involving multiple linked

entries in the history for each write, that prevents attackers

from manipulating data via replay or time-stretch attacks.

We call the resulting design a verifiable anonymous history.

1.3 Summary of Contributions
Our goals and techniques are summarized in Table 1. Overall,

this paper’s contributions are:

• We design an object store providing anonymity and verifi-

able linearizability based only on decentralized trust.

• We develop techniques to (1) share capabilities for

anonymity and distribute them anonymously, (2) create

and checkpoint a verifiable anonymous history, and (3)

support concurrent operations on a single object with a

hash-chain-based history.

• We combine these with existing building blocks to instanti-

ate Ghostor, an object store with anonymity and VerLinear.

• We also apply these to a globally oblivious scheme to

instantiate Ghostor-MH, which hides nearly all metadata.

We also implemented Ghostor and evaluated it on Amazon

EC2. Overall, Ghostor brings a 4-5x throughput overhead on

top of a simplistic and completely insecure baseline. There

are two types of latency overhead. Completing an individ-

ual operation takes several seconds. Afterward, it may take

several minutes for a checkpoint to be incorporated into the

blockchain, to confirm that no active attack has occurred for a

batch of operations. We explain how these latencies play out

in the context of a particular application, EHR Sharing (§7.1).

2 System Overview
Ghostor is an object store, which stores unstructured data

items (“objects”) and allows shared access to them by multiple

users. We instantiate Ghostor as an object store (as in Amazon

S3 or Azure Blobs) because it is a basic primitive on top of

which more complex systems can be built. Fig. 3 illustrates

Ghostor’s architecture. Multiple users, with separate clients,

Ghostor Server

Blockchain checkpointscheckpoints

Verification Daemon

Ghostor

Library

digests

Ghostor Client

Application

alarm

StorageServer SideUser Side

verifiable

anonymous history

root

hash

…

…

…

Figure 3: System overview of Ghostor. Shaded areas indicate

components introduced by Ghostor.

have shared access to objects on the Ghostor server.

Server. The Ghostor storage server processes requests from

clients. At the end of each epoch, the server generates a single

small checkpoint and publishes it to the blockchain.

Client. The client software consists of a Ghostor library,

linked into applications, and a verification daemon, which

runs as a separate process. The Ghostor library receives re-

quests from the application and interacts with the server to

satisfy each request. Upon accessing an object, the library

forwards a digest summarizing the operation to the verifi-

cation daemon. At the end of each epoch, the daemon (1)

fetches object histories from the server, (2) verifies that they

are consistent with the server’s checkpoint on the blockchain,

and (3) checks that the digests collected during the epoch are

consistent with the object histories, as explained in §5.

The daemon stores the user’s keypair. If a user loses her se-

cret key, she loses access to all objects that she created or was

granted access to. Similarly, an attacker who steals a user’s

secret key can impersonate that user. To securely back up her

key on multiple devices, a user can use standard techniques

like secret sharing [82, 83, 99]. A user who accesses Ghostor

from multiple devices uses the same key on all devices.

Application developers interact with Ghostor using the

API below. Developers can work with usernames, ACLs, and

object IDs, but Ghostor clients will not expose them to the

Ghostor server. Below is a high-level description of each API

call; a step-by-step technical description is in Appendix A.

♦ create_user(): Creates a Ghostor user by generating keys

for a new user. This operation runs entirely in the Ghostor

client—the server does not know this operation was invoked.

♦ user.pay(sum): Users pay the server through an anonymous

cryptocurrency such as Zcash [105], and obtain tokens from

the server proportional to the amount paid. These tokens can

later be anonymously redeemed and used as proof of payment

when invoking the below API functions.

♦ user.create_object(id): Creates an object with ID id,

owned by user who invokes this. The client expends one

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 853

token obtained from a previous call to pay. The id can be a

meaningful name (e.g., a file path). It lives only within the

client—the server receives some cryptographic identifier—so

different clients can assign different ids to the same object.

♦ user.set_acl(id, acl): The user who invokes this must be the

owner of the object with ID id. This function sets a new ACL

for that object. For simplicity, only the owner of an object can

set its ACL, but Ghostor can be extended to permit other users

as well. The client encodes acl into an object header that hides

user identities, as in §4. If new users are given access, they

are notified via an out-of-band channel. Existing data-sharing

systems also have this requirement; for example, Dropbox and

Box send an email with an access URL to the user. In Ghostor,

all keys are transferred in-band; the out-of-band channel is

used only to inform the user that she has been given access.

Ghostor does not require a specific out-of-band channel; for

example, one could use Tor [29] or secure messaging [95,97].

♦ user.get_object(id), user.put_object(id, content): The

user can GET or PUT an object if permitted by its ACL.

3 Threat Model and Security Guarantees
Against a malicious attacker who has compromised the server,

Ghostor provides:

• verifiable linearizability, as described in §3.2, and

• a notion of user anonymity, described in §3.3: briefly, it

does not reveal user identities, but reveals object access

patterns. Ghostor-MH additionally hides access patterns.

Ghostor does not protect against attacks to availability. Nev-

ertheless, its anonymity makes it more difficult for the server

to selectively deny service to (or fork views of) certain users.

Users, and the Ghostor client instances running on their behalf,

can be malicious and can collude with the server.

Formal definitions and proofs for these properties require

a large amount of space, so we relegate them to Appendix E

and Appendix F. Below, we include only informal definitions.

3.1 Assumptions
Ghostor is designed to derive its security from decentralized

trust. Thus, our threat model assumes an adversary who can

compromise any few machines, as described below.

Blockchain. Ghostor makes the standard assumption that the

blockchain is immutable and consistent (all users see the same

transaction history). This is based on the assumption that, in

order to attack a blockchain, the adversary cannot simply com-

promise a few machines, but rather a significant fraction of

the world’s computing power. Ghostor’s design is not tied to

a specific blockchain. Our implementation uses Zcash [105]

because it supports both public and private transactions; we

use Zcash’s private transactions for Ghostor’s anonymous pay-

ments. The privacy guarantees of Zcash can be implemented

on top of other blockchains as well [11].

Network. We assume clients communicate with the server in

a way that does not reveal their network information. This can

be done using mixnets [21] or secure messaging [95,97] based

on decentralized trust. Our implementation uses Tor [29].

3.2 Verifiable Linearizability

If an attack is immediately detectable to a user—for example,

if the server fails to honor payment or provides a malformed

response (e.g., bad signature)—we consider it an attack on

availability, which Ghostor does not prevent.

Clients should be able to detect active attacks, including

fork and rollback attacks. Some reordering of concurrent op-

erations, however, is benign. We use linearizability [42] to

define when reordering at the server is considered benign or

malicious. Informally, linearizability requires that after a PUT

completes, all later GETs return the value of either (1) that PUT,

(2) a PUT that was concurrent with it, or (3) a PUT that comes

after it. We provide a more formal definition in Appendix

F. Ghostor provides verifiable linearizability (abbreviated

VerLinear). This means that if the server deviates from lin-

earizability, clients can detect it at the end of the epoch. We

discuss how to choose the epoch length in §9. Ghostor does

not provide consistency guarantees for malicious user, or for

objects for which a malicious user has write access.

Guarantee 1 (Verifiable linearizability). For any object F

and any list E of consecutive epochs, suppose that, for each

epoch in E, the set of honest users who ran the verification pro-

cedure includes all writers of F in that epoch (or is nonempty

if F was not written). If the server did not linearizably execute

the operations that verifying clients performed in the epochs

that they verified, then at least one of the verifying clients

will encounter an error in the verification procedure and can

generate a proof that the server misbehaved.

3.3 Anonymity

As explained in §1.1, Ghostor’s anonymity means that the

server sees no user identities associated with any action. In par-

ticular, an adversary controlling the server cannot tell which

user accesses each object, which users are authorized to access

each object, or which users are part of the system.

Ghostor. We informally define Ghostor’s privacy via a leak-

age function: what the server learns when a user makes each

API call (§2). For create_object – put_object, the server

learns the object identifier and the type of the operation. The

server also sees the time of the operation, and the size of the

encrypted ACL and encrypted object, which can be hidden via

padding at an extra cost. create_user leaks no information

to the server, and pay reveals only the sum paid and when.

The server learns no user identities, no object contents, and

no ACLs. If the attacker has compromised some users, he

learns the contents of objects those users can access, includ-

ing prior versions encrypted under the same key. Collectively,

the verification daemons leak the number of clients perform-

ing verification for each object. If all clients in an object’s

ACL are honest and running, this equals the ACL size. If the

ACL is padded to a maximum size, the owner should run ver-

ification more times to hide the ACL size. Ghostor does not

hide access patterns or timing (Fig. 2). An adversary who uses

854 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Keypair or Key Description

(PVK, PSK) Signing keypair used to set ACL

(RVK, RSK) Signing keypair used to get object

(WVK, WSK) Signing keypair used to put object

(OSK) Symmetric key for object contents

Table 2: Per-object keys in Ghostor. The server uses the global

signing keypair (SVK,SSK) to sign digests for objects.

this information cannot see the contents of files and ACLs

because they are encrypted. But such an adversary could try

to deduce correlations between which users issue different

operations based on access patterns and timing, and in some

cases, identify the user based on that information. This can

be partially mitigated by carefully designing the application

using Ghostor (§4.5). In contrast, Ghostor-MH does hide ac-

cess patterns. In Appendix E, we formally define Ghostor’s

privacy guarantee in the simulation paradigm of Secure MPC.

Ghostor-MH. We informally define Ghostor-MH’s privacy

via a leakage function, as above. create_object reveals that

a group of objects was created. set_acl, get_object, and

put_object reveal nothing if the object’s ACL contains only

honest users; otherwise, they reveal which object was ac-

cessed. create_user and pay have the same leakage as de-

scribed for Ghostor above. The leakage function also includes

the total number of honest users in the system.

4 Hiding User Identities

System design paradigms used in typical data-sharing systems

are incompatible with anonymity. We identify the incompati-

ble system design patterns and show how Ghostor replaces

them. Ultimately, we arrive at anonymously distributed shared

capabilities, which allow Ghostor to enforce access control

for anonymous users without server-visible ACLs.

4.1 No User Login or User-Specific Mailboxes

Data-sharing systems typically have some storage space on

the server, called an account file, dedicated to a user’s account.

For example, Keybase [52] has a user account and Mylar [75]

has a user mailbox where the user receives a key to a new file.

Accesses to the account file, however, can be used to link user

operations. As an example, suppose that when a user accesses

an object, her client first retrieves the decryption key from a

user-specific mailbox. This violates anonymity because the

server can tell whether or not two accesses were made by the

same user, based on whether the same mailbox was accessed

first. Instead, Ghostor’s anonymity requires that any sequence

of API calls (§2) with the same inputs, when performed by

any honest user, results in the same server-side accesses.

Ghostor does not have any user-specific storage as in exist-

ing systems. To allow in-band key exchange, Ghostor asso-

ciates a header with each object. The object header functions

like an object-specific mailbox, in that it is used to distribute

the object’s keys among users who have access to the object.

Unlike a user-specific mailbox, it preserves anonymity be-

cause, for a given object, each user reads the same header

Enc(Object Content) OSK

Object Header

• (RVK, WVK)

• SignatureHeader

KeyList

• Enc(RSK, WSK, OSK) User1

• Enc(RSK, OSK) User2

•

Object Name: PVK

Figure 4: Object layout in Ghostor

before accessing it.

4.2 No Server-Visible ACLs

An honest server must be able to prevent unauthorized users

from modifying objects, and users must be able to verify that

objects returned by the server were produced by authorized

writers. This is typically accomplished by having writers sign

objects, and having the server check that the user who signed

the object is on the object’s ACL. However, this requires the

ACL to be visible to the server, which violates anonymity.

We observe that by switching to a design based on shared

capabilities, we can allow the server and other users to ver-

ify that writes are indeed made by authorized users, without

requiring the server or other users to know the ACL of the

object, or which users are authorized. Every Ghostor object

has three associated signing keypairs (Table 2). All users

of the object (and the server) know the verifying keys PVK,

RVK, and WVK because PVK is the name of the object, and

RVK and WVK are in the object header; the associated signing

keys PSK, RSK, and WSK are capabilities that grant access

to set the ACL, get the object, and put the object, respectively.

To distribute these capabilities to users in the object’s ACL,

the owner places a key list in the object header. The key list

contains, for each user, a list of capabilities encrypted under

that user’s public key. If a user has read/write access to an

object, her entry in the key list contains WSK, RSK, and OSK;

a user with only read access is given a dummy key instead

of WSK. Crucially, different users with the same permission

share the same capability, so the server cannot distinguish be-

tween users on the basis of which capability they use. When

accessing an object, a user downloads the header and decrypts

her entry in the key list to obtain OSK (used to decrypt the

object contents) and her capabilities for the object.

Users sign updates to the object with WSK, allowing the

server and other users to verify that each update is made by a

user with write access. PSK is stored locally by the owner and

is used to sign the header. The owner can set the object’s ACL

by (1) freshly sampling (RVK,RSK), (WVK,WSK), and OSK,

(2) re-encrypting the object with OSK and signing it with

WSK, (3) creating a new object header with an updated key

list, (4) signing the new header with PSK, and (5) uploading

it to the server. (RVK,RSK) will be relevant in §5.

Ghostor’s object layout is summarized in Fig. 4.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 855

4.3 No Server-Visible User Public Keys

Prior systems [64] reveal the user’s public key to the server

when the client interacts with it. For example, SUNDR re-

quires users to provide a signature along with each operation.

First, the signature itself could leak the user’s public key. Sec-

ond, to check the legitimacy of writes, the server needs to

know the user’s public key to verify the signature. The server

can use the public key as a pseudonym to track users.

The key list in §4.2, however, potentially leaks users’ public

keys: each entry in the key list is a set of capabilities encrypted

under a user’s public key, but public-key encryption is only

guaranteed to hide the message being encrypted, not the pub-

lic key used to encrypt it. For example, an RSA ciphertext

leaks which public key was used for encryption. Therefore,

Ghostor uses key-private encryption [10], which is guaranteed

to hide both the message and the public key.

In summary, Ghostor has users share capabilities for

anonymity, and then distributes the capabilities anonymously,

without revealing ACLs to the server. We call the resulting

technique anonymously distributed shared capabilities.

4.4 No Client-Side Caching

Assuming that an object’s ACL changes rarely, it may seem

natural for clients to locally cache an object’s keypairs

(RVK,RSK) and (WVK,WSK), to avoid downloading the

header on future accesses to that object. Unfortunately, the

mere fact that a client did not download the header before

performing an operation tells the server that the same user re-

cently accessed that object. As a result, Ghostor’s anonymity

prohibits user-specific caching. That said, server-side caching

of commonly accessed objects is allowed.

4.5 Careful Application Design

Ghostor does not hide access patterns or timing information

from the server. A sophisticated adversary could, for example,

deny or delay accesses to a particular object and see how ac-

cess patterns shift, to try and deduce which user made which

accesses. Therefore, one should carefully design the appli-

cation using Ghostor to avoid leaking user identities in its

access patterns. For example, just as Ghostor has no client-

side caching or user-specific mailboxes, an application using

Ghostor should avoid caching data locally to avoid requests to

the server or using an object as a user-specific mailbox. Note

that Ghostor-MH hides these access patterns.

5 Achieving Verifiable Consistency

Ghostor’s verifiable anonymous history achieves the “verifi-

able equivalent” of a blockchain for critical-path operations,

while using the underlying blockchain rarely. It consists of:

(1) a hash chain of digests, (2) periodic checkpoints on a real

blockchain, and (3) a verification procedure that does not

require knowledge of user identities.

5.1 Hash Chain of Digests in Ghostor

We now achieve fork consistency for a single object in Ghos-

tor using techniques inspired from SUNDR [64], but modified

Field Description

Epoch epoch when operation was committed

PVK, WVK, RVK permission/writer/reader verifying key

Hashprev hash of previous digest in chain

Hashkeylist hash of key list

Hashdata hash of object contents

Sigclient client signature with RSK, WSK, or PSK

Sigserver server signature using SSK

nonce random nonce chosen by client

Table 3: A digest for an operation in Ghostor

because SUNDR is not anonymous. Each access to an object,

whether a GET or a PUT, is summarized by a digest shown in

Table 3. The object’s history is stored as a chain of digests.

To access the object, a client first produces a digest sum-

marizing that operation as in Table 3. This requires fetching

the object header from the server, so that the client can obtain

the secret key (RSK, WSK, or PSK) for the desired operation.

Then the client fetches the latest digest for the object and

computes Hashprev in the new digest. To GET the object, the

client copies Hashdata from the latest digest; to PUT it, the

client hashes the new contents to obtain Hashdata. If the client

is changing permissions, then Hashkeylist is calculated from

the new header; otherwise, it is copied from the latest digest.

Then the client signs the digest with the appropriate key

and provides the signed digest to the server. The server signs

the digest using SSK, appends it to a log, and returns the

signed digest and the result of the operation. At the end of the

epoch, the client downloads the digest chain for that object

and epoch, and verifies that (1) it is a valid history for the

object, and that (2) it contains the operations performed by

that client. We specify protocol details in Appendix A.

Ghostor’s digests differ from SUNDR in two main ways.

First, for anonymity, a client does not sign digests using the

user’s secret key, but instead uses RSK, WSK, or PSK, which

can be verified without knowing the user’s public key. When

inspecting the digest, the server no longer learns which user

performed the operation, only that the user has the required

permission. Second, each digest is signed by the server. Thus,

if the server violates linearizability, the client can assemble

the offending digests into a proof of misbehavior.

5.2 Checkpoint and Verification
The construction so far is susceptible to fork attacks [64],

in which the server presents two users with different views

over the same object. To detect fork attacks, Ghostor requires

the server to produce a checkpoint at the end of each epoch,

consisting of the hash of the object’s latest digest and the

epoch number, and publish the checkpoint to the blockchain.

The verification procedure run by a client consists of fetch-

ing the checkpoint from the blockchain, checking it corre-

sponds to the hash for the last digest in the list of digests

obtained from the server, and running the verification in

§5.1. The blockchain guarantees that all users see the same

checkpoint. This prevents the server from forking two users’

856 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

views, as the latest digests for two different views cannot both

match the published checkpoint. In this way, we bootstrap

the blockchain’s consistency guarantees to achieve verifiable

consistency over an entire epoch of operations.

5.3 Multiple Objects per Checkpoint

So far, the server puts one checkpoint in the blockchain per

object, which is undesirable when there are many objects. We

address this as follows. The server computes the hash of the

final digest of each object, builds a Merkle tree over those

hashes, and publishes the root hash in the blockchain as a

single checkpoint for all objects. To verify integrity at the end

of an epoch, a Ghostor client fetches the digest chain from the

server for objects that are either (1) accessed by the client dur-

ing the epoch or (2) owned by the client’s user. It verifies that

all operations that it performed on those objects are included

in the objects’ digest chains. Then, it requests Merkle proofs

from the server to check that the hash of the latest digest is

included in the Merkle tree at the correct position based on

the object’s PVK. Finally, it verifies that the Merkle root hash

matches the published checkpoint.

Although we maintain a separate digest chain for each

object, the collective history of operations, across all objects,

is also linearizable. This follows from the classical result that

linearizability is a local property [42]. Thus, Ghostor provides

verifiable linearizability across all objects, while supporting

full concurrency for operations on different objects.

5.4 Concurrent Operations on a Single Object

As explained in §5.1, the client must fetch the latest digest

from the server to construct a digest for a new GET or PUT. If

two clients attempt to GET or PUT an object concurrently, they

may retrieve the same latest digest for that object, and there-

fore construct new digests that both have the same Hashprev.

An honest server can only accept one of them; the other opera-

tion must be aborted. A naïve fix is for clients to acquire locks

(or leases) on objects during network round trips, but this

limits single-object throughput according to client round-trip

times. How can we allow concurrent operations on a single

object without holding server-side locks during round trips?

We explain our techniques at a high level below; Appendix A

contains a full description of our protocol.

GETs. We optimize GETs so that clients need not fetch the lat-

est digest, obviating the need to lock for a round trip. When a

client submits a GET request to the server, the client need

not include Hashprev, Hashdata, or Hashkeylist in the digest

presented to the server. The client includes the remaining

fields and a signature over only those fields. Then, the server

chooses the hashes for the client and returns the resulting di-

gest, signed by the server. Although the server can replay oper-

ations, this is harmless because GETs do not affect data. When

the verification daemon verifies a GET, it checks the client

signature without including Hashprev, Hashdata, or Hashkeylist.

PUTs. The above technique does not apply to PUTs, because

the server can roll back objects by replaying PUTs. Simply

using a client-provided nonce to detect replayed PUTs is not

sufficient, because the server can delay incorporating a PUT

(which we call a time-stretch attack) to manipulate the final

object contents. For PUTs, Ghostor uses a two-phase protocol.

In the PREPARE phase, the client operates in the same way

as GET, but signs the digest with WSK; the server fills in the

hashes, signs the resulting digest, appends it to the object’s

digest chain, and returns it to the client. In the COMMIT phase,

the client creates the final digest for the operation—omitting

Hashprev and appending an additional field Hashprep, which

is the hash of the server-signed digest obtained in the PRE-

PARE phase—and uploads it to the server with the new object

contents. The server fills in Hashprev based on the object’s

digest chain (which could have changed since the PREPARE

phase), signs the resulting digest, appends it to the object’s

digest chain, and returns it to the client. The server can re-

play PREPARE requests, but it does not affect object contents.

The server cannot generate a COMMIT digest for a replayed

PREPARE request, because the client signed the COMMIT di-

gest including the hash of the server-signed PREPARE digest,

which includes Hashprev. The server can replay a COMMIT

request for a particular PREPARE request, but this is harmless

because of our conflict resolution strategy described below.

Resolving Conflicts. If two accesses are concurrent (i.e., nei-

ther commits before the other prepares), then linearizability

does not require any particular ordering of those operations,

only that all clients perceive the same ordering. If a GET is

concurrent with a PUT (GET digest between the PREPARE and

COMMIT digests for a PUT), Ghostor linearizes the GET as

happening before the PUT. This allows the result of the GET to

be served immediately, without waiting for the PUT to finish.

For concurrent PUTs, it is unsafe for the linearization order

to depend on the COMMIT digest, because the server could

perform a time-stretch or replay attack on a COMMIT digest,

to manipulate which PUT wins. Therefore, Ghostor chooses

as the winning PUT the one whose PREPARE digest is latest.

The server can still delay PREPARE digests, but the client can

choose not to COMMIT if the delay is unacceptably large. To

simplify the implementation of this conflict resolution pro-

cedure, we require that the PREPARE and COMMIT phases

happen over the same session with the client, during which the

server can keep in-memory state for the relevant object. This

allows the server to match PREPARE and COMMIT digests

without additional accesses to secondary storage.

Verification Complexity. To verify PUTs, the verification dae-

mon must check that Hashdata only changes on COMMIT

digests for winning writes. Thus, it must keep track of all

PREPARE digests since the latest PREPARE digest whose cor-

responding COMMIT has been seen. We can bound this state

by requiring that PUT requests do not cross an epoch boundary.

ACL Updates. We envision that updates to the ACL will be

rare, so our implementation does not allow set_acl operations

to proceed concurrently with GETs or PUTs. It may be possible

to apply a two-phase technique, similar to our concurrent PUT

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 857

protocol, to allow set_acl operations to proceed concurrently

with other operations. We leave exploring this to future work.

6 Mitigating Resource Abuse

To prevent resource abuse, commercial data-sharing systems,

like Google Drive and Dropbox, enforce per-user resource

quotas. Ghostor cannot do this, because Ghostor’s anonymity

prevents it from tracking users. Instead, Ghostor uses two

techniques to prevent resource abuse without tracking users:

anonymous payments and proof of work.

6.1 Anonymous Payments

A strawman approach is for users to use an anonymous cryp-

tocurrency (e.g., Zcash [105]) to pay for each expensive oper-

ation (e.g., operations that consume storage). Unfortunately,

this requires a separate blockchain transaction for each opera-

tion, limiting the system’s overall throughput.

Instead, Ghostor lets users pay for expensive operations

in bulk via the pay API call (§2). The server responds with

a set of tokens proportional to the amount paid via Zcash,

which can later be redeemed without using the blockchain

to perform operations. Done naïvely, this violates Ghostor’s

anonymity; the server can track users by their tokens (tokens

issued for a single pay call belong to the same user).

To circumvent this issue, Ghostor uses blind signatures [18,

22,23]. A Ghostor client generates a random token and blinds

it. After verifying that the client has made a cryptocurrency

payment, the server signs the blinded token. The blind signa-

ture protocol allows the client to unblind it while preserving

the signature. To redeem the token, the client gives the un-

blinded signed token to the server, who can verify the server’s

signature to be sure it is valid. The server cannot link tokens

at the time of use to tokens at the time of issue because the

tokens were blinded when the server originally signed them.

6.2 Proof of Work (PoW)

Another way to mitigate resource abuse is proof of work

(PoW) [6]. Before each request from the client, the server

sends a random challenge to the client, and the client must

find a proof such that Hash(challenge,proof, request) < diff.

diff controls the difficulty, which is chosen to offset the ampli-

fication factor in the server’s work. Because of the guarantees

of the hash function, the client must iterate through different

proofs until it finds one that works. In contrast, the server

efficiently checks the proof by computing one hash.

6.3 Anonymous Payments & PoW in Ghostor

Ghostor uses anonymous payments and PoW together to miti-

gate resource abuse. Our implementation requires anonymous

payment only for create_object, which requires the server to

commit additional storage space for the new object. This is

analogous to systems like Google Drive or Dropbox, which

require payment to increase a user’s storage limit but do not

charge based on the count or frequency of object accesses.

Implicit in this model are hard limits on object size and per-

object access frequency, which Ghostor can enforce. Although

our implementation requires payment only for create_object,

an alternate implementation may choose to require payment

for every operation except pay. Ghostor requires PoW for all

API calls. This includes pay and create_object, to offset the

cost of Zcash payments and verifying blind signatures.

7 Applying Ghostor to Applications

In this section, we discuss two applications of Ghostor that

we implemented: EHR Sharing and Ghostor-MH.

7.1 Case Study: EHR Sharing

Our goal in this section is to show how a real application

may interface with Ghostor’s semantics (e.g., ownership, key

management, error handling) and how Ghostor’s security guar-

antees might benefit a real application. To make the discussion

concrete, we explore a particular use case: multi-institutional

sharing of electronic health records (EHRs). It has been of

increasing interest to put patients in control of their data as

they move between different healthcare providers [37, 43, 85].

As it is paramount to protect medical data in the face of attack-

ers [28], various proposals for multi-institutional EHR sharing

use a blockchain for access control and integrity [5, 70]. Be-

low, we explore how to design such a system using Ghostor to

store EHRs in a central object store, using only decentralized

trust. We also implemented the system for Open mHealth [3].

Each patient owns one or more objects in the central Ghos-

tor system representing their EHRs. Each patient’s Ghostor

client (on her laptop or phone) is reponsible for storing the

PSKs for these objects. The PSKs could be stored in a wrist-

band, as in [70], in case of emergency situations for at-risk

patients. When the patient seeks treatment from a healthcare

provider, she can grant the healthcare provider access to the

objects containing the relevant information in Ghostor. Each

healthcare provider’s Ghostor client maintains a local meta-

data database, mapping patient identities (object IDs, §2) to

PVKs. This mapping could be created when a patient checks

in to the office for the first time (e.g., by sharing a QR code).

Benefits. Existing proposals leverage a blockchain to achieve

integrity guarantees [5, 70] but use the blockchain more heav-

ily than Ghostor: for example, they require a blockchain trans-

action to grant access to a healthcare provider, which results

in poor performance and scalability. Additionally, Ghostor

provides anonymity for sharing records.

Epoch Time. An important aspect of Ghostor’s semantics is

that one has to wait until the next epoch before one can verify

that no fork has occurred. It is reasonable to fetch a patient’s

record at the time that they check in to a healthcare facility,

but before they are called in for treatment. This allows the

time to wait until the end of an epoch to overlap with the

patient’s waiting time. In the case of scheduled appointments,

the record can be fetched in advance so that integrity can be

verified by the time of the appointment. An epoch time of

15–30 minutes would probably be sufficient.

Error Handling. If a healthcare provider detects a fork when

verifying an epoch, it informs other healthcare providers of the

858 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

integrity violation out-of-band of the Ghostor system. Ghostor

does not constrain what happens next. One approach, used

in Certificate Transparency (CT), is to abandon the Ghostor

server for which the integrity violation was detected. We

envision that there would be a few Ghostor servers in the

system, similar to logs in CT, so this would require affected

users to migrate their data to a new server. Another approach

is to handle the error in the same way that blockchain-based

systems [5,70] handle cases where the hash on the blockchain

does not match the hash of the data—treat it as an availability

error. While neither solution is ideal, it is better than the status

quo, in which a malicious adversary is free to perform fork

or rollback attacks undetected, causing patients to receive

incorrect treatments based on old or incorrect data, potentially

resulting in serious physical injury.

7.2 A Metadata-Hiding Data-Sharing Scheme

Ghostor’s anonymity techniques can be combined with a glob-

ally oblivious scheme, AnonRAM [7], to obtain a metadata-

hiding object-sharing scheme, Ghostor-MH. Ghostor-MH is

not a practical system, but only a theoretical scheme; our

goal is to show that Ghostor’s techniques are complementary

to and compatible with those in globally oblivious schemes.

Below we summarize how we apply Ghostor’s techniques

in Ghostor-MH; we discuss Ghostor-MH in more detail in

Appendix D. First, we apply Ghostor’s principle of switching

from a user-centric to a data-centric design. Whereas each

ORAM instance in AnonRAM corresponds to a user, each

ORAM instance in Ghostor-MH corresponds to an object

group, a fixed-sized set of objects with a shared ACL. Second,

we apply the design of Ghostor’s object header in Ghostor-

MH. This is accomplished by storing the ORAM secret state,

encrypted, on the server. Finally, we use similar techniques to

mitigate resource abuse in Ghostor-MH as we do in Ghostor.

8 Implementation

We implemented a prototype of Ghostor in Go. It consists of

three parts, as in Fig. 3, server (≈ 2100 LOC), client library (≈

1000 LOC), and verification daemon (≈ 1000 LOC), which

all depend on a set of core Ghostor libraries (≈ 1400 LOC).

Our implementation uses Ceph RADOS [101] for consis-

tent, distributed object storage. We use SHA-256 for the cryp-

tographic hash and the NaCl secretbox library (which uses

XSalsa20 and Poly1305) for authenticated symmetric-key en-

cryption. For key-private asymmetric encryption (to encrypt

signing keys in the object header), we implemented the El

Gamal cryptosystem, which is key-private [10], on top of the

Curve25519 elliptic curve. We use an existing blind signature

implementation [1] based on RSA with 2048-bit keys and

1536-bit hashes. We use Ed25519 for digital signatures.

As discussed in §3, Ghostor uses external systems for

anonymous communication and payment. In our implemen-

tation, clients use Tor [29] to communicate with the server

and Zcash 1.0.15 for anonymous payments. We build a Zcash

test network, separate from the Zcash main network. Ghostor,

Generate Sign Unblind Verify
0

1

2

3

4

5

La
te

nc
y

(m
s)

Figure 5: Blind signature

A 50% R, 50% W

B 95% R, 5% W

C 100% R

D 95% R, 5% Insert

E 95% R, 5% Range

F 50% R, 50% R-Modify-W

Figure 6: YCSB workloads

(R: read, W: write)

10000 20000 100000
Total Operations on Object

0
100
200
300
400

Ve
rif

ica
tio

n
Ti

m
e

pe
r D

ig
es

t (
us

)

(a) Run verification procedure

104 105 106

Number of Objects

101

102

Ti
m

e
to

 C
om

pu
te

M
er

kl
e

Ro
ot

 (s
)

(b) Compute Merkle root

Figure 7: Operations for verification

however, could also be deployed on the Zcash main chain.

Zcash is also used as the blockchain to post checkpoints. Our

implementation runs as a single Ghostor server that stores its

data in a scalable, fault-tolerant, distributed storage cluster.

We discuss how to scale to multiple servers in Appendix B.

We implemented a proof of concept of our theoretical

scheme Ghostor-MH (§7.2), in ≈ 2100 additional LOC. As it

is a theoretical scheme, our focus in evaluating Ghostor-MH

is simply to understand the latency of operations. Ghostor-

MH includes AnonRAM’s functionality, which, to our knowl-

edge, has not been previously implemented. We omit zero-

knowledge proofs in our implementation, as they are similar

to AnonRAM and are not Ghostor-MH’s innovation.

9 Evaluation

We run our experiments on Amazon EC2. Ghostor’s storage

cluster consists of three i3en.xlarge servers. We configure

Ceph to replicate each object (key-value pair) on two SSDs

on different machines, for fault-tolerance.

9.1 Microbenchmarks

Basic Crypto Primitives. We measured the latency of crypto

operations used in Ghostor’s critical path. En/decryption of

object contents varies linearly with the object size, and takes ≈

2 ms for 1 MiB. Key-private en/decryption for object headers

and signing/verification of digests takes less than 150 us.

Blind Signatures. We also measure the blind signature

scheme used for object creation, which consists of four steps.

(1) The client generates a blinded hash of a random number.

(2) The server signs the blinded hash. (3) The client unblinds

the signature, obtaining the server’s signature over the original

number. (4) The server verifies the signature and the number

during object creation. Results are shown in Fig. 5.

Verification Procedure. In Fig. 7, we measure the overhead

of verification for digests in a single epoch. For client veri-

fication time, we perform an end-to-end test, measuring the

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 859

total time to fetch digests and to verify them. The client has

1,000 signed digests for operations the client performed dur-

ing the epoch that the client needs to check were included in

the history of digests. We vary the total number of digests in

the object’s history for that epoch. The reported values in Fig.

7a are the total time to verify the object, divided by the total

number of operations on the object, indicating the verification

time per digest. The trend indicates a constant overhead when

the total number of operations on the object is small, that is

amortized when the number of operations is large.

Fig. 7b shows the server’s overhead to compute the Merkle

root. We inserted objects using YCSB (§9.2.2) during an

epoch, and measured the time to compute the Merkle root at

the end of that epoch. For 10,000 objects, this takes about 2.5

seconds; for 1,000,000 objects, it takes about 280 seconds.

Reading the latest digest for each object (leaves of the Merkle

tree) dominates the time to compute the Merkle root (2 sec-

onds for 10,000 objects, 272 seconds for 1,000,000 objects).

The reason is that our on-disk data structures are optimized

for single-object operations, which are in the critical path. In

particular, each object’s digest chain is stored as a separate

batched linked list, so reading the latest digests requires a

separate read for each object.

9.2 Server-Side Overhead
This section measures to what extent anonymity and VerLin-

ear affect Ghostor’s performance. To ensure that the bottle-

neck was on the server, we set proof of work to minimum

difficulty and do not use anonymous communication (§3), but

we return to evaluating these in §9.3.

We measure the end-to-end performance of operations in

Ghostor, both as a whole and for instantiations of Ghostor

having only anonymity or VerLinear. We compare these to

an insecure baseline as well as to competitive solutions for

privacy and verifiable consistency, as we now describe.

1. Insecure system (“Insec”). This system uses the traditional

ACL-based approach for serving objects. Each object access

is preceded by a read to the object’s ACL to verify that the

user has permission to access the object. Similarly, creating

an object requires a read to a per-user account file. It provides

no security against a compromised server.

2. End-to-End Encrypted system (“E2EE”). This system en-

crypts objects placed on the server using end-to-end encryp-

tion similarly to SiRiUS [35]. Such systems have an encrypted

KeyList similar to Ghostor’s, but clients can cache their keys

locally on most accesses unlike Ghostor.

3. Ghostor’s anonymity system (“Anon”). This is Ghostor

with VerLinear disabled. This fits a scenario where one wants

to hide information from a passive server attacker. Unlike the

E2EE system above, this system cannot cache keys locally—

every operation incurs an additional round trip to fetch the

KeyList from the server. In addition, every operation incurs

yet another round trip at the beginning for the client to perform

a proof of work. On the positive side, the server does not

maintain any per-user ACL.

4. Fork Consistent system (“ForkC”). This system maintains

Ghostor’s digest chain (§5.1), but does not post checkpoints.

Each operation appends to a per-object log of digests, using

the techniques in §5.4. This system also performs an ACL

check when creating an object.

5. Ghostor’s VerLinear system (“VLinear”). This system cor-

responds to the VerLinear mechanism in §5 (including §5.2).

This matches a use case where one wants integrity, but does

not care about privacy. We do not include the verification

procedure, already evaluated in §9.1.

6. Ghostor. This system achieves both anonymity and VerLin-

ear, and therefore incurs the costs of both guarantees.

9.2.1 Object Accesses

In each setup, we measured the latency for create, GET, and

PUT operations (Fig. 8a), throughput for GETs/PUTs to a single

object (Fig. 9a), and the throughput for creating objects and

for GETs/PUTs to multiple objects (Fig. 9b).

Fork consistency adds substantial overhead, because ad-

ditional accesses to persistent storage are required for each

operation, to maintain each object’s log of digests. Ghostor,

which both maintains a per-object log of digests and provides

anonymity, incurs additional overhead because clients do not

cache keys, requiring the server to fetch the header for each

operation. In contrast, for Anon, the additional cost of reading

the header is offset by the lack of ACL check. For 1 MiB

objects, en/decryption adds a visible overhead to latency.

End-to-end encryption adds little overhead to throughput;

this is because we are measuring throughput at the server,

whereas encryption and decryption are performed by clients.

The only factor affecting server performance is that the ci-

phertexts are 40 bytes larger than plaintexts.

Single-object throughput is lower for ForkC, VLinear, and

Ghostor, because maintaining a digest chain requires requests

to be serialized across multiple accesses to persistent storage.

In contrast, Insec, E2EE, and Anon serve requests in parallel,

relying on Ceph’s internal concurrency control.

In the multi-object experiments, in which no two concur-

rent requests operate on the same object, this bottleneck dis-

appears. For small objects, throughput drops in approximately

an inverse pattern to the latency, as expected. For large ob-

jects, however, all systems perform commensurately. This is

likely because reading/writing the object itself dominated the

throughput usage for these experiments, without any concur-

rency overhead at the object level to differentiate the setups.

9.2.2 Yahoo! Cloud Serving Benchmark

In this section, we evaluate our system using the Yahoo! Cloud

Serving Benchmark (YCSB). YCSB provides different work-

loads representative of various use cases, summarized in Ta-

ble 6. We do not use Workload E because it involves range

queries, which Ghostor does not support. As shown in Fig.

9c, anonymity incurs up to a 25% overhead for benchmarks

containing insertions, owing to the additional accesses to

storage required to store used object creation tokens. How-

ever, it shows essentially no overhead for GETs and PUTs. Fork

860 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Create
Object

Read
1 KiB

Write
1 KiB

Read
1 MiB

Write
1 MiB

Operation and Object Size

0

10

20

30

40

50

La
te

nc
y

(m
s)

Insec.
E2EE
Anon
ForkC
VLinear
Ghostor

(a) Latency benchmarks

Operation ms

Proof of Work 0.57

Read Header 1.1

Cl. Processing 0.68

Check Cl. Digest 0.14

Read/Fill Digest 3.2

Append Digest 1.5

Read Data 2.1

Cl. Processing 9.1

(b) Latency Breakdown for

Ghostor, Read 1 MiB

Figure 8: Latency measurements

consistency adds a 3–4x overhead compared to the Insec base-

line. VerLinear adds essentially no overhead on top of fork

consistency; this is to be expected, because the overhead of

VerLinear is outside of the critical path (except for insertions,

where the overhead is easily amortized). Ghostor, which pro-

vides both anonymity and VerLinear, must forgo client-side

caching, and therefore incurs additional overhead, with a 4–5x

throughput reduction overall compared to the Insec baseline.

9.3 End-to-End Latency
We now analyze the performance of Ghostor from the client’s

perspective, including the cost of proof of work and anony-

mous communication (§3).

9.3.1 Microbenchmarks

The latency experienced by a Ghostor client is the latency

measured in Fig. 8, plus the additional overhead due to the

proof of work mechanism and anonymous communication.

The difficulty of the proof of work problem is adjustable. For

the purpose of evaluation, we set it to a realistic value to

prevent denial of service. Fig. 8b indicates that it takes ≈ 32

ms for a Ghostor operation; therefore, we set the proof of

work difficulty such that it takes the client, on average, 100

times longer to solve (≈ 3.2 s). Fig. 10 shows the distribution

of latency for the client to solve the proof of work problem.

As expected, the distribution appears to be memoryless.

In our implementation, a client connects to a Ghostor server

by establishing a circuit through the Tor [29] network. The

performance of the connection, in terms of both latency and

throughput, varies according to the circuit used. Fig. 10 shows

the distribution of (1) circuit establishment time, (2) round-

trip time, and (3) network bandwidth. We used a fresh Tor

circuit for each measurement. Based on our measurements,

a Tor circuit usually provides a round-trip time less than 1

second and bandwidth of at least 2 Mb/s.

9.3.2 Macrobenchmarks

We now measure the end-to-end latency of each operation

in Ghostor’s client API (§2), including all overheads experi-

enced by the client. As explained in §9.3.1, the overhead due

to proof of work and Tor is quite variable; therefore, we repeat

each experiment 1000 times, using a separate Tor circuit each

time, and report the distribution of latencies for each operation

in Fig. 12. Comparing Fig. 12 to Fig. 8, the client-side latency

is dominated by the cost of PoW and Tor; Ghostor’s core

techniques in Fig. 8 have relatively small latency overhead.

For the pay operation, we measure only the time to redeem a

Zcash payment for a single token, not the time for proof of

work or making the Zcash payment (see §9.4 for a discussion

of this overhead). GET and PUT for large objects are the slow-

est, because Tor network bandwidth becomes a bottleneck.

The create_user operation (not shown in Fig. 12) is only

132 microseconds, because it generates an El Gamal keypair

locally without any interaction with the server.

9.4 Zcash

In our implementation, we build our own Zcash test network

to avoid the expense from Zcash’s main network. Since our

system leverages Zcash in a minimal way, the overhead of

Zcash is not on the critical path of our protocol. According to

the Zcash website [105] and block explorer [2], the block size

limit is about 2 MiB, and block interval is about 2.5 minutes.

In the past six months, the maximum block size has been

less than 150 KiB and the average transaction fee has been

much less than 0.001 ZEC (0.05 USD at the time of writing).

Hence, even with shorter epochs (less time for misbehavior

detection), the price of Ghostor’s checkpoints is modest since

there is a single checkpoint per epoch for the whole system.

9.5 Ghostor-MH

For completeness, we evaluate the theoretical Ghostor-MH

scheme presented in §7.2, focusing only on the latency of

accessing an object. We do not use Tor and we set the PoW

difficulty to minimum. Latency is dominated by en/decryption

on the client, because object contents and ORAM state are

encrypted with El Gamal encryption, which is much slower

than symmetric-key encryption. Fig. 11a shows the object

access latency for an object group, as we vary its size. It scales

logarithmically, as expected from Path ORAM. An additional

overhead of ≈ 2 s comes from re-encrypting ORAM client

state (32 KiB, after padding and encryption) on each access.

Fig. 11b shows the object access latency as we vary the num-

ber of object groups (each object group is 31 KiB). It scales

linearly, because the client makes fake accesses to all other

object groups to hide which one it truly accessed. Latency

could be improved by using multiple client CPU cores.

10 Related Work

Systems Providing Consistency. We have already compared

extensively with SUNDR [64]. Venus [87] achieves even-

tual consistency; however, Venus requires some clients to

be frequently online and is vulnerable to malicious clients.

Caelus [55] has a similar requirement and does not resist col-

lusion of malicious clients and the server. Verena [49] trusts

one of two servers. SPORC [31], which combines fork con-

sistency with operational transformation, allows clients to

recover from a fork attack, but does not resist faulty clients.

Depot [67] can tolerate faulty clients, but achieves a weaker

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 861

Read
1 KiB

Write
1 KiB

Read
1 MiB

Write
1 MiB

Operation and Object Size

0

2000

4000

6000

Si
ng

le
-O

bj
ec

t T
pu

t (
op

/s
)

Insec.
E2EE
Anon
ForkC
VLinear
Ghostor

(a) Single-Object Throughput

Create
Object

Read
1 KiB

Write
1 KiB

Read
1 MiB

Write
1 MiB

Operation and Object Size

0

5000

10000

M
ul

ti-
Ob

je
ct

 T
pu

t (
op

/s
)

(b) Multi-Object Throughput

Insert A B C D F
YCSB Workload

0

2500

5000

7500

10000

12500

Th
ro

ug
hp

ut
 (o

p/
s)

(c) Throughput for YCSB

Figure 9: Benchmarks comparing throughput of the six setups described in §9.2

0 5 10 15 20
Latency (s)

Solve
PoW

0.0 2.5 5.0 7.5 10.0
Latency (s)

Tor
Connect

Tor RTT

0.0 2.5 5.0 7.5
Bandwidth (Mb/s)

Tor Conn.
Bandwidth

Figure 10: Microbenchmarks

of PoW mechanism and Tor

0 100 200 300 400 500
Object Group Size (KiB)

0
2
4
6
8

Ob
je

ct
 A

cc
es

s
La

te
nc

y
(s

)

(a) Latency vs. Object Group Size

0 1000 2000 3000
Total Object Capacity (KiB)

0
100
200
300

Ob
je

ct
 A

cc
es

s
La

te
nc

y
(s

)

(b) Latency vs. No. Object Groups

Figure 11: Ghostor-MH

0 20 40 60 80 100 120 140
Latency (s)

create_object
set_acl

pay
get_object (10 KiB)
put_object (10 KiB)
get_object (1 MiB)
put_object (1 MiB)

Figure 12: End-to-end latencies of client-side operations

notion of consistency than VerLinear. Furthermore, its con-

sistency techniques are at odds with anonymity. Ghostor and

these systems use hash chains [39,68] as a key building block.

Systems Providing E2EE. Many systems provide end-to-

end encryption (E2EE), but leak significant user information

as discussed in §3.3: academic systems such as Persona [8],

DEPSKY [13], CFS [14], SiRiUS [35], Plutus [48], Shad-

owCrypt [41], M-Aegis [60], Mylar [75] and Sieve [99] or

industrial systems such as Crypho [27], Tresorit [46], Key-

base [52], PreVeil [76], Privly [77] and Virtru [98].

Systems Using Trusted Hardware. Some systems, such as

Haven [9] and A-SKY [25], protect against a malicious server

by using trusted hardware. Existing trusted hardware, like

Intel SGX, however, suffer from side-channel attacks [96].

Oblivious Systems. A complementary line of work to Ghos-

tor aims to hide access patterns: which object was accessed.

Standard Oblivious RAM (ORAM) [36, 86, 100] works in the

single-client setting. Multi-client ORAM [7, 40, 50, 65, 66, 80,

90] extends ORAM to support multiple clients. These works

either rely on central trust [80,90] (either a fully trusted proxy

or fully trusted clients) or provide limited functionality (not

providing global object sharing [7], or revealing user identi-

ties [66]). GORAM [65] assumes the adversary controlling

the server does not collude with clients. Furthermore, it only

provides obliviousness within a single data owner’s objects,

not global obliviousness across all data owners.

AnonRAM [7] and PANDA [40] provide global oblivious-

ness and hide user identity, but are slow. They do not provide

for sharing objects or mitigate resource abuse. One can real-

ize these features by applying Ghostor’s techniques to these

schemes, as we did in §7.2 to build Ghostor-MH. Unlike these

schemes, Ghostor-MH is a metadata-hiding object-sharing

scheme providing both global obliviousness and anonymity

without trusted parties or non-collusion assumptions.

Decentralized Storage. Peer-to-peer storage systems, like

OceanStore [56], Pastry [79], CAN [78], and IPFS [12], al-

low users to store objects on globally distributed, untrusted

storage without any coordinating central trusted party. These

systems are vulnerable to rollback/fork attacks on mutable

data by malicious storage nodes (unlike Ghostor’s VerLinear).

While some of them encrypt objects for privacy, they do not

provide a mechanism to distribute secret keys while preserv-

ing anonymity, as Ghostor does. Recent blockchain-based

decentralized storage systems, like Storj [92], Swarm [94],

Filecoin [32], and Sia [88], have similar shortcomings.

Decentralized Trust. As discussed in §1, blockchain sys-

tems [17, 20, 73, 103] and verifiable ledgers [61, 71] can serve

as the source of decentralized trust in Ghostor.

Another line of work aims to provide efficient auditing

mechanisms. EthIKS [15] leverages smart contracts [17] to

monitor key transparency systems [71]. Catena [93] builds

log systems based on Bitcoin transactions, which enables ef-

ficient auditing by low-power clients. It may be possible to

apply techniques from those works to optimize our verifica-

tion procedure in §5.2. However, none of them aim to build

secure data-sharing systems like Ghostor.

Secure Messaging. Secure messaging systems [26, 95, 97]

hide network traffic patterns, but they do not support object

storage/sharing as in our setting. Ghostor can complementar-

ily use them for its anonymous communication network.

11 Conclusion
Ghostor is a data-sharing system that provides anonymity and

verifiable linearizability in a strong threat model that assumes

only decentralized trust.

862 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Acknowledgments
We thank the anonymous reviewers and our shepherd,

Carmela Troncoso, for their invaluable feedback. We would

also like to thank students from the RISELab Security Group

and BETS Research Group for giving us feedback on early

drafts, and David Culler for advice and discussion.

This work has been supported by NSF CISE Expeditions

Award CCF-1730628, as well as gifts from the Sloan Founda-

tion, Bakar, Alibaba, Amazon Web Services, Ant Financial,

Capital One, Ericsson, Facebook, Futurewei, Google, Intel,

Microsoft, Nvidia, Scotiabank, Splunk, and VMware. This

research is also supported in part by the National Science

Foundation Graduate Research Fellowship Program under

Grant No. DGE-1752814. Any opinions, findings, and con-

clusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the views

of the National Science Foundation.

References
[1] https://github.com/cryptoballot/rsablind.

[2] BitInfoCharts. https://bitinfocharts.com/

zcash/.

[3] Open mHealth. http://www.openmhealth.org/.

Sep. 19, 2019.

[4] S. G. Akl and P. D. Taylor. Cryptographic solution to a

problem of access control in a hierarchy. TOCS, 1983.

[5] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman.

Medrec: Using blockchain for medical data access and

permission management. In OBD, 2016.

[6] A. Back. Hashcash - a denial of service counter-

measure. 2002.

[7] M. Backes, A. Herzberg, A. Kate, and I. Pryvalov.

Anonymous RAM. In ESORICS, 2016.

[8] R. Baden, A. Bender, N. Spring, B. Bhattacharjee, and

D. Starin. Persona: an online social network with user-

defined privacy. In CCR, 2009.

[9] A. Baumann, M. Peinado, and G. Hunt. Shielding ap-

plications from an untrusted cloud with haven. TOCS,

2015.

[10] M. Bellare, A. Boldyreva, A. Desai, and D. Pointcheval.

Key-privacy in public-key encryption. In ASIACRYPT,

2001.

[11] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green,

I. Miers, E. Tromer, and M. Virza. Zerocash: Decen-

tralized anonymous payments from Bitcoin. In S&P,

2014.

[12] J. Benet. IPFS: Content addressed, versioned, P2P file

system. CoRR, 2014.

[13] A. Bessani, M. Correia, B. Quaresma, F. André, and

P. Sousa. Depsky: dependable and secure storage in a

cloud-of-clouds. TOS, 2013.

[14] M. Blaze. A cryptographic file system for UNIX. In

CCS, 1993.

[15] J. Bonneau. EthIKS: Using Ethereum to audit a

CONIKS key transparency log. In FC, 2016.

[16] F. Buccafurri, G. Lax, S. Nicolazzo, and A. No-

cera. Accountability-preserving anonymous delivery

of cloud services. In TrustBus, 2015.

[17] V. Buterin et al. Ethereum white paper. GitHub reposi-

tory, 2013.

[18] J. L. Camenisch, J. Piveteau, and M. A. Stadler. Blind

signatures based on the discrete logarithm problem. In

EUROCRYPT, 1994.

[19] R. Canetti. Universally composable security: A new

paradigm for cryptographic protocols. In FOCS, 2001.

[20] M. Castro and B. Liskov. Practical Byzantine fault

tolerance. In OSDI, 1999.

[21] D. Chaum. Untraceable electronic mail, return ad-

dresses, and digital pseudonyms. CACM, 1981.

[22] D. Chaum. Blind signatures for untraceable payments.

In EUROCRYPT, 1983.

[23] D. Chaum. Blind signature system. In EUROCRYPT,

1984.

[24] S. Chen, R. Wang, X. Wang, and K. Zhang. Side-

channel leaks in web applications: A reality today, a

challenge tomorrow. In S&P, 2010.

[25] S. Contiu, S. Vaucher, R. Pires, M. Pasin, P. Felber, and

L. Réveillère. Anonymous and confidential file sharing

over untrusted clouds. SRDS, 2019.

[26] H. Corrigan-Gibbs, D. Boneh, and D. Mazières. Ri-

poste: An anonymous messaging system handling mil-

lions of users. In S&P, 2015.

[27] Crypho. Enterprise communications with end-to-end

encryption. https://www.crypho.com/.

[28] J. Davis. The 10 biggest healthcare data breaches of

2019, so far. https://healthitsecurity.com/news/the-10-

biggest-healthcare-data-breaches-of-2019-so-far. Sep.

12, 2019.

[29] R. Dingledine, N. Mathewson, and P. Syverson. Tor:

The second-generation onion router. Technical report,

2004.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 863

https://github.com/cryptoballot/rsablind
https://bitinfocharts.com/zcash/
https://bitinfocharts.com/zcash/
http://www.openmhealth.org/
https://www.crypho.com/

[30] A. Eijdenberg, B. Laurie, and A. Cut-

ter. Verifiable data structures. https:

//github.com/google/trillian/blob/master/

docs/VerifiableDataStructures.pdf.

[31] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W.

Felten. SPORC: Group collaboration using untrusted

cloud resources. In OSDI, 2010.

[32] Filecoin. https://filecoin.io. Apr. 16, 2019.

[33] W. C. Garrison, A. Shull, S. Myers, and A. J. Lee. On

the practicality of cryptographically enforcing dynamic

access control policies in the cloud. In S&P, 2016.

[34] S. Gilbert and N. Lynch. Brewer’s conjecture and the

feasibility of consistent, available, partition-tolerant

web services. SIGACT News, 2002.

[35] E. Goh, H. Shacham, N. Modadugu, and D. Boneh.

SiRiUS: Securing remote untrusted storage. In NDSS,

2003.

[36] O. Goldreich and R. Ostrovsky. Software protection

and simulation on oblivious RAMs. JACM, 1996.

[37] W. Gordon, A. Chopra, and A. Landman. Patient-led

data sharing — a new paradigm for electronic health

data. https://catalyst.nejm.org/patient-led-health-data-

paradigm/. Sep. 12, 2019.

[38] P. Grubbs, R. McPherson, M. Naveed, T. Ristenpart,

and V. Shmatikov. Breaking web applications built on

top of encrypted data. In CCS, 2016.

[39] S. Haber and W. S. Stornetta. How to time-stamp a

digital document. In EUROCRYPT, 1990.

[40] A. Hamlin, R. Ostrovsky, M. Weiss, and D. Wichs.

Private anonymous data access. 2019.

[41] W. He, D. Akhawe, S. Jain, E. Shi, and D. Song. Shad-

owcrypt: Encrypted web applications for everyone. In

CCS, 2014.

[42] M. P. Herlihy and J. M. Wing. Linearizability: A

correctness condition for concurrent objects. TOPLAS,

1990.

[43] D. Hoppe. Blockchain use cases: Electronic health

records. https://gammalaw.com/blockchain_

use_cases_electronic_health_records/. Sep.

12, 2019.

[44] R. Hurst and G. Belvin. Security through transparency.

https://security.googleblog.com/2017/01/

security-through-transparency.html.

[45] Identity Theft Resource Center. At mid-year, U.S. data

breaches increase at record pace. In ITRC, 2018.

[46] Tresorit Inc. End-to-end encrypted cloud storage.

tresorit.com.

[47] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access

pattern disclosure on searchable encryption: Ramifica-

tion, attack and mitigation. In NDSS, 2012.

[48] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang,

and K. Fu. Plutus: Scalable secure file sharing on

untrusted storage. In FAST, 2003.

[49] N. Karapanos, A. Filios, R. A. Popa, and S. Capkun.

Verena: End-to-end integrity protection for web appli-

cations. In S&P, 2016.

[50] N. P. Karvelas, A. Peter, and S. Katzenbeisser. Using

oblivious RAM in genomic studies. In Data Privacy

Management, Cryptocurrencies and Blockchain Tech-

nology. 2017.

[51] B. Kepes. Some scary (for some) statis-

tics around file sharing usage, 2015. https:

//www.computerworld.com/article/2991924/

some-scary-for-some-statistics-around-

file-sharing-usage.html.

[52] Keybase.io. https://keybase.io/.

[53] R. Khalil, A. Zamyatin, G. Felley, P. Moreno-Sanchez,

and A. Gervais. Commit-chains: Secure, scalable off-

chain payments, 2018. https://eprint.iacr.org/

2018/642.

[54] S. M. Khan and K. W. Hamlen. AnonymousCloud: A

data ownership privacy provider framework in cloud

computing. In TrustCom, 2012.

[55] B. H. Kim and D. Lie. Caelus: Verifying the consis-

tency of cloud services with battery-powered devices.

In S&P, 2015.

[56] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,

P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weather-

spoon, W. Weimer, C. Wells, and B. Zhao. OceanStore:

An architecture for global-scale persistent storage. In

ASPLOS, 2000.

[57] S. Kumar, Y. Hu, M. P Andersen, R. A. Popa, and D. E.

Culler. JEDI: Many-to-many end-to-end encryption

and key delegation for IoT. In USENIX Security, 2019.

[58] L. Lamport. The part-time parliament. TOCS, 1998.

[59] L. Lamport et al. Paxos made simple. ACM Sigact

News, 2001.

[60] B. Lau, S. P. Chung, C. Song, Y. Jang, W. Lee, and

A. Boldyreva. Mimesis Aegis: A mimicry privacy

shield-a system’s approach to data privacy on public

cloud. In USENIX Security, 2014.

864 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/google/trillian/blob/master/docs/VerifiableDataStructures.pdf
https://github.com/google/trillian/blob/master/docs/VerifiableDataStructures.pdf
https://github.com/google/trillian/blob/master/docs/VerifiableDataStructures.pdf
https://filecoin.io
https://gammalaw.com/blockchain_use_cases_electronic_health_records/
https://gammalaw.com/blockchain_use_cases_electronic_health_records/
https://security.googleblog.com/2017/01/security-through-transparency.html
https://security.googleblog.com/2017/01/security-through-transparency.html
tresorit.com
https://www.computerworld.com/article/2991924/some-scary-for-some-statistics-around-file-sharing-usage.html
https://www.computerworld.com/article/2991924/some-scary-for-some-statistics-around-file-sharing-usage.html
https://www.computerworld.com/article/2991924/some-scary-for-some-statistics-around-file-sharing-usage.html
https://www.computerworld.com/article/2991924/some-scary-for-some-statistics-around-file-sharing-usage.html
https://keybase.io/
https://eprint.iacr.org/2018/642
https://eprint.iacr.org/2018/642

[61] B. Laurie, A. Langley, and E. Kasper. Certificate trans-

parency. Technical report, 2013.

[62] R. Lemos. Home Depot estimates data on 56

million cards stolen by cybercriminals. https:

//arstechnica.com/information-technology/

2014/09/home-depot-estimates-data-on-56-

million-cards-stolen-by-cybercrimnals/.

Apr. 21, 2019.

[63] H. M. Levy. Capability-based computer systems. 1984.

[64] J. Li, M. Krohn, D. Mazières, and D. Shasha. Secure

untrusted data repository (SUNDR). In OSDI, 2004.

[65] M. Maffei, G. Malavolta, M. Reinert, and D. Schröder.

Privacy and access control for outsourced personal

records. In S&P, 2015.

[66] M. Maffei, G. Malavolta, M. Reinert, and D. Schröder.

Maliciously secure multi-client ORAM. In ACNS,

2017.

[67] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi,

M. Dahlin, and M. Walfish. Depot: Cloud storage with

minimal trust. TOCS, 2011.

[68] P. Maniatis and M. Baker. Secure history preservation

through timeline entanglement. In USENIX Security,

2002.

[69] D. Mazières and D. Shasha. Building secure file sys-

tems out of Byzantine storage. In PODC, 2002.

[70] Medicalchain - blockchain for electronic health records.

https://medicalchain.com. Sep. 12, 2019.

[71] M. S. Melara, A. Blankstein, J. Bonneau, E. W. Felten,

and M. J. Freedman. CONIKS: bringing key trans-

parency to end users. In USENIX Security, 2015.

[72] A. Mettler, D. A. Wagner, and T. Close. Joe-E: A

security-oriented subset of java. In NDSS, 2010.

[73] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash

system. 2008.

[74] V. Pacheco and R. Puttini. SaaS anonymous cloud

service consumption structure. In ICDCS, 2012.

[75] R. A. Popa, E. Stark, J. Helfer, S. Valdez, N. Zeldovich,

M. F. Kaashoek, and H. Balakrishnan. Building web

applications on top of encrypted data using Mylar. In

NSDI, 2014.

[76] PreVeil Inc. PreVeil: End-to-end encryption for every-

one. preveil.com.

[77] Privly Inc. Privly. priv.ly.

[78] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Shenker. A scalable content-addressable network.

In SIGCOMM, 2001.

[79] A. Rowstron and P. Druschel. Pastry: Scalable, de-

centralized object location, and routing for large-scale

peer-to-peer systems. In Middleware, 2001.

[80] C. Sahin, V. Zakhary, A. El Abbadi, H. Lin, and S. Tes-

saro. Taostore: Overcoming asynchronicity in oblivi-

ous data storage. In S&P, 2016.

[81] T. Seals. 17% of workers fall for social engineering

attacks, 2018.

[82] Secret Double Octopus | passwordless high assurance

authentication. https://doubleoctopus.com. Apr.

21, 2019.

[83] A. Shamir. How to share a secret. CACM, 1979.

[84] J. S. Shapiro, J. M. Smith, and D. J. Farber. EROS: A

fast capability system. In SOSP, 1999.

[85] J. Sharp. Will healthcare see

ethical patient data exchange?

https://www.idigitalhealth.com/news/healthcare-

ethical-patient-data-exchange-cms-rule. Sep. 12,

2019.

[86] E. Shi, T. H. H. Chan, E. Stefanov, and M. Li. Obliv-

ious RAM with O((logN)3) worst-case cost. In ASI-

ACRYPT, 2011.

[87] A. Shraer, C. Cachin, A. Cidon, I. Keidar,

Y. Michalevsky, and D. Shaket. Venus: Verifi-

cation for untrusted cloud storage. In CCSW,

2010.

[88] Sia. https://sia.tech. Apr. 16, 2019.

[89] M. Srivatsa and M. Hicks. Deanonymizing mobility

traces: Using social network as a side-channel. In CCS,

2012.

[90] E. Stefanov and E. Shi. Oblivistore: High performance

oblivious cloud storage. In S&P, 2013.

[91] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren,

X. Yu, and S. Devadas. Path ORAM: An extremely

simple Oblivious RAM protocol. In CCS, 2013.

[92] Decentralized cloud storage — Storj. https://

storj.io. Apr. 16, 2019.

[93] A. Tomescu and S. Devadas. Catena: Efficient non-

equivocation via Bitcoin. In S&P, 2017.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 865

https://arstechnica.com/information-technology/2014/09/home-depot-estimates-data-on-56-million-cards-stolen-by-cybercrimnals/
https://arstechnica.com/information-technology/2014/09/home-depot-estimates-data-on-56-million-cards-stolen-by-cybercrimnals/
https://arstechnica.com/information-technology/2014/09/home-depot-estimates-data-on-56-million-cards-stolen-by-cybercrimnals/
https://arstechnica.com/information-technology/2014/09/home-depot-estimates-data-on-56-million-cards-stolen-by-cybercrimnals/
https://medicalchain.com
preveil.com
priv.ly
https://doubleoctopus.com
https://sia.tech
https://storj.io
https://storj.io

[94] V. Tron, A. Fischer, and N. Johnson. Smash-proof:

Auditable storage for Swarm secured by masked audit

secret hash. Technical report, Ethersphere, 2016.

[95] N. Tyagi, Y. Gilad, D. Leung, M. Zaharia, and N. Zel-

dovich. Stadium: A distributed metadata-private mes-

saging system. In SOSP, 2017.

[96] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin,

B. Kasikci, F. Piessens, M. Silberstein, T. F. Wenisch,

Y. Yarom, and R. Strackx. Foreshadow: Extracting the

keys to the Intel SGX kingdom with transient out-of-

order execution. In USENIX Security, 2018.

[97] J. Van Den Hooff, D. Lazar, M. Zaharia, and N. Zel-

dovich. Vuvuzela: Scalable private messaging resistant

to traffic analysis. In SOSP, 2015.

[98] Virtru Inc. Virtru: Email encryption and data protection

solutions. www.virtru.com.

[99] F. Wang, J. Mickens, N. Zeldovich, and V. Vaikun-

tanathan. Sieve: Cryptographically enforced access

control for user data in untrusted clouds. In NSDI,

2016.

[100] X. Wang, H. Chan, and E. Shi. Circuit ORAM: On

tightness of the Goldreich-Ostrovsky lower bound. In

CCS, 2015.

[101] S. A Weil, S. A. Brandt, E. L. Miller, D. DE Long,

and C. Maltzahn. Ceph: A scalable, high-performance

distributed file system. In OSDI, 2006.

[102] WhatsApp. WhatsApp’s privacy notice.

www.whatsapp.com/legal/?doc=privacy-policy,

2012.

[103] M. Yin, D. Malkhi, M. Reiterand, G. G. Gueta, and

I. Abraham. HotStuff: BFT consensus with linearity

and responsiveness. In PODC, 2019.

[104] S. Zarandioon, D. D. Yao, and V. Ganapathy. K2C:

Cryptographic cloud storage with lazy revocation and

anonymous access. In International Conference on

Security and Privacy in Communication Systems, 2011.

[105] Zcash. Zcash: All coins are created equal. http:

//z.cash/.

[106] K. Zetter. ‘Google’ hackers had ability to alter source

code. https://www.wired.com/2010/03/source-code-

hacks/. Apr. 21, 2019.

[107] K. Zetter. An unprecedented look at

Stuxnet, the world’s first digital weapon.

https://www.wired.com/2014/11/countdown-

to-zero-day-stuxnet/. Apr. 21, 2019.

A Full Protocol Description for Ghostor

Below, we describe the client-server protocol used by Ghostor.

A.1 GET Protocol

1. Server sends a PoW challenge to the client (§6).

2. Client sends the server the PoW solution, PVK of the object

that the user wishes to access, and the server returns the

object header and current epoch.

3. The client assembles a digest for the GET operation, in-

cluding the epoch number, PVK, RVK, WVK, and a random

nonce, and signs it with RSK (obtained from the header).

It sends the signed digest to the server.

4. Server reads the latest digest and checks that the client’s

candidate digest is consistent with it. If not (for example, if

the header was changed in-between round trips), the server

gives the client the object header, and the protocol returns

to Step 3.

5. Server adds Hashprev, Hashheader, and Hashdata to the di-

gest (according to the order in which it commits operations

on the object). Then it signs it and adds it to the log of

digests for that object.

6. Server returns the object contents and the digest, including

the server’s signature, to the client.

7. Client checks that the signed digest matches the object

contents and digest that the client provided. If so, it returns

the object contents to the user and sends the signed digest

to the verification daemon.

A.2 PUT Protocol

1. Server sends a PoW challenge to the client (§6).

2. Client sends the server the PoW solution and PVK of the

object to PUT, and the server returns the object header, cur-

rent epoch, and latest server-signed digest for that object.

3. The client assembles a PREPARE digest for the write oper-

ation, including the epoch number, PVK, RVK, WVK, and

signs it with WSK (obtained from the header). It sends the

signed digest to the server.

4. Server reads the latest digest and checks that the client’s

candidate digest is consistent with it. If not, then the server

gives the client the object header, and the protocol returns

to Step 3.

5. Server adds Hashprev, Hashheader, and Hashdata to the di-

gest (according to the order in which it commits operations

on the object). Then it signs it and adds it to the log of

digests for that object.

6. Server returns the signed digest to the client.

7. Client assembles a COMMIT digest for the write operation,

including the same fields as the PREPARE digest, and also

Hashprep and Hashdata according to the new data. Then

it signs it and uploads it to the server, including the new

object contents.

8. Server decides if this PUT “wins.” It wins as long as no

other PUT whose PREPARE digest is after this PUT’s PRE-

PARE digest has already committed. If this PUT wins, then

the server performs the write, signs the digest, and adds it

866 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

www.virtru.com
www.whatsapp.com/legal/?doc=privacy-policy
http://z.cash/
http://z.cash/
https://www.wired.com/2014/11/countdown-to-zero-day-stuxnet/
https://www.wired.com/2014/11/countdown-to-zero-day-stuxnet/

to the log of digests for that object. If not, it still signs the

digest and adds it to the log, but it replaces Hashdata with

the current hash of the data, including the value provided

by the client as an “addendum” so that the verification

daemon can still verify the client’s signature. The server

may also reject the COMMIT digest if the key list changed

meanwhile due to a set_acl operation.

9. Server returns the digest, including the server’s signature,

to the client.

10. Client checks that the signed digest matches the object

contents and digest that the client provided. If so, it sends

the signed digest to the verification daemon.

A.3 Access Control

1. Server sends a PoW challenge to the client (§6).

2. Client sends the server the PoW solution and PVK of the

object to write, and the server returns the object header,

current epoch, and latest server-signed digest for that ob-

ject.

3. The client assembles a digest for the write operation, in-

cluding all fields, and signs it with PSK. It sends the signed

digest to the server. Client also signs PVK with PSK and

includes that signature in the request. Client also includes

the new header.

4. Server acquires a lock (lease) on the object for this client

(unless it is already held for this client), reads the latest

digest, and checks that the client’s candidate digest is con-

sistent with it. If not, then the server gives the client the

object header, and the protocol returns to Step 3. When re-

turning to Step 3, the server checks if the client’s signature

over PVK is correct. If so, the server holds the lock on the

object during the round trip. If not, the server releases it.

5. Server updates the header, signs the digest, adds it to the

log of digests for that object, and releases the lock.

6. Server returns the digest, including the server’s signature,

to the client.

7. Client checks that the signed digest matches the object

contents and digest that the client provided. If so, it returns

the object contents to the user and sends the signed digest

to the verification daemon.

The owner of the object generates new keys and encrypts the

object under the new key. If a user is being granted access,

the owner may still generate new keys to prevent the server

from learning whether or not a user was revoked. The owner

shuffles the key list upon any change to it. The owner may

also add padding to hide the number of users in the key list.

A.4 Object Creation

1. Server sends a PoW challenge to the client (§6)

2. Client sends the server the PoW, PVK of the object that

the user wishes to create, a token signed by the server

for proof of payment (§2), the header for the new object,

and the object’s first digest (for which Hashprev is empty).

This involves generating all the keys in Fig. 4) for the new

object.

3. Server verifies the signature on the token, and checks that

it has not been used before.

4. Server “remembers” the hash of the token by storing it in

permanent storage.

5. Server writes the object header. It signs the digest and

creates a log for this object containing only that digest.

6. Server returns the digest, including the server’s signature,

to the client.

7. Client checks that the signed digest matches the object

contents and digest that the client provided. If so, it returns

the object contents to the user and sends the signed digest

to the verification daemon.

A.5 Verification Procedure

At the end of each epoch, the verification daemon downloads

the digest chain and checkpoints to verify operations per-

formed in the epoch.

1. Server sends a PoW challenge to the daemon (§6). (The

server will request additional PoWs for long lists of digests

as it streams them to the daemon in Step 3.)

2. Daemon responds with PoW and requests the object’s

digest chain from the server for that epoch. It sends the

server a signed digest for that object, so the server knows

this is a legitimate request.

3. Server returns the digest chain for that object, along with

a Merkle proof.

4. Daemon retrieves the Merkle root from the checkpoint in

Zcash, and verifies the server’s Merkle proof to check that

the last digest in the digest chain is included in the Merkle

tree at the correct position based on the object’s PVK.

5. Daemon verifies that all digests corresponding to the user’s

operations are in the digest chain, and that the diges chain

is valid.

To check that the digest chain is valid, the daemon checks:

1. Hashprev for each digest matches the previous digest. If

this digest is the first digest in this epoch, the previous

digest is the last digest in the previous epoch. The daemon

knows this previous digest already since the daemon must

have checked the previous epoch. If this is the first epoch,

then Hashprev should be empty.

2. Hashprep in each COMMIT digests matches an earlier PRE-

PARE digest in the same epoch, and each PREPARE digest

matches with at most one COMMIT digest.

3. Hashdata only changes in winning COMMIT digests, which

are signed with WSK.

4. WVK, RVK, and Hashkeylist only change in digests signed

with PSK, and PVK never changes.

5. The epoch number in digests matches the epoch that the

client requested, and never decreases from one digest to

the next.

6. Sigclient is valid and signed using the correct signing key.

For example, if this operation is read, Sigclient must be

signed using RSK.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 867

A.6 Payment

First, the user pays the server using an anonymous cryptocur-

rency such as Zcash [105], and obtains a proof of payment

from Zcash. Then, the client obtains tokens from the server,

as follows:

1. Server sends a PoW challenge to the client (§6).

2. Client sends the server the PoW, proof of payment, and t

blinded tokens, where t corresponds to the amount paid.

3. Server checks that the proof of payment is valid and has

not been used before.

4. Server “remembers” the proof of payment by storing it in

persistent storage.

5. Server signs the blinded tokens, ensuring that t indeed cor-

responds to the amount paid, and sends the signed blinded

tokens to the client.

6. Client unblinds the signed tokens and saves them for later

use.

B Extension: Scalability

Our implementation of Ghostor that we evaluated in §9 con-

sists of a single Ghostor server, which stores data in a storage

cluster that is internally replicated and fault-tolerant (Ceph

RADOS). In this appendix, we discuss techniques to scale

this setup by replicating the Ghostor server as well.

Given that we consider a malicious adversary, it may seem

natural to use PBFT [20]. PBFT, however, is neither necessary

nor sufficient in Ghostor’s setting. It is not necessary because

we already post checkpoints to a ledger based on decentralized

trust (§5.2) to achieve verifiable integrity. It is not sufficient

because we assume an adversary who can compromise any

few machines across which we replicate Ghostor, which is

incompatible with Byzantine Fault Tolerance.

The primary challenge to replicating the Ghostor server is

synchronization: if multiple operations on the same object

may be handled by different servers, the servers may con-

currently mutate the on-disk data structure for that object. A

simple solution is to use object-level locks provided by Ceph

RADOS. This is probably sufficient for most uses. But, if

server-side caching of objects in memory is implemented,

caches in the Ghostor servers would have to be kept coherent.

Alternatively, one could partition the object space among

the servers, so each object has a single server responsible for

processing operations on it. A set of load balancer servers

run Paxos [58, 59] to arrive at a consensus on which servers

are up and running, so that requests meant for one server can

be re-routed to another if it goes down. Note that Paxos is

outside of the critical path; it only reacts to failures, not to

individual operations. Based on the consensus, the load bal-

ancers determine which server is responsible for each object.

Because all objects are stored in the same storage pool, the

objects themselves do not need to be moved when Ghostor

servers are added or removed, only when storage servers are

added or removed (which is handled by Ceph). Object-level

locks in Ceph RADOS would still be useful to enforce that at

most one server is operating on a Ghostor object at a time.

C Extension: Files and Directories
Our design of Ghostor can be extended to support a hierarchy

of directories and files. Each directory or file corresponds to a

PVK and associated Ghostor object; the PVK has a similar role

to an inode number in a traditional file system. The Ghostor

object corresponding to a directory contains a mapping from

name to PVK as a list of directory entries. Given the PVK of

a root directory and a filepath, a client iteratively finds the

PVK of each directory from left to right; in the end, it will

have the PVK of the file, allowing it to access the Ghostor

object corresponding to a file. The procedure is analogous to

resolving a filepath to an inode number in a traditional file

system. The Ghostor object corresponding to a file may either

contain the file contents directly, or it may contain the PVKs

of other objects containing the file data, like an inode in a

traditional file system.

The “no user-side caching” principle §4 applies here, in

the sense that clients may not cache the PVK of a file after

resolving it once. A client must re-resolve a file’s PVK on each

access; caching the PVK and accessing the file without first

accessing all parent directories would reveal that the same

user has accessed the file before.

D Additional Description of Ghostor-MH
§7.2 explains Ghostor-MH at a high level. §8 and §9 describe

our implementation and evaluation of Ghostor-MH.

Appendix D.2 below provides a more in-depth explana-

tion of Ghostor-MH. We first provide more details about

AnonRAM in Appendix D.1. This is necessary because, as

explained in §7.2, we construct Ghostor-MH by applying

Ghostor’s techniques to AnonRAM [7].

D.1 Overview of AnonRAM
ORAM [36] is a technique to access objects on a remote

server without revealing which objects are accessed. Many

ORAM schemes, such as Path ORAM [91], allow a single

user to access data. Path ORAM [91] works by having the

client shuffle a small amount of server-side data with each

access, such that the server cannot link requests to the same

object. Clients store mutable secret state, including a stash

and position map, used to find objects after shuffling.

AnonRAM extends single-user ORAM to support multiple

users. Each AnonRAM user essentially has her own ORAM

on the server. When a user accesses an object, she (1) per-

forms the access as normal in her own ORAM, and (2) per-

forms a fake access to all of the other users’ ORAMs. To

the server, the fake accesses are indistinguishable from gen-

uine accesses, so the server does not learn to which ORAM

the user’s object belongs. This, together with each individual

ORAM hiding which of its objects was accessed, results in

global obliviousness across all objects in all ORAMs.

To support fake accesses, re-randomizable public-key en-

cryption (e.g., El Gamal) is used to encrypt objects in each

868 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

ORAM. To guard against malicious clients, the server requires

a zero-knowledge proof with each real or fake access, to prove

that either (1) the client knows the secret key for the ORAM,

or (2) the new ciphertexts encrypt the same data as existing

ciphertexts (i.e., they were re-randomized correctly).

A limitation of AnonRAM is that there is no object sharing

among users; each user can access only the objects she owns.

Furthermore, AnonRAM and similar schemes (§10) are theo-

retical—they consider oblivious storage from a cryptographic

standpoint, but do not consider challenges like payment, user

accounts, and resource abuse.

D.2 Ghostor-MH

Recall from §7.2 that we apply to AnonRAM Ghostor’s prin-

ciple of switching from a user-centric to a data-centric design.

Each ORAM now corresponds to an object group, which is

a fixed-size set of objects with a shared ACL. Each object

group has one object header and one digest chain.

Ghostor-MH uses Path ORAM, which organizes server-

side storage as a binary tree. To guard against a malicious

adversary controlling the server, we build a Merkle tree over

the binary tree, and compute Hashdata in each digest as the

hash of the Merkle root and ORAM secret state. This allows

each client to efficiently compute the new Hashdata after each

ORAM access, without downloading the entire ORAM tree.

The ORAM secret state is stored on the server, encrypted with

OSK, so multiple clients can access an object group. This is

analogous to Ghostor’s object header, which stores an object’s

keys encrypted on the server.

To access an object, a client (1) identifies the object group

containing it, (2) downloads the object header and encrypted

ORAM secret state, (3) obtains OSK from the object header,

(4) decrypts the ORAM secret state, (5) uses it to perform

the ORAM access, (6) encrypts and uploads the new ORAM

secret state, (7) computes a new digest for the operation, (8)

has the server sign it, and (9) sends it to the verification dae-

mon. For all other object groups, the client performs a fake

access that fetches data from the server and generates a digest,

but only re-randomizes ciphertexts instead of performing a

real access. This hides which object group contains the object.

When writing an object, the client pads it to a maximum size

(the ORAM block size) to hide the length of the object.

Below, we explain some more details about Ghostor-MH:

Fake accesses. OSK is replaced with an El Gamal keypair.

This allows ciphertexts in the ORAM tree and the ORAM se-

cret state to be re-randomized. We no longer attach a client sig-

nature to each digest, but instead modify the zero-knowledge

proof in AnonRAM to prove that either the client can produce

a signature over the digest with WSK, or the ciphertexts were

properly re-randomized.

Hiding timing. Similar to secure messaging systems [97],

Ghostor-MH operates in rounds (shorter than epochs) to hide

timing. In each round, each client either accesses an object

as described above, or performs a fake access on all ORAMs

if there is no pending object access. Each client chooses a

random time during the round to make its request to the server.

Using tokens. In a globally oblivious system like Ghostor-

MH, it is impossible to enforce the per-object quotas discussed

in §6.3. Thus, it is advisable to require users to expend tokens

for all operations (except pay), not just create_object. Our

PoW mechanism applies to Ghostor-MH unchanged.

Object group creation. The server can distinguish payment

(to obtain tokens) and object group creation from GET/PUT

operations. The most secure solution is to have a setup phase

to create all object groups and perform all payment in advance.

Barring this, we propose adding a special round at the start

of each epoch, used only for creation and payment; all object

accesses during an epoch happen after this special round.

List of object groups. To make fake accesses, each client

must know the full list of object groups. To ensure this, we

can add an additional digest chain to keep track of all created

object groups, checkpointed every epoch with the rest of the

system.

Changing permissions. In our solution so far, the server can

distinguish a set_acl operation from object accesses. To fix

this, we require the owner of each object group to perform

exactly one set_acl for that object group during each epoch;

if he does not wish to change it, he sets it to the same value.

Concurrency. When a client iterates over all ORAMs to

make accesses (fake or real), the client locks each ORAM

individually and releases it after the access. No “global lock”

is held while a client makes fake accesses to all ORAMs.

E Ghostor’s Privacy Guarantee

In this appendix, we use the simulation paradigm of Secure

Multi-Party Computation (SMPC) [19] to define Ghostor’s

privacy guarantee. We begin in Appendix E.1 by providing

an overview of our definition and proof sketch, along with an

explanation of how our simulation-based definition matches

the one in §3.3.

E.1 Overview

We formally define Ghostor’s anonymity by specifying an

ideal world. We provided a definition in §3.3, but we consider

it to be informal because it does not clearly state what the

adversary learns if some users are compromised/malicious.

The ideal world is specified such that it is easy to reason

about what information the adversary learns; what the ad-

versary learns in the ideal world is our definition of what an

anonymous object sharing system leaks to an adversary (i.e.,

what anonymity does not hide). In the ideal world, clients

interact with an uncorruptible trusted party F called an ideal

functionality. On each API call issued by a client, F services

the request and provides to the adversary (denoted S in the

ideal world) a well-defined subset of information in the API

call. The subset of information that F gives to S defines what

information Ghostor leaks to the adversary, and provides a

clear definition of what anonymity means in our setting. To

allow for a malicious adversary, S chooses what response is

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 869

returned to the client. S may violate integrity in a way that

the client will only detect at the end of the epoch (e.g., fork

attack), but cannot deny service by returning a message that

the client would immediately detect as fake (e.g., a message

with a bad or missing signature).

To prove that Ghostor achieves that definition of anonymity,

we additionally define a real world. The purpose of the real

world is to model the Ghostor system in the abstract environ-

ment we used for the ideal world. In the real world, clients

interact directly with the adversary (denoted A in the real

world), which services the requests and learns some informa-

tion. The protocol that clients use to interact with A is the

same as that used in the actual Ghostor system.

In both worlds, there is another party Z called the envi-

ronment. The environment can communicate freely with the

adversary and decides what operations the clients issue.

E.1.1 Summary of Proof Sketch

To prove that Ghostor achieves our definition of anonymity

as specified in the ideal world, we demonstrate that for ev-

ery real-world adversary A in the real world, there exists an

ideal-world adversary S in the ideal world such that the envi-

ronment Z cannot distinguish whether it is interacting with

the real world or the ideal world. Intuitively, this means that

any “attack” that the real-world adversary A can perform in

the real world, can also be performed by the ideal-world S

in the ideal world. Because the ideal-world setup is, by def-

inition, anonymous, this shows that any attacks that A can

perform are those allowed by anonymity, which implies that

the real-world setup achieves anonymity.

Given a real-world adversary A, we construct the corre-

sponding ideal-world adversary S via a simulation. This

means that S uses A as a black box by carefully simulat-

ing a “real world” that runs in tandem with the ideal world.

E.1.2 Map to Definition of Anonymity in §3.3

In §3.3, we explained Ghostor’s privacy guarantee in terms

of a leakage function. Anonymity, as defined by our ideal

world below, maps to the leakage function given in §3.3 as

follows. The leakage function in §3.3 is largely the same as

the information that F gives to S on each API call (Appendix

E.2.2). There are a few minor differences, which we now

explain. Timing information is not included in Appendix E.2.2

because the model we use in our cryptographic formalization

does not have a notion of time. That said, the order in which

the requests are processed is given to S; it is implicit in the

order in which F sends messages to it. Finally, although not

explicit in Appendix E.2.2, S can infer how many round trips

are performed between the client and server in processing

each operation: as long as there is no client-side caching of

data (§4.4), the adversary can infer how many round trips

are required from the client-server protocol (Appendix A),

because we do not model concurrently executing operations.

We consider the protocol to be public, so this does not reveal

any meaningful information.

Our definition of anonymity matches the everyday use of

the word “anonymity” because S does not receive any user-

specific information for operations issued by honest users

on objects that no compromised user is authorized to access.

Furthermore, S does not see the membership of the system

(public keys of users) or even know how many users exist in

the system, apart from corrupt/maliicous users.

E.1.3 Limitations of our Formalization

Although our cryptographic formalization is useful to prove

Ghostor’s anonymity, there are some aspects of Ghostor that

it does not model. First, we do not directly model the anony-

mous payment (e.g., Zcash) aspect of Ghostor. Instead, we as-

sume the existence of an ideal functionality for Zcash, FZcash,

that can be queried to validate payment (i.e., learn how much

was paid and when). Second, we do not directly model net-

work information (e.g., IP addresses) leaked to the server

when clients connect, because this is hidden by the use of an

anonymity network like Tor (§8). Third, whereas the Ghostor

system allows operations to be processed concurrently (i.e.,

round trips of different operations may be interleaved), our

formalization assumes that the Ghostor server processes each

operation one at a time. Fourth, we do not fully model Ghos-

tor’s integrity mechanisms, such as the return value of obtai

n_digests.

Users may also be malicious (i.e., controlled by the adver-

sary). In our formalization, the adversary may compromise

users, but we restrict the adversary to doing so statically. This

means that the adversary compromises users at the time of

their creation. The environment Z may choose to give the

adversary control over certain users and clients to try and

distinguish the ideal world from the real world.

E.2 Ideal World

We define an ideal functionality for an anonymous object

sharing system in the simulation paradigm, which captures

Ghostor’s privacy guarantee. Our notation and setup are as

follows. The environment Z interacts with the party P repre-

senting a Ghostor client, which simply relay messages to the

ideal functionality F . The ideal-world adversary S interacts

with F .

E.2.1 Execution in the Ideal World

Control begins with the environment Z . The environment may

request P to initiate an operation provided by Ghostor’s Client

API: GET, PUT, set_acl, create_user, obtain_token, or

obtain_digests. This is done via Initiate and New_User

messages. In the ideal world, the P is a dummy party, which

forwards these Initiate and New_User messages to F .

We model create_object as a special case of set_acl.

We find this convenient because both create_object and

set_acl set the object’s header. Furthermore, our implemen-

tation (§8) uses the same RPC call to handle both.

To perform certain operations (e.g., GET, PUT, set_acl,

etc.), a user keypair is necessary. This user keypair can be

used for asymmetric encryption/decryption with a key-private

870 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

encryption scheme, and is used in order to obtain the object’s

signing key from the object header. To formalize this, we draw

a distinction between users and clients. Users have keypairs

and are represented in the ideal world with IDs; in contrast, the

client is P. Each Initiate message contains the user_ID of the

user on whose behalf the operation will be performed. That

there is only client that will actually perform the operation

informally captures the guarantee given by the anonymity

network, that the server cannot tell apart different Ghostor

clients on the basis of network information.

In summary, each Initiate message contains:

• user_ID specifying which user’s keypair to use for this

request

• opcode, which can be one of GET, PUT, set_acl,

create_user, obtain_token, or obtain_digests

• new_contents if opcode= PUT or opcode= set_acl

• new_header if opcode= set_acl

• payment_ID (forwarded to FZcash) if opcode =
obtain_token

• object_ID specifying the object on which this request op-

erates

• Payment token to fund the operation (if applicable)

No information related to proof of work is included because

S will be able to simulate it without any external informa-

tion. Upon receiving an Initiate message, F reveals some

information to S , described in Appendix E.2.2.

As mentioned earlier, we allow users to be corrupted, but

require corruption to be static: users are corrupted at the time

they are created. This is handled by the New_User message,

which contains:

• inform, a bit indicating if the adversary is aware of this user

• compromise, a bit indicating if this user is corrupted or not

Upon receiving a New_User message, F generates a random

user_ID, and keeps track of whether the user is compromised.

If the inform bit is set, then the user_ID is given to the adver-

sary S so that malicious users may add this user to ACLs. If

the user is compromised, then F uses this information to give

more information to S when processing requests (see Ap-

pendix E.2.2). In each PUT operation, F generates a fresh ID,

denoted content_ID, to represent the contents being written

to that object. We refer to this mapping from PUT operation

to content_ID as the content table.

E.2.2 Information that F gives to S

Each Initiate message that the dummy party P sends to F

represents an API call (§2) to the server. Given each API call,

F processes the request and reveals some information to S.

First, F checks if the user issuing the request is malicious

or not. If the user is malicious, then F reveals to S all in-

formation about the request, including which user makes the

request and all arguments to the request. If the user issuing

the request is honest, then F reveals to S the opcode and the

following information:

• For create_user, the user_ID is given to S if either the

inform or compromise bits are set. Otherwise, nothing is

given to S .

• For GET, F gives S only the object_ID of the object being

accessed. S gives back to F the content_ID of the content

to be returned, or ⊥ if the operation fails or is aborted by

S .

• For PUT, F gives S only the object_ID of the object be-

ing accessed, and the content_ID and length of the object

contents being written. However, if a malicious user has

ever been on the ACL of the object, the object contents are

given to S in cleartext.

• For set_acl,F scans the ACL being set, identifying which

users are malicious. For each honest user in the ACL, F re-

places the corresponding rows of the ACL with NULL. As

object is being re-encrypted, F either gives S a content_ID

and length, or the cleartext contents, depending on whether

a malicious user has ever been on the ACL of the object.

• For obtain_token, F reveals to S the payment_ID. S

responds with tokens that can be redeemed with future

operations. F returns integers back to the party, which can

be used as payment tokens in future Initiate messages to

pay for operations. F keeps track of which of these tokens

are spent, based on feedback from S indicating for which

operations the payment was accepted.

• For obtain_digests, F reveals to S the epoch number

and object_ID for which digests are to be obtained.

Additionally, F checks that the payment token provided in

the Initiate message is valid, and reveals to S a single bit

indicating whether a valid token was provided.

We have not yet specified what F returns to P. In order to

allow the adversary to make arbitrary integrity violations dur-

ing an epoch, the return value must originate from S . For GET,

S returns the content_ID for the returned content; F trans-

lates it back into actual content and gives it to the party P who

requested it. For obtain_token, F forwards the response

from S back to P. For operations involving token payment, S

gives F a bit indicating whether the payment was accepted,

which is forwarded to the original party P. For operations

performed by a malicious user, P gives Z the result of the

operation.

At any time, S can send FZcash a payment_ID. If it does

so, it will receive from FZcash a response message indicating

if the payment to the server is valid, and if so, and how much

was paid and when.

E.3 Real World
The real world models Ghostor’s execution. We will prove

that our model of Ghostor in the real world reveals essentially

the same information to the adversary as is revealed to the

adversary in the ideal world.

The real world has the following key differences from the

ideal world, in order to properly model Ghostor’s execution:

• The party P handles Initiate messages from Z , instead of

simply forwarding them to F .

• The party P sends Request messages to A and receive

Response messages from A (instead of F).

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 871

• The party P encrypts object headers and object contents,

and A receives the ciphertexts, according to the Ghostor

protocol.

Upon receiving an Initiate message from Z , the P performs

the operation specified in the Initiate message by interact-

ing with A according to the Ghostor protocol (Appendix A).

We do not specify the protocol in additional detail here be-

cause it is already specified in Appendix A. Upon receiving

a New_User message, P creates a keypair (pk,sk) and gen-

erates a user_ID for the new user and stores them locally. If

the compromise bit is set, it shares the secret key with A,

and if either the inform or compromise bits are set, then it in-

forms A of the user_ID and public key. As in the ideal world,

malicious users’ results are given to Z .

For obtain_token, recall that we model Zcash as an ideal

functionality FZcash, which allows the adversary to validate a

payment transaction via Zcash and learn how much was paid

and when. Although A may follow the protocol in Appendix

A at times, it is not obligated to; it may violate the protocol

in ways that are not immediately detectable to the clients. Z

can also create users via New_User messages, which are han-

dled locally by P. They generate the corresponding keypair

and locally store which user_ID maps to that keypair. If the

New_User message has the inform bit set, then the user_ID

and pk for that user are given to A; if the compromise bit is

set, then A is also given sk for that user.

E.4 Simulator
We now describe a simulator S that, given any real-world

adversary A, performs the same attack in the ideal world as

A does in the real world, by invoking A as a black box. Note

that S , by the design of F , is not given any user identities, yet

needs to interact with A as some user. The key idea is that S

simply creates a single “dummy” user keypair, and performs

all interaction with A on behalf of honest users as that one

user. The design of Ghostor is such that the server cannot

distinguish this from a separate keypair being consistently

used for each honest user.

S works by simulating a real world in which A exists as a

black box. Recall that the real world consists of the parties P,

Z , and A; for clarity, we use Q to refer to P in this simulated

real world, to distinguish it from P in the ideal world.

E.4.1 State Maintained by S

S maintains a pool of tokens to use. Successful calls to obtai

n_token contribute to this token pool, S stores tokens in this

pool. For operations that require payment, F does not tell S

which particular tokens to use, so S chooses tokens randomly

from the pool.

S also maintains a ciphertext table. In the messages re-

ceived, certain encryptable pieces of data (e.g., content_IDs)

correspond to encrypted data in the actual Ghostor. To ac-

count for this, the ciphertext table maps each encryptable

datum received by S to a fake ciphertext.

• The fake ciphertext corresponding to object contents is

an encryption of a “zero string” of the same length as the

object contents. The key used to encrypt the zero string

is the same as the key normally used to encrypt object

contents.2

• The fake ciphertext corresponding to a NULL entry in the

object header is an encryption of a “zero string” of the

same length as the plaintext object header entry, using the

dummy user keypair.

E.4.2 Overview

Now, we explain how S interacts with A upon receiving in-

formation from F . When F asks S to start an operation, it

interacts with A over multiple round trips according to the

Ghostor protocol via the simulated party, making sure to blind

the request messages appropriately by replacing ciphertexts

with fake ciphertexts. All object header entries correspond-

ing to non-corrupt users are blinded; entries are created for

them in the ciphertext table. The decision of whether to blind

the object contents depends on whether a corrupt user has

permission to read the object. Note that F has already de-

termined this by the time it has sent the message to S, and

has NULLed object header entries for non-corrupt users and

replaced data for each object not shared with corrupt users

with an ID from its contents table. Therefore, S simply needs

to create fake ciphertexts for object data that correspond to

IDs in F’s content table and for NULLed object header en-

tries. Any object contents or object header entries that are

not blinded are encrypted exactly as in the normal Ghostor

system; S then forwards the ciphertexts to A.

E.4.3 Simulator Functionality

Now, we describe the simulator more precisely. For operations

that require payment, S verifies that the message it received

from F indicates that a valid token were paid. Then it chooses

a token randomly from its store, unblinds it, and uses it when

interacting with A. If the operation is successful, it marks the

token as “used” so it is not chosen for a later operation.

create_user. Suppose S receives a message from F with

a create_user opcode. If the compromise bit is set, then

S generates a keypair (pk,sk) for this user and stores the

mapping from the provided user_ID to this keypair. If the

inform bit or compromise bit is set, then A is informed of this

user_ID, as if Q received a New_User message.

set_acl. Suppose S receives a message from F with a

set_acl opcode. S has the party Q perform a set_acl oper-

ation.

• If this operation creates the object, then S generates the

keypairs for the object, and creates the encrypted key list for

the object. S constructs each entry of the key list correctly

in plaintext, and then encrypts each one as follows. If the

entry corresponds to a malicious user, then it encrypts the

entry using that user’s public key. If the entry corresponds

to an honest user, then it creates a fake ciphertext (encryp-

tion of zero string of the same length) using the honest

2
S has access to this key because it executed set_acl for this object in

the past.

872 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

keypair shared by all honest users and adds the mapping in

the ciphertext table. Then it completes the operation using

the resulting encrypted keylist.

• If this operation operates on an existing object, then S per-

forms the operation using PSK (with a check if the owner is

malicious). If the message from F includes a content_ID

and length, then S has the same operation include a fake

ciphertext for the re-encrypted object contents; otherwise

if F includes the contents, then S encrypts it to produce

the new data ciphertext. In both cases, the key to encrypt

the object data is updated with a fresh one.

PUT. Suppose S receives a message from F with a PUT op-

code. There are three cases:

• Suppose the PUT was performed by an honest user, and no

malicious users have ever been on the ACL. S receives the

ID of the object and the length of the contents being written.

In the simulation, S has Q perform a PUT operation, using

WSK. S uses a fake ciphertext (encrypted string of zeros of

the correct length) and adds a mapping from the provided

content_ID to the fake ciphertext in the ciphertext table.

• Suppose the PUTwas performed by an honest user, but mali-

cious users have been on the ACL of the object. S receives

the ID of the object and the object contents. Then S en-

crypts the object contents and uses the resulting ciphertext

instead of using a fake ciphertext, and has Q interact with

A to write the fake ciphertext to the specified object.

• Suppose the PUT was performed by a malicious user. Then

S has Q perform the operation using the information in the

Initiate message, without using any fake ciphertexts.

GET. Suppose that S receives a message from F with a GET

opcode. There are two cases:

• Suppose the GET was performed by an honest user. In this

case, S gets the object_ID of the object being accessed.

Then S has Q perform the GET operation using RSK. The

ciphertext returned by A is translated back to a content_ID

based on the ciphertext table (or decrypted if it is not a fake

ciphertext), and given back to F .

• Suppose the GET was performed by a malicious user. In

this case, S gets the entire Initiate message used to initiate

this operation. Then S has Q perform the GET operation

using the keypair for that malicious user. The ciphertext

returned by A is translated back to a content_ID based

on the ciphertext table (or decrypted if it is not a fake

ciphertext), and given back to F .

obtain_token. Suppose that S receives a message from

F with an obtain_token opcode. The message contains the

payment_ID, which is forwarded to A. The tokens produced

by A are then collected by S. S keeps the tokens from A in

its global pool of tokens. Then S forwards identifiers for the

tokens back to F as the return value. If A attempts to send a

message to FZcash (as part of obtain_token or at any other

time), then S sends the message to FZcash in the ideal world,

and gives the response to A in simulation.

obtain_digests. Suppose that S receives a message

from F with an obtain_digests opcode. The message is

forwarded to A.

Notably, this model does not include the payment phase

in which the client initiates a Zcash transaction to transfer

funds. Instead, we model Zcash as a trusted party, which

the adversary cannot control. This ensures that the server

learns nothing during the payment phase in the actual protocol.

Formally, we define an ideal Zcash functionality FZcash, which

the adversary can use to check if a Zcash transaction ID is

valid. FZcash reveals only the time of the transaction and the

amount paid. Modeling Zcash (i.e., providing a real-world

setup that realizes FZcash) is out of scope for this work.

E.5 Proof Sketch

We are now ready to define Ghostor’s anonymity. We denote

the security parameter as κ throughout this paper.

Theorem 1 (Privacy in Ghostor). Suppose that in Ghostor,

the data encryption scheme is CCA2-secure, the ACL encryp-

tion scheme is CPA-secure, the ACL encryption scheme is

key-private, payment tokens are blind, and FZcash is an ideal

functionality for Zcash. For every non-uniform probabilistic

polynomial-time real-world adversary A, there exists a non-

uniform probabilistic polynomial-time ideal-world adversary

S such that for every non-uniform probabilistic polynomial-

time environment Z , Z cannot distinguish the real world with

adversary A from the ideal world with adversary S .

Proof. We shall demonstrate that for every real-world ad-

versary A, there exists an ideal-world adversary (simula-

tor) S such that there exists no environment Z probabilistic

polynomial-time in κ that can distinguish between interact-

ing with the real world and interacting with the ideal world.

Specifically, for an arbitrary real-world adversary A, we con-

struct an ideal-world adversary S that uses A as a black box

to perform the same attack in the ideal world as A performs

in the real world. S simulates an environment that is compu-

tationally indistinguishable from the real world, meaning that

A will behave the same way in simulation with at most a neg-

ligible difference in probability. We take S as the simulator

described in Appendix E.4.

There are two things to prove:

1. From A’s perspective, the simulated world provided by S

is computationally indistinguishable from the real world.

2. From Z’s perspective, the real world with adversary A

is computationally indistinguishable from the ideal world

with adversary S .

To show that these statements are true, we consider a sequence

of seven hybrid setups. Although the two statements above

are in principle separate, we use the same sequence of hybrids

to prove both of them. Note that H0 is equivalent to the real-

world setup, and H6 is equivalent to the simulated setup. In

a true hybrid argument, only one operation can be modified

at a time; our hybrids in the proof sketch below should be

interpreted as key stages.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 873

Hybrid H0. This is exactly the real-world setup in Appendix

E.3.

Hybrid H1. This is the same as H0, except that we replace

A with S. S, in this hybrid, maintains a simulated party Q

corresponding to P, and internal to S , these simulated parties

interact with A. P interacts with S; when S receives a mes-

sage from P, it forwards it to A via Q, and when A sends a

message to one of S’s simulated parties Q, it forwards it to P.

Similarly, when A sends a message to FZcash, S forwards the

message to FZcash, obtains the response, and forwards it to A,

as if A communicated with FZcash directly.

S acts simply as a relay, shuttling data back and forth be-

tween P and Q and between A and FZcash. In particular, the

messages observed by A and Z are exactly the same as before.

Therefore, neither A nor Z can distinguish H0 from H1.

Hybrid H2. This is the same as H1, except that we now

introduce the ideal functionality F . F , in this hybrid, just

relays messages back and forth between the real-world party

P and the simulator S .

Here, the newly introduced F acts as another intermediate

relay. Again, the messages observed by A and Z are dis-

tributed exactly the same as before. Therefore, neither A nor

Z can distinguish H1 from H2.

Hybrid H3. We change P to a dummy party as in the ideal

world. Instead, S handles participating in the protocol as the

honest clients, including PoW. The requests for operations

are forwarded by the party P to F .

Although S now uses its dummy user keypair to interact

with the server, the encryption is key-private; the server cannot

distinguish an ACL entry encrypted under a user’s key from

the same ACL entry encrypted with S’s dummy user key.

Therefore, neither Z nor A can distinguish H2 from H3.

Hybrid H4. This is the same as H3, except that F replaces

ACL entries of honest users with NULL; S replaces NULL

entries with encryptions of zero under the dummy key, for the

ACLs of the real-world protocol.

The semantic security of the encryption scheme used for

ACLs guarantees that, to the adversary, an encryption of zero

is indistinguishable from the actual encrypted ACL entry.

Therefore, neither Z nor A can distinguish H3 from H4.

Hybrid H5. This is the same as H4, except that F also re-

places object contents with IDs in its content table, and S in

turn replaces these IDs with fake ciphertexts in its ciphertext

table. In particular, if all users in an object’s ACL are honest,

then F and S , together, replace the contents of the object with

an encryption of the zero message of the same length, using

the same key normally used to encrypt the object contents.

The semantic security of the encryption scheme used to

encrypt object contents guarantees that A cannot distinguish

between the fake ciphertext and the actual ciphertext. Further-

more, because the plaintext is returned as the result of the

operation, we need to be sure that A cannot create a new valid

ciphertext with a different plaintext distribution. Fortunately,

the fact that we use CCA2-secure authenticated encryption

guarantees this; the adversary cannot create a new cipher-

text based on the fake one. Therefore, neither A nor Z can

distinguish H4 from H5.

Hybrid H6. This is the same as H5, except that S keeps track

of a pool of tokens, S gives F identifiers for the tokens, and

F gives S a bit indicating if a valid token was used instead of

specifying which token was used.

The blindness property of the blind signature scheme means

that, to the server, different payment tokens, after being un-

blinded, are indistinguishable from each other. To the envi-

ronment Z , the interface is exactly the same and tokens are

expended exactly as before. Therefore, neither A nor Z can

distinguish H5 from H6.

F Ghostor’s Integrity Guarantee

In this appendix, we state the integrity guarantee provided by

Ghostor.

F.1 Linearizability

Before we formalize Ghostor’s VerLinear guarantee, we de-

fine linearizability as a consistency property. Linearizability

is well-studied in the systems literature [34,42], and providing

a comprehensive survey of this literature and a fully general

definition is out of scope for this paper. Here, we aim to define

linearizability in the context of Ghostor, to help frame our

contributions.

Definition 1 (Linearizability). Let F be a set of objects stored

on a Ghostor server, and let U be a set of users who issue read

and write operations on those objects. The server’s execution

of those operations is linearizable if there exists a linear or-

dering L of those operations on F, such that the following two

conditions hold.

1. The result of each operation must be the same as if all

operations were executed one after the other according to

the linear ordering L.

2. For every two operations A and B where B was dispatched

after A returned, it must hold that B comes after A in the

linear ordering L.

In Ghostor, an object’s digest chain implies a linear or-

dering L of GET and PUT operations, as follows.

Linear ordering L implied by a digest chain. The linear

ordering L to which the server commits is based on the digest

chain as follows. First, we assign a sequence number to write

operations according to the order of their PREPARE digests in

the digest chain. Next, we bind each operation to a digest in

the digest chain as follows:

• Each read is bound to the digest representing that read.

• A write with sequence number i is bound to the first COM-

MIT digest whose sequence number is at least i. This is

either the COMMIT digest for this write, or the COM-

MIT digest for a concurrent write that wins over this

one based on the conflict resolution policy in §5.4.

874 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Assuming the digest chain is well-formed (all cases except

Case 1 below), each write will be bound to a COMMIT digest

that is after its PREPARE digest and before or at its COMMIT

digest. Finally, we generate the linear ordering as follows:

• If two operations are bound to different digests, then they

appear in L in the same order as the digests appear in the

digest chain.

• If two writes are bound to the same digest, then they are

ordered in L according to their sequence numbers.

For example, suppose the digest chain contains

(R1,P1,R2,P2,R3,C2,R4,P3,R5,C1,R6,C3,R7,P4,R8,C4,R9),
where R denotes a read digest, P denotes a PRE-

PARE digest, and C denotes a COMMIT digest.

The corresponding linear ordering of operations is

L = (R1,R2,R3,W1,W2,R4,R5,R6,W3,R7,R8,W4,R9), where

R denotes a read operation and W denotes a write operation.

F.2 Verifiable Linearizability
We begin by stating and proving Theorem 2 below, which

specifies the achieved guarantees when some users perform

the verification procedure for an epoch. Then, we present

the VerLinear property of Ghostor as Corollary 1, a special

case of Theorem 2. We use this approach because Theorem 2,

despite being a more general statement, has fewer edge cases

than Corollary 1, and we feel its proof is easier to understand

in isolation. The statement of Corollary 1 maps directly to our

informal definition of verifiable linearizability in §3; the key

differences are only that Corollary 1 is explicit that security

depends on collision resistance of Ghostor’s hash function

and existential unforgeability of Ghostor’s signature scheme,

introduces variables that are useful in the proof, and states the

security guarantee as the contrapositive of Guarantee 1.

Theorem 2 (Epoch Verification Theorem). Suppose the hash

function H used by Ghostor is a collision-resistant hash func-

tion with security parameter κ. Let B be a non-uniform ad-

versary that is probabilistic polynomial-time in κ performing

an active attack on the server. Let E be a list of consecutive

epochs. For each epoch e ∈ E, let Ue be a set of users for

whom the verification procedure for a particular object F

detected no problems during epoch e, and let Oe be the set of

operations performed by those users on F. If Ue 6=∅ (i.e., Ue

is nonempty) for all e ∈ E, then there exists, with probability

at least 1− µ(κ), where µ denotes a negligible function, a

linear ordering L of operations in O =
⋃

e∈E Oe and possibly

some other operations, such that for the users in U and their

operations O, the following two statements hold.

1. The result of each successful operation is the same as if

all operations were executed one after the other according

to L.

2. For every two operations A and B where B was dispatched

after A returned, B comes after A in L.

Proof. We will perform a reduction to show that if there exists

an adversary B that can cause one of the two conditions to be

violated, then there exists an adversary A that can violate the

collision-resistance of H with non-negligible probability. For

concreteness, suppose that B performs such an attack with

non-negligible probability δ(κ) (so that the condition in the

theorem holds with probability 1−δ(κ)). We will explain how

A can succeed in finding a hash collision with non-negligible

probability.

By the nature of the attack, B is able to violate the property

in the theorem statement, while remaining undetected by users

in U . Observe that B’s attack must fall into at one of four

cases.

1. There exists at least one object such thatB does not commit

to a valid digest chain for an epoch, for some honest user.

2. There exists at least one object such that B commits to a

different digest chain for different honest users.

3. There exists an operation on an object f ∈ F whose re-

sult is different from the result that would be obtained by

applying the operations one after the other in the linear

ordering implied by f ’s digest chain.

4. There exist operations a and b on the same object, where a

was issued after b completed, but a precedes b in the linear

ordering implied by the digest chain.

In particular, if B’s attack does not fall into one of these cases,

then the locality property proved in §3 of [42] guarantees

that B’s behavior is consistent with the theorem statement

(linearizability of operations in L). We will show that no

matter which of the above four cases describes B’s attack, A

can find a hash collision.

Case 1. In this case, B returns an invalid linear ordering to a

user when the user performs an obtain_digests operation.

The ordering could be invalid because the digest is not signed

properly, or the digests do not form a well-formed chain. This

also includes the case where a user’s operation is missing

from the digest chain. Because we require that Ue 6=∅ for all

e ∈ E, this will be detected with probability 1. Therefore, we

do not consider this case.3 An important note is that if each

Le is valid, then L is valid.

Case 2. In this case, the adversary returns different histories

to different users. Because the histories differ, they cannot

be the same in all epochs; we consider an epoch e in which

they differ. This allows us to confine our argument to a single

epoch. In particular, there exist two obtain_digests opera-

tions on the same object during epoch e, for which B returns

different histories in a way that is not detectable.4 We define

two subcases.

In the first subcase, the leaf of the Merkle tree, containing

the hash of the final digest for the object in the epoch, is differ-

3For the purpose of this proof, it does not matter which party signs the

digest, only that it was signed with the correct signing key (which is a per-

object key rather than a per-user key). In the actual Ghostor system, only an

authorized user can produce the signature due to the existential unforgeability

of the signature scheme.
4If for all e ∈ E where the histories differ, only a single call is made to

obtain_digests, then the server cannot commit to multiple histories, and

therefore cannot attack the protocol in this way; therefore, we do not consider

this case.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 875

ent for each call. However, given our consistency assumption

for the blockchain, each user will see the same Merkle root.

Furthermore, because the leaves of the Merkle tree are sorted

and each intermediate node indicates the range of objects in

each of its children, each node in the root-to-leaf path un-

ambiguously specifies the hash of the next node in the path.

Because the first element (root) is the same for the paths re-

turned in each call to obtain_digests, but the last element

is different, there must be a hash collision somewhere along

the path. A finds this collision.

In the second subcase, both calls to obtain_digests see

the same Merkle leaf and therefore the same hash of the final

digest, but see different digest chains regardless. Observe

that the last digest and first digest, for this epoch’s digest

chain, are fixed based on the checkpoint for this epoch and

the checkpoint for the previous epoch, which the client can

obtain from the server (to make the argument simpler, we

consider the final digest of the previous epoch to also be

the first digest of the current epoch). Furthermore, the user

knows the hashes of these digests, from the checkpoints on

the blockchain. Therefore, if first or last digests of the digest

chains returned to both calls to obtain_digests differ, then

A can use them to find a hash collision (since their hashes

must match the Merkle leaves). If these digests match, then

the intermediate digests must differ. To find a collision in this

case, A simply walks backwards along the digest chains, until

they differ. A can use the digests on each chain, at the point

that they differ, to obtain a hash collision.

Case 3. Observe that the result of any committed write is

“Success.” Therefore, we can restrict this case to reads that

return the wrong value.

Suppose that a read operation in Oe (for some e ∈ E) re-

turned a value that is not consistent with the linear ordering

for the object. In order for the operation to be considered

successful, the Hashdata value in the signed digest received by

the client must match the hash of the returned object contents.

Furthermore, the verification procedure guarantees that the

Hashdata value in each digest corresponding to a read matches

the Hashdata value in the latest write at that time—it does this

by checking that Hashdata never changes as the result of a

read, and that it only changes in the COMMIT digests of win-

ning writes. It follows that the incorrect value returned by the

read operation, and the correct value that should have been re-

turned (which was written by the latest write), have the same

hash. A can present these two values as a hash collision.

Case 4. If an operation is missing from the digest chain

entirely, this will be detected by the client that issued the op-

eration. We now consider the case where the digests appear

in the wrong order. Concretely, let op1 and op2 be two oper-

ations, where op2 is issued after op1 completed. If op1 is a

PUT, then d1 is its COMMIT digest; otherwise, if op1 is a GET,

d1 is the single digest for that GET. If op2 is a PUT, then d2 is

its PREPARE digest; otherwise, if op2 is a GET, d2 is the single

digest for that GET. Because op2 is issued after op1 completed,

their digests should unambiguously appear in order in the di-

gest chain: d1 appears before d2. Now, suppose d1 appears

sometime after d2, so that the linear ordering is inconsistent

with execution order. In this case, A waits until the users have

run the verification procedure, and then rewinds B’s state to

a point after B has committed op1, but before op2 has been

issued. The client places a fresh nonce in d2 this time around,

but otherwise execution is resumed as before. A waits until

the user runs the verification procedure again, and it compares

the digest chains produced by B’s execution both times. Be-

cause all that changed is the client’s nonce in d2, and it is taken

from the same uniform random distribution, B’s probability

of performing a successful attack is still non-negligible. So

the probability that B performed a successful attack in both

distributions is non-negligible (δ(κ)2). In this case, A walks

the digest chains backward starting at d1; the digest chains

must differ at some point, because d2 precedes d1 in the first

history, d2 has a different random nonce in the second history,

and the digest for d1 is the same in both histories. This way,

A can obtain a hash collision.

Although the two conditions in Theorem 2 are the same

as those in Definition 1, Theorem 2 does not guarantee lin-

earizability of operations in O (operations performed by users

in U). This is because the linear ordering L in Theorem 2 in-

cludes additional operations in the system beyond those in O,

which could be digests that the server replayed or operations

performed by users who did not run the verification proce-

dure. This motivates us to state Corollary 1, which specifies

under what conditions a set of users can be sure that their

operations were processed in a linearizable way. Because our

definition is now in line with linearizability (Definition 1), we

can leverage the locality property of linearizability [42] to

state the corollary in terms of a single object.

Corollary 1 (Verifiable Linearizability). Suppose the hash

function H used by Ghostor is a collision-resistant hash func-

tion and the signature scheme is existentially unforgeable. For

any adversary probabilistic polynomial-time in κ, any object

F, and any list E of consecutive epochs: suppose that for each

epoch e ∈ E, the set Ue of users who ran the verification pro-

cedure on F during epoch e (1) is nonempty (i.e., Ue 6=∅) and

(2) contains all users who wrote the object F during epoch

e (and possibly other users too). With probability at least

1− µ(κ), where µ denotes a negligible function, if no user

detects a problem when running the verification procedure,

then the server’s execution of operations in O =
⋃

e∈E Oe is

linearizable, where Oe is the set of operations performed by

users in Ue during epoch e.

Proof. By Theorem 2, we know that there exists a linear

ordering L containing all operations in O plus some other

authorized operations on F such that Properties #1 and #2 in

the statement of Theorem 2 hold for operations in O, with

respect to L. Because each Ue contains all users who wrote

876 17th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

f during epoch e, and the signature scheme is existentially

unforgeable, we know that all operations in L that are not in

O must be reads. Let ℓ denote the subset of L consisting only

of operations in O. Now, observe that Properties #1 and #2

in the statement of Theorem 2 also hold for the operations

in O with respect to ℓ. This is because (1) L is the same as

ℓ with some additional read operations, so the result of each

operation, when operations are executed one after the other,

is the same for both orderings, and (2) the relative ordering

of operations in O is the same in both L and ℓ. Because ℓ

contains only the operations in O and it satisfies Properties

#1 and #2, it fulfills Definition 1. Therefore, the execution of

operations in O is linearizable.

USENIX Association 17th USENIX Symposium on Networked Systems Design and Implementation 877

	Introduction
	Hiding User Identities
	Verifiable Consistency
	Summary of Contributions

	System Overview
	Threat Model and Security Guarantees
	Assumptions
	Verifiable Linearizability
	Anonymity

	Hiding User Identities
	No User Login or User-Specific Mailboxes
	No Server-Visible ACLs
	No Server-Visible User Public Keys
	No Client-Side Caching
	Careful Application Design

	Achieving Verifiable Consistency
	Hash Chain of Digests in Ghostor
	Checkpoint and Verification
	Multiple Objects per Checkpoint
	Concurrent Operations on a Single Object

	Mitigating Resource Abuse
	Anonymous Payments
	Proof of Work (PoW)
	Anonymous Payments & PoW in Ghostor

	Applying Ghostor to Applications
	Case Study: EHR Sharing
	A Metadata-Hiding Data-Sharing Scheme

	Implementation
	Evaluation
	Microbenchmarks
	Server-Side Overhead
	Object Accesses
	Yahoo! Cloud Serving Benchmark

	End-to-End Latency
	Microbenchmarks
	Macrobenchmarks

	Zcash
	Ghostor-MH

	Related Work
	Conclusion
	Full Protocol Description for Ghostor
	GET Protocol
	PUT Protocol
	Access Control
	Object Creation
	Verification Procedure
	Payment

	Extension: Scalability
	Extension: Files and Directories
	Additional Description of Ghostor-MH
	Overview of AnonRAM
	Ghostor-MH

	Ghostor's Privacy Guarantee
	Overview
	Summary of Proof Sketch
	Map to Definition of Anonymity in §3.3
	Limitations of our Formalization

	Ideal World
	Execution in the Ideal World
	Information that F gives to S

	Real World
	Simulator
	State Maintained by S
	Overview
	Simulator Functionality

	Proof Sketch

	Ghostor's Integrity Guarantee
	Linearizability
	Verifiable Linearizability

