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The hypothalamus regulates energy intake by integrating the
degree of starvation or satiation with the status of the envi-
ronment through a variety of neuronal and blood-derived sig-
nals. Ghrelin, a peptide produced in the stomach and hypo-
thalamus, stimulates feeding and GH secretion. Centrally
administered ghrelin exerts an orexigenic activity through
the neuropeptide Y (NPY) and agouti-related protein systems.
The interaction between ghrelin and other hypothalamic
orexigenic peptides, however, has not been clarified. Here, we
investigated the anatomical interactions and functional rela-
tionship between ghrelin and two orexigenic peptides, orexin
and melanin-concentrating hormone (MCH), present in the
lateral hypothalamus. Ghrelin-immunoreactive axonal termi-
nals made direct synaptic contacts with orexin-producing

neurons. Intracerebroventricular administration of ghrelin
induced Fos expression, a marker of neuronal activation, in
orexin-producing neurons but not in MCH-producing neu-
rons. Ghrelin remained competent to induce Fos expression in
orexin-producing neurons following pretreatment with anti-
NPY IgG. Pretreatment with anti-orexin-A IgG and anti-
orexin-B IgG, but not anti-MCH IgG, attenuated ghrelin-
induced feeding. Administration of NPY receptor antagonist
further attenuated ghrelin-induced feeding in rats treated
with anti-orexin-IgGs. Ghrelin-induced feeding was also sup-
pressed in orexin knockout mice. This study identifies a novel
hypothalamic pathway that links ghrelin and orexin in
the regulation of feeding behavior and energy homeostasis.
(Endocrinology 144: 1506–1512, 2003)

GHRELIN WAS ORIGINALLY isolated from human and
rat stomach as a cognate endogenous ligand for the

GH secretagogue receptor (GHS-R; Ref. 1). This 28-amino-
acid peptide has a posttranslational n-octanoyl modification
indispensable for its activity. Ghrelin stimulates GH release
when peripherally or centrally administered to rats and
when applied directly to rat primary pituitary cells (1–3). In
addition, ghrelin administration increases food intake and
body weight gain (3–9). Whereas ghrelin secretion is up-
regulated under negative energy balance conditions, includ-
ing starvation, insulin-induced hypoglycemia, cachexia, and
anorexia nervosa, it is down-regulated under conditions of
positive energy balance, such as feeding, hyperglycemia, and
obesity (10–14). Gastric ghrelin enters the brain across the
blood-brain barrier (15). Recently, stomach-derived ghrelin’s
signals for starvation has been reported to be relayed to the
hindbrain via the vagus afferent nerve (16).

Although ghrelin is predominantly produced in endocrine
cells of the stomach (17, 18), it is also synthesized in the hypo-
thalamic arcuate nucleus (1, 19), a critical region for feeding. The
ghrelin receptor, however, is extensively distributed through-

out the brain to areas such as the lateral hypothalamus (LH) and
arcuate nucleus (20, 21). Both areas contain several subsets of
neurons that produce neuropeptides implicated in feeding reg-
ulation, including neuropeptide Y (NPY), agouti-related pro-
tein (AgRP), cocaine- and amphetamine-regulated transcript,
proopiomelanocortin, melanin-concentrating hormone (MCH),
and orexins (orexin-A and orexin-B), which are also termed
hypocretins (22, 23). Centrally administered ghrelin may inter-
act with these peptides to regulate food intake and energy
homeostasis. Although the mechanism of ghrelin’s orexigenic
activity is related to the NPY and AgRP pathways (6, 7, 24), the
interaction of ghrelin with other energy-regulating systems is
unclear.

Orexin-A and -B, produced from the 130-amino-acid pre-
pro-orexin precursor in the LH, have a 46% amino acid se-
quence identity and stimulate food intake (25). MCH, which
is a 19-amino-acid neuropeptide and whose neurons are
coextensive but not colocalized with orexin neurons in the
LH (26), also stimulates feeding when centrally administered
(27). Using electron microscope immunohistochemistry and
immunofluorescence microscopy, we investigated the ana-
tomical distributions of ghrelin with orexin and MCH. We
also examined the ghrelin-induced expression of c-fos, a
marker of neuronal activation (28), in orexin- and MCH-
expressing neurons. To investigate the functional relation-
ship between ghrelin and orexins or MCH, we examined the

Abbreviations: ABC, Avidin-biotin complex; AgRP, Agouti-related
protein; DAB, 3,3�-diaminobenzidine tetrahydrochloride; GHS-R, GH
secretagogue receptor; icv, intracerebroventricular; LH, lateral hypo-
thalamus; MCH, melanin-concentrating hormone; NPY, neuropeptide
Y; SGI, silver-gold-intensification.
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effect of pretreatment with anti-orexin-A and -B IgGs or
anti-MCH IgG on ghrelin-inducing feeding. We also studied
ghrelin-induced food intake in orexin knockout mice. We
demonstrate that ghrelin interacts with the orexin system to
induce feeding.

Materials and Methods
Animals

Animals were housed individually in plastic cages at 22 � 1 C in a
12-h light, 12-h dark cycle (light on at 0700–1900 h) and were given
standard laboratory chow and water ad libitum. Male Wistar rats weigh-
ing 300–350 g (Charles River Japan, Inc., Shiga, Japan), orexin knockout
mice (12-wk-old male) that were generated by targeted mutation in
embryonic stem cells (29), and wild-type littermates were used in ac-
cordance with the guidelines of the Japanese Physiological Society for
animal care. Following anesthesia by ip injection of sodium pentobar-
bital (Abbot Laboratories, Chicago, IL), an intracerebroventricular (icv)
cannula was implanted into the lateral cerebral ventricle as described
(30, 31). Proper placement of the cannulae was verified upon completion
of the experiment by dye administration. Only animals demonstrating
progressive weight gain after surgery were used in subsequent
experiments.

Electron microscope immunohistochemistry

Forty-eight hours before perfusion, three Wistar rats were injected
with colchicine (200 �g per rat) in the lateral ventricles to increase the
immunostaining of ghrelin- or orexin-expressing neurons. Following
anesthesia with an ip injection of sodium pentobarbital, rats were per-
fused through the ascending aorta for 10 min with 100 ml 0.9% saline,
then for 40 min with 500 ml fixative (4% paraformaldehyde in 0.1 m
phosphate buffer, pH 7.4). The brain was removed immediately and
postfixed in fixative for 2–4 h at 4 C. The brain was cut into 30- to 40-�m
thick sections using an Oxford vibratome (Oxford Instruments, Abing-
don, UK). Sections were incubated for 12 h with rabbit anti-ghrelin
antiserum (no. G606, final dilution 1:32,000; Ref. 17) at 4 C and visualized
by the avidin-biotin complex (ABC) method (Vectastain Elite ABC kit,
Vector Laboratories, Inc., Burlingame, CA) using 0.02% 3,3�-diamino-
benzidine tetrahydrochloride (DAB) (Sigma, St Louis, MO) and 0.005%
hydrogen peroxide in 50 mm Tris-HCl (pH 7.6). Sections were subjected
to either direct observation under a light microscope or silver-gold-
intensification (SGI; Ref. 19). Sections treated for SGI were incubated
with goat anti-orexin-A antiserum (Santa Cruz Biotechnology, Inc.,
Santa Cruz, CA; dilution 1:20,000) for 24 h at 4 C, and then visualized
by ABC. Orexin-A labeling was performed using DAB without SGI. For
examination by electron microscopy, the sections were postfixed with
1% OsO4 in 0.1 m phosphate buffer (pH 7.4) for 1 h at 4 C, dehydrated

FIG. 1. The innervation of ghrelin-immunoreactive axons to orexin-producing neurons. A and B are electron micrographs, whereas C and D
are immunofluorescent micrographs. A, A ghrelin-immunoreactive axon terminal (G) makes a synapse (arrow) on an orexin-immunoreactive
perikaryon (O). The perikaryon contains many dense-cored vesicles (closed arrowheads) immunopositive for orexin. M, Mitochondria. B, A
ghrelin-immunoreactive axon terminal (G) makes a symmetrical synapse (arrow) on an orexin-immunoreactive dendrite (OD). Ghrelin-
immunoreactive axon terminal contains immunopositive dense-cored vesicles (open arrowhead). C, Ghrelin-producing neurons (red fluores-
cence) and orexin-producing neurons (green fluorescence) are localized to the arcuate nucleus and LH, respectively. D, A higher magnification
of an area outlined in C. Ghrelin-immunoreactive fibers (red) are found in close proximity to orexin-producing neurons (green). Arrows indicate
the apposition of the ghrelin fibers to orexin neurons. ARC, Arcuate nucleus; f, fornix; VMH, ventromedial hypothalamus; III, third ventricle.
Scale bars, A, 0.2 �m; B, 0.2 �m; C, 100 �m; D, 10 �m.
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in a graded series of ethanol concentrations, and embedded in Epon-
Araldite (Structure Probe, Inc., West Chester, PA). Ultrathin sections
were cut and examined under a H-7000 electron microscope (Hitachi,
Tokyo, Japan). As a control, anti-ghrelin antiserum was either omitted
or replaced by normal rabbit or goat serum.

Immunofluorescence double staining

Following perfusion with 2% paraformaldehyde, the brains of three
Wistar rats were removed and immersed for 12 h in fixative at 4 C.
Samples were then transferred into a 30% solution of sucrose. Brains
were quickly frozen in Tissue-Tek O.C.T. compound (Sakura Finetech-
nical Co. Ltd., Tokyo, Japan) and cut into 7-�m-thick coronal sections on
a cryostat (Microm HM 500; Microm, Heidelberg, Germany). Sections
were incubated for 2 d with goat anti-orexin-A antiserum (dilution
1:10,000) at 4 C, then with Alexa 488-conjugated donkey antigoat IgG
antibody (Molecular Probes, Inc., Eugene, OR; dilution 1:400) for 2 h.
After washing with phosphate buffer saline (pH 7.4), samples were
incubated for 2 d with a rabbit anti-ghrelin antibody at 4 C. Slides were
then incubated with Alexa 546-labeled goat antirabbit IgG antibody
(Molecular Probes, Inc; dilution 1:400). Samples were observed under an
Olympus AX-70 fluorescence microscope (Olympus Co. Ltd., Tokyo,
Japan).

Fos expression

Ghrelin (Peptide Institute, Inc., Osaka, Japan; 500 pmol/10 �l saline)
or saline was injected icv to rats (n � 3 per group) 90 min before
transcardial perfusion with 4% paraformaldehyde fixative. Also, rats

(n � 3 per group) were administered anti-NPY IgG (Peptide Institute
Inc.; 0.5 �g/5 �l saline) or control serum IgG (0.5 �g/5 �l saline) icv 3 h
before icv ghrelin (500 pmol/10 �l saline) administration. The amount
of anti-NPY IgG, 0.5 �g, was sufficient to suppress ghrelin-induced
feeding (7). Following transcardial perfusion 90 min later, the tuberal
hypothalamus was cut into 40-�m-thick sections. Sections were incu-
bated for 2 d with goat anti-Fos antiserum (Santa Cruz Biotechnology,
Inc.; dilution 1:1500), then stained by ABC. A proportion of the hypo-
thalamic sections were additionally stained with either rabbit anti-
orexin-A antiserum (32) or rabbit anti-MCH antiserum (Phoenix Phar-
maceuticals, Inc., Belmont, CA; dilution 1:200). We quantitated the
number of neurons with orexin or MCH and Fos colocalization under
a light microscope by counting two randomly selected visual fields in
two sections from each rat.

Food intake

Rabbit anti-orexin-A and anti-orexin-B antisera were produced as
described elsewhere (32). We purified anti-orexin-A IgG and anti-
orexin-B IgG by Affi-gel protein A affinity (Bio-Rad Laboratories, Inc.,
Hercules, CA) and either CNBr-Sepharose-coupled (Bio-Rad Laborato-
ries, Inc.) orexin-A or orexin-B affinity chromatography. We determined
the quantity of purified IgG using a DC protein assay kit (Bio-Rad
Laboratories, Inc.). Because anti-orexin-A IgG did not cross-react with
orexin-B and anti-orexin-B did not cross-react with orexin-A, these two
IgGs were given concurrently for an icv administration. Rats (n � 8–10
per group) were given an icv administration of anti-orexin-A IgG
(0.25 �g) and anti-orexin-B IgG (0.25 �g), anti-MCH IgG (0.5 �g), or
control serum IgG (0.5 �g) at 1900 h. We then measured dark-phase food

FIG. 2. Fos expression determined by immunohistochemistry in the LH following icv administration of ghrelin. A, Costaining (arrows) of Fos
(dark blue-black) and orexin (brown) in the neurons of rats given ghrelin. B, Fos (dark blue-black) is not expressed in MCH-containing neurons
(arrows; brown) following ghrelin administration. C, Costaining (arrows) of Fos (dark blue-black) and orexin (brown) in ghrelin-treated rats
following anti-NPY IgG (0.5 �g) administration. D, Costaining (arrows) of Fos (dark blue-black) with orexin (brown) in ghrelin-treated rats
following control IgG (0.5 �g) administration. Rats received 500 pmol ghrelin. Scale bars, 50 �m.
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intake for 12 h. Ghrelin (200 pmol) was injected icv at 1100 h to rats (n �
10–12 per group) 3 h after icv administration of anti-orexin-A and -B
IgGs (0.25 �g each), anti-MCH IgG (0.5 �g), or control serum IgG
(0.5 �g), after which 2-h food intake was measured. Ghrelin (200 pmol)
was also administrated to rats (n � 6–8 per group) icv concurrently with
either an NPY receptor antagonist, 1229U91 (30 �g, Y1 NPY receptor
antagonist) (33), the kind gift of Banyu Pharmaceuticals (Tokyo, Japan),
or control serum IgG, 3 h after icv administration of either anti-orexin-A
and -B IgGs (0.25 �g each) or control serum IgG (0.5 �g). Ghrelin
(200 pmol/2 �l saline) was also administered icv to orexin knockout
mice (n � 7) and wild-type lettermates (n � 7). Following injection, rats
and mice were returned to their cages and food intake was measured for
2 h after treatment.

Statistical analysis

The means � sem were determined by one-way ANOVA, followed
by the unpaired t test. Differences were considered to be significant
when P � 0.05.

Results
Immunoelectron microscopy and immunofluoroscence
double staining

Ghrelin-immunoreactive neuronal axons and terminals
contained large dense-cored synaptic vesicles, indicated by

DAB-SGI reaction products (Fig. 1, A and B). Orexin expres-
sion was visualized by DAB-labeled structures, seen as a
light-to-dark gray (Fig. 1, A and B). Orexin-producing neurons
and their dendritic processes often received synapses from
ghrelin-containing axon terminals (Fig. 1, A and B). No pos-
itive DAB reaction products were detected when anti-ghrelin
antiserum was omitted or replaced by normal rabbit or goat
serum (data not shown).

Ghrelin-expressing neurons were predominantly found in
the hypothalamic arcuate nucleus, whereas orexin-producing
neurons were restricted to the LH (Fig. 1C). Dense populations
of ghrelin-containing fibers and a small number of orexin-
containing fibers were identified in the arcuate nucleus
(Fig. 1C). Ghrelin fibers were also found in the LH (Fig. 1D).
Subpopulations of ghrelin-immunoreactive terminals di-
rectly contacted orexin-containing neurons in the LH
(Fig. 1D).

Fos expression

Following icv administration of ghrelin, Fos-immunore-
active neurons were observed in the LH. Ghrelin was found
to induce Fos expression in 23 � 8% of orexin-immunore-
active neurons by double immunohistochemistry (Fig. 2A).
Ghrelin did not, however, induce Fos expression in MCH-
immunoreactive neurons (Fig. 2B). Despite pretreatment
with anti-NPY or control serum IgG, ghrelin remained ca-
pable of inducing Fos expression in orexin-immunoreactive
neurons (Fig. 2, C and D).

Effects of orexins and MCH on ghrelin-induced feeding

We coadministered anti-orexin-A IgG and anti-orexin-B
IgG to block the activities of orexins. We first examined the
effect of anti-orexin-A and -B IgGs or anti-MCH IgG on the
suppression of feeding. They significantly reduced dark-
phase food intake in comparison with control IgG treatment
(Fig. 3). We next investigated the effect of endogenous orexin
or MCH blockade against ghrelin-induced feeding. Ghrelin
increased 2-h food intake in rats following icv administration
of control IgG (Fig. 4). Pretreatment with anti-orexin-A and
-B IgGs, however, reduced ghrelin-induced food intake to

FIG. 3. The effect of icv administration of anti-orexin-A (0.25 �g) and
-B (0.25 �g) IgGs or anti-MCH IgG (0.5 �g) on 12-h dark phase food
intake from 1900 to 0700 h. *, P � 0.001 (vs. control IgG).

FIG. 4. The effect of the administration of anti-orexin-A (0.25 �g) and
-B (0.25 �g) IgGs or anti-MCH IgG (0.5 �g) on ghrelin-induced feed-
ing. A, Two-hour food intake was measured in ghrelin-treated (200
pmol) rats following either anti-orexin-A and -B IgGs or control IgG.
B, Two-hour food intake in ghrelin-treated (200 pmol) rats following
anti-MCH IgG or control IgG. *, P � 0.001 (vs. nontreatment). #, P �
0.05 (vs. ghrelin � control IgG).

FIG. 5. The effect of icv ghrelin (200 pmol) or vehicle injection on
feeding in orexin knockout mice (�/�) and wild-type littermates (�/
�). *, P � 0.01; **, P � 0.001 (vs. control vehicle). #, P � 0.05 (vs.
wild-type littermates).
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one half of the level seen in rats given control IgG � ghrelin
(Fig. 4). Pretreatment with anti-MCH IgG did not affect
ghrelin-induced feeding (Fig. 4). Ghrelin-induced food in-
take in orexin-deficient mice was significantly reduced in
comparison with wild-type littermates (Fig. 5). Y1 NPY re-
ceptor antagonist did not affect 2-h food intake. Coadmin-
istration of ghrelin and Y1 NPY receptor antagonist also
reduced ghrelin-induced feeding by 41% (Fig. 6). The com-
bination of ghrelin and Y1 NPY receptor antagonist coad-
ministration with an icv administration of anti-orexin-A and
-B IgGs additively reduced ghrelin-induced feeding by 87%
(Fig. 6).

Discussion

This study demonstrates the synaptic contact of ghrelin-
containing axons with orexin-producing neurons in the rat
hypothalamus. In addition, we identified a functional inter-
action between ghrelin and orexins. Icv administration of
ghrelin stimulates both GH secretion and food intake (1–9);
ghrelin-induced feeding is thought to occur independently of
GH, as icv administered ghrelin also increased food intake in
spontaneous GH-deficient rats (6, 7). Ghrelin stimulates feed-
ing through NPY and AgRP (6, 7), orexigenic peptides co-
localized in neurons of the hypothalamic arcuate nucleus
(34). Ghrelin receptor mRNA is expressed in NPY/AgRP
neurons of the arcuate nucleus (35). Centrally administered
ghrelin induced Fos expression in approximately 40% of
NPY/AgRP neurons (7) and increased NPY and AgRP
mRNA levels (5–7, 24).

Ghrelin receptor mRNA is also present in the LH of rats
(21), a region implicated in the regulation of feeding behavior
and energy homeostasis. Animals with LH lesions exhibit
decreased food intake (36, 37), whereas electrical stimulation
of the LH during a satiated state promotes feeding (37, 38).
Orexin and MCH are orexigenic neuropeptides synthesized
specifically in the LH (22, 25–27, 32, 39, 40). Ghrelin fibers
project to the LH to synapse on orexin-immunoreactive neu-
rons. Icv administration of ghrelin induced Fos expression
in orexin-expressing neurons but not in MCH-expressing
neurons; this result is consistent with a recent finding that
icv administration of GHRP-6, a synthetic GH-releasing

hexapeptide that binds to the ghrelin receptor (41), induced
Fos in a similar neuronal pattern (9). These findings indicate
that ghrelin may stimulate feeding through both the orexin
system and the NPY and AgRP systems.

Several peptidergic and monoaminergic systems that par-
ticipate in the regulation of feeding and energy homeostasis
in the hypothalamus link through neuronal circuits. NPY
fibers directly project to orexin neurons (42, 43); icv injection
of anti-orexin antiserum before NPY injection significantly
attenuated NPY-induced feeding (44), indicating that NPY
interacts with orexin both anatomically and functionally. As
ghrelin induces feeding through activation of the NPY
system, we sought to investigate the activation of orexin-
producing neurons by ghrelin via the NPY system. We there-
fore examined ghrelin-induced Fos expression in orexin-
producing neurons following pretreatment with anti-NPY
IgG. Ghrelin remained competent to induce Fos expression
in orexin-producing neurons following pretreatment with
anti-NPY IgG, suggesting that ghrelin activates orexin-
producing neurons in a manner independent of NPY.

Orexin regulates not only feeding and energy homeostasis
but also sleep-wakefulness, neuroendocrine homeostasis,
and autonomic functions (25, 29, 40, 45, 46). Ghrelin induced
Fos expression in approximately 23% of orexin-immuno-
reactive neurons. As 33% of orexin-immunoreactive neurons
are glucosensitive (47) and a subset of these neurons express
the receptor for leptin (42), a satiation signal produced in the
adipocytes, a part of orexin-expressing neurons may play a
crucial role in the regulation of feeding and energy
homeostasis.

To investigate the functional relationship of ghrelin with
either the orexins or MCH, we examined the effect of anti-
orexin-A and -B IgGs or anti-MCH IgG pretreatment on
ghrelin-induced feeding. Food intake induced by ghrelin was
attenuated by anti-orexin-A and -B IgGs, but not anti-MCH
IgG pretreatment. In addition, ghrelin-induced food intake
in mice deficient in orexin was significantly lower than that
seen in wild-type littermates. These data suggest that cen-
trally administered ghrelin increases food intake through the
action of the orexin system. To date, six functional NPY
receptors (Y1–Y6) have been identified (48, 49). NPY stim-

FIG. 6. Suppressive effect of Y1 antagonist (Y1 NPY recep-
tor antagonist) and anti-orexin-A (0.25 �g) and -B (0.25 �g)
IgGs on ghrelin-induced feeding. *, P � 0.001 (vs. control
vehicle � control IgG). #, P � 0.01; ##, P � 0.001 (vs. Y1
antagonist � control IgG). §, P � 0.001 (ghrelin � control
IgG). ¶, P � 0.01 (vs. ghrelin � Y1 antagonist � control IgG).
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ulates feeding predominantly through Y1 NPY receptor (33,
50). Icv injection of an Y1 NPY receptor antagonist signifi-
cantly reduced ghrelin-induced food intake. Moreover, co-
administration of ghrelin and Y1 NPY receptor antagonist
following anti-orexin-A and -B IgGs pretreatment abolished
ghrelin-induced feeding. Therefore, ghrelin likely interacts
with both the NPY and orexin systems to induce feeding.

Feeding behavior involves the complicated integration of
a large number of learning, memory, cognitive, emotional,
somatosensorimotor, and autonomic events. Icv administra-
tion of ghrelin strongly induces Fos in the hypothalamus,
brain stem, hippocampus, dentate gyrus, and piriform cortex
(7). Centrally administered ghrelin may regulate feeding and
energy homeostasis not only through direct activation of
orexin and NPY pathways but also through influences on
learning and memory, a state of mood, and formation of
emotion. Further investigation of ghrelin interactions with
other neuronal systems will provide novel insights into the
regulation of feeding and energy homeostasis.
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