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Abstract

We present a statistical, articulated 3D human shape

modeling pipeline, within a fully trainable, modular, deep

learning framework. Given high-resolution complete 3D

body scans of humans, captured in various poses, together

with additional closeups of their head and facial expres-

sions, as well as hand articulation, and given initial, artist

designed, gender neutral rigged quad-meshes, we train all

model parameters including non-linear shape spaces based

on variational auto-encoders, pose-space deformation cor-

rectives, skeleton joint center predictors, and blend skin-

ning functions, in a single consistent learning loop. The

models are simultaneously trained with all the 3d dynamic

scan data (over 60, 000 diverse human configurations in

our new dataset) in order to capture correlations and en-

sure consistency of various components. Models support

facial expression analysis, as well as body (with detailed

hand) shape and pose estimation. We provide fully train-

able generic human models of different resolutions – the

moderate-resolution GHUM consisting of 10,168 vertices

and the low-resolution GHUML(ite) of 3,194 vertices –, run

comparisons between them, analyze the impact of different

components and illustrate their reconstruction from image

data. The models will be available for research.

1. Introduction

Human motion, action, and expression are of central

practical importance, and subject to continuous focus, as

well as creative capture in images and video. Immersive

photography, augmented and virtual reality, and physical

3D space reasoning would be next. Consequently, mod-

els that can accurately represent the full body detail at the

level of pose, shape, and facial expression, as well as hand

manipulation are essential in order to capture and deeply

analyze those subtle interactions that can only be fully un-

derstood in 3D. While considerable progress has been made

in localizing human stick figures in images and video, and

Figure 1. Illustration of accuracy of GHUM and GHUML on data

from GHS3D, with heatmaps of both models on the left. Render-

ings show registrations of different body poses of a subject (grey,

first row), as well as GHUM and GHUML reconstructions in sec-

ond and third rows, respectively. Notice good level of detail cap-

ture for both models, with higher accuracy for GHUM.

– under certain conditions – lifting to equivalent 3D skele-

tons and basic shapes, the general quest for reconstructing

accurate models of the the human body at the level of se-

mantically meaningful surfaces, grounded in a 3D physical

space, is still on.

The potential for model construction advances, at least

in the medium term, appears to be at the incidence between

intuitive physical and semantic human modeling, and large-

scale datasets. While many expressive models for faces,

hands and bodies have been constructed over time, most –

if not all – were built in isolation rather than in the context of

a full human body. Hence, inevitably, they did not take ad-

vantage of the large scale data analysis and model construc-

tion process that recently emerged in the context of deep

learning. A number of recent full body models like Adam,

Frank, or SMPL-X[14, 31], combine legacy components for

face, body and hands, but usually focus on constructing a

consistent, joint parameterization with proper scaling on top

of already learnt components, rather than on training a full
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Figure 2. Overview of our end-to-end statistical 3D articulated human shape model construction. We are given a set of high-resolution

3D body scans including both ’A’ – and arbitrary – poses exposing a variety of articulation and soft tissue deformations. Additionally, we

also collect head closeup scans of detailed facial expressions and hand closeup scans to capture different gestures and object grabs. Body

landmarks are automatically identified by rendering the photorealistic 3D reconstructions in multiple virtual viewpoints, detecting them

in the generating images and triangulating. An artist designed full body articulated mesh is progressively registered to point clouds using

losses that combine sparse landmark correspondences and dense iterative closest point (ICP) residuals (implemented as point scan to mesh

facet distances), under as conformal as possible surface priors[41]. The model has non-linear shape spaces implemented as deep variational

auto-encoders (VAEs) for the body φb, and offset VAEs for the facial expressions φf , and includes trainable pose-space deformation

functions D, modulated by a skeleton K with J joints, centers predictor C, and blend skinning functions M . During training, all high-

resolution scans of the same subjects (both full-body and closeups for face and hands) are used (see fig. 3), with residuals appropriately

masked by the filter F. For model construction, we use N captured subjects, with B full body scans, F closeup hand scans, and H closeup

head scans. During learning, we alternate between minimizing the loss function w.r.t. pose estimates in each scan θ, and optimizing it

with respect to the other model parameters (φ, γ, ψ, ω). In operation, e.g. for pose and shape estimation, the model is controlled by

parameters α = (θ, β), including kinematic pose θ and VAE latent spaces for body shape and facial expressions β = (βf , βb), with

encoder-decoders given by φ = (φf ,φb).

body model, end-to-end, based on a large data repository.

This makes it difficult to take full advantage of the structure

in all data simultaneously, experiment with alternative rep-

resentations for components or different losses, assess end

impact, and innovate.

In this paper we propose an end-to-end learning pipeline

to construct full body, statistical human shape and pose

models capable of actuating facial expressions, as well as

body and hand motion. We design end-to-end pipelines

and unified loss functions based on deep learning, which

allow for the simultaneous training of all model compo-

nents, including non-linear shape spaces, pose-space de-

formation correctives, skeleton joint center estimators, and

blend skinning functions in the context of minimal human

skeleton parameterizations with anatomical joint angle con-

straints. The models are trained with high-resolution full

body scans, as well as closeups of moving faces and hands,

in order to capture maximum detail and ensure design con-

sistency between body components. Our new collected 3D

dataset of generic human shapes, GHS3D, consists of over

60,000 photo-realistic dynamic human body scans, and we

also use over 4,000 full body scans from Caesar. We intro-

duce both a moderate-resolution model, GHUM, and a spe-

cially designed (not down-sampled) low-resolution model

GHUML, assess their relative performance for registration

and constrained 3d surface fitting, under different linear and

non-linear models (e.g. PCA or variational auto-encoders

for body shape and facial expressions), and illustrate recov-

ery of shape and pose from images.

Related work. There is a remarkable amount of work de-

voted to both constructing 3D articulated surface models for

body parts, i.e. faces, hands and full bodies[2, 4, 10, 24, 37,
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30, 11, 29, 16, 38, 3, 32, 7, 8, 21, 39], as well as, more re-

cently, integrating them into complete, more expressive rep-

resentations, as e.g. in Adam, Frank or SMPL-X[14, 31].

Many image and video-based pose and shape estimation

methods have also been proposed[33, 27, 25, 40, 22, 1, 12,

26, 34, 23].

The Frank model[15] is based on a simplified version of

the SMPL body[24], to which it connects an artist-designed

hand rig, and the public FaceWarehouse head[8]. The com-

bined asset has possibly inconsistent components grafted

together, resulting in a model that may lack realism. In

turn, SMPL-X attaches the FLAME[21] head to the SMPL-

H (body and hand) model[35] and refits it to an additional

set of 5,586 scans. However, since those full body scans

have limited resolution for hands and faces, the authors use

the original, pre-trained parameters of MANO and FLAME

(pose space and pose corrective blendshapes of MANO[35]

for the hands, and the expression space of FLAME[21],

respectively), thus limiting the amount of data simultane-

ously used for learning the full model, and the potential re-

alism attainable by jointly refining all parameters. In con-

trast to combining legacy components, we focus on using

all high-resolution data simultaneously – both full body and

closeup detail for faces and hands –, in order to construct

low-res and high-res models where all parameters are re-

fined end-to-end from the onset. This allows us to experi-

ment with different resolutions, linear and non-linear shape

spaces, loss functions, and assess their impact seamlessly

for different tasks. Recent work focuses on building deep

learning pipelines to predict articulated meshes from point

clouds[19, 13]. These registration alternatives would be im-

mediately applicable in our framework, although here we

rely on direct optimization for registration with automatic

landmark detection for accuracy, robustness, and general-

ization to virtually any pose and human datapoint scan.

Considerable work has been devoted to estimating 3D

pose and shape from images acquired with one or several

cameras or from video[33, 27, 25, 40, 22, 1, 12, 26, 9].

Several models rely on feed-forward pose and shape pre-

diction based on different learning architectures, on pose

prediction followed by pose and shape refinement to body

joints of semantic body part segmentations, or on multicam-

era fusion[28, 43, 44, 20, 36, 5, 18]. Most shape priors come

in the form of PCA as available in SMPL[24], Frank[15],

or SMPL-X[31], and the pose priors are usually Gaussian

Mixture Models [6], and more recently VAEs[31]. In con-

trast, our GHUM and GHUML rely on non-linear shape

spaces constructed from deep variational autoencoders for

body and facial deformation and on normalizing flow rep-

resentations for skeleton (body and hand) kinematics[42].

Moreover our minimal skeleton parameterization supports

the seamless integration of anatomical joint angle limits

constraints during registration, learning and pose optimiza-

tion, which reduces the search space, and makes estimates

anatomically consistent and more robust.

While our primary goal in this paper is to introduce

new end-to-end learnable 3D statistical articulated human

body shape methodologies, the models we present are use-

ful in connection with most work aiming to recover pose

and shape from images. Moreover, by creating both a

medium-resolution and a low-resolution model, we enable

lightweight mobile applications of 3d human sensing, or ap-

proaches where different level of detail and run-time con-

straints could make it adequate to dynamically switch be-

tween models of different complexity.

2. Overview

Given a training set of human body scans, represented

as unstructured point clouds {Y ∈ R
3P }, where the num-

ber of points P varies, we learn a statistical human model

X(α) ∈ R
3V representing the variability of body shapes

and natural deformation due to articulation. The body

model X has consistent topology with V vertices, as spec-

ified by an artist-provided (rigged) template mesh, and α

are variables that control the body deformation as a result

of both shape and articulation. As illustrated in fig. 2, to

learn a data-driven human model from 3D scans Y, we first

register the body template to point clouds in order to obtain

new meshes of the same topology, marked as {X∗ ∈ R
3V }

(see Sup. Mat. for details on our registration methodology).

We then feed the registered meshes X
∗ into an end-to-end

Figure 3. We estimate the full body shape at a neutral A pose by

fusing the body scan and the closeup hand and head scans. Com-

pared with body shape estimation from a single body scan, we can

thus take advantage of additional head and hand shape detail.

training network where model parameters α are adjusted to

produce outputs that closely match the input as a result of

both articulation and shape adjustment. In practice, we ex-

perimented with both direct model parameter adjustment to

the point cloud via iterative closest point (ICP) losses (iden-

tical to the ones used for registration) or with alignment to

the proxy meshes X∗. Since our registration process is ex-

tremely accurate, we haven’t noticed any significant differ-

6186



ence between the two. In contrast, using target input meshes

X
∗ of the same model topology, makes the process consid-

erably faster and training losses are better behaved.

2.1. Human Model Representation

We represent the human model as an articulated mesh,

specified by a skeleton K with J joints and skin deformed

based on Linear Blending Skinning (LBS) to explicitly en-

code the motion of joints. In addition to skeletal articu-

lated motion, we use nonlinear models to drive facial ex-

pressions. A model X with J joints can be formulated as

M(α = (θ,β),φ,γ,ψ,ω), or in detail, as

X(α) = M(θ, X̃(βb),∆X̃(θ),∆X̃
f (βf ), C(X̃),ω)

(1)

where X̃(βb) ∈ R
3V is the identity-based rest shape in A-

pose (fig. 2), with βb a low-dimensional embedding vector

encoding body shape variability (different low-dimensional

representations including PCA or VAEs will be used); sim-

ilarly, ∆X̃
f (βf ), is the facial expression at neutral head

pose controlled by low-dimensional latent code βf ; c =
C(X̃) ∈ R

3J are skeletal joint centers dependent on the

body shape, θ ∈ R
3×(J+1) is a vector of skeleton pose

parameters consisting of (up to) 3 rotational DOFs in Eu-

ler angles for each joint and 3 translational variables at the

root, ω ∈ R
V×I are per-vertex skinning weights influenced

by at most I = 4 (in our experiments) joints. FInally,

pose-dependent corrective blend shapes ∆X̃(θ) are added

to the rest shape to correct for skinning artifacts. We initial-

ize our human models, GHUM and GHUML, using artist-

defined rigged template meshes (Vghum = 10, 168, Vghuml =
3, 194, J = 63), respectively and our pipeline will estimate

all the parameters (θ,φ,γ,ψ,ω) while the mesh topology

and the joint hierarchy K are considered fixed. The hierar-

chy is anatomically (minimally) parameterized in order to

take advantage of bio-mechanical joint angle limits during

optimization. Vertices xi ∈ X can be written as

xi =

I
∑

j=1

ωi,jTj(θ, c)Tj(θ̄, c)
−1

[

x̃i +∆x̃i +∆x̃
f
i

1

]

(2)

Tj(θ, c) =
∏

a∈K(j)

[

Ra(θa) ca

0 1

]

∈ SE(3), (3)

where Tj(θ, c) is the world transformation matrix for joint

j, integrated by traversing the kinematic chain from the root

to j. The transformation from rest to posed mesh is con-

structed by multiplying with the inverse of the world trans-

formation matrix at rest pose θ̄.

3. End-to-End Statistical Model Learning

In this section, we will provide an end-to-end neural

network-based pipeline where we optimize the skinning

Figure 4. Evaluation on Caesar. Left: Per-vertex Euclidean error

to the registration for GHUM and GHUML. Right: (top to bottom,

registrations, GHUM and GHUML) VAE-based models can repre-

sent body shape very well. Compared to GHUML additional, e.g.

muscle or waist, soft tissue detail is preserved by GHUM.

weights ω, and learn a rest shape embedding βb, a fa-

cial expression embedding βf , identity shape-dependent

joint centers estimator C(ψ), pose-dependent blend shapes

function D(γ) given multi-subject and multi-pose surface

meshes X
∗ registered to full body and close-up face and

hand scans (fig. 3). As a result of ICP registration, we can

easily formulate reconstruction losses using per-vertex Eu-

clidean distance error under one-to-one correspondences as

Lr(X
∗,X(α)) =

1

V

V
∑

i=1

‖Fi(xi − x
∗

i )‖, (4)

where F is a filter that accounts for different types of data

(full body scans as opposed to closeups). In order to con-

struct X(α), we need to jointly estimate the pose θ and the

statistical shape parameters. We rely on block coordinate

descent, alternating between estimation of pose parameters

θ under the current shape parameters β, based on a BFGS

layer, and updating the other model parameters with θ fixed.

We initialize skinning from the artist-provided defaults, all

other parameters to 0. In the sequel, we detail how each

sub-module updates the parametersα of the global loss (4).

3.1. Variational Body Shape Autoencoder

We obtain multi-subject shape scans by registering our

models to the Caesar dataset (4, 329 subjects) as well as

our captured scans in GHS3D, in neutral A-pose. For now,

given rest shapes X̄ estimated for multiple subjects, we

build a compact latent space for the body shape variation.

Instead of simply building a PCA subspace, here we choose

to represent body shape using a deep nonlinear variational

autoencoder with a lower-dimensional latent code. Because

we estimate mesh articulation, the input scans to our autoen-

coder X̄ are all well aligned at A-pose without significant

perturbations from rigid transformations or pose articula-

tion. The encoder and decoder are using parametric ReLU
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activation functions, as they can model either an identity

transformation or a standard ReLU, for certain parameters.

As standard practice, the variational encoder will output a

mean and a variance (µ,Σ), which will be transformed to

the latent space through the re-parametrization trick [17], in

order to obtain the sampled code βb. We choose a simple

distribution, N (0, I), and integrate the Kullback-Leibler di-

vergence in the loss function, to regularize the latent space

X̃(βb) =
1

NB

NB
∑

1

X̄+ SD(βb) (5)

βb = SE

(

X̄−
1

NB

NB
∑

1

X̄

)

(6)

where the encoder SE captures the variance from the mean

body shape into the latent vector βb and the decoder SD

builds up the rest shape from βb to match the input target

rest shape. In particular, we initialize the first and last layers

of the encoder and decoder, respectively, to the PCA sub-

space U ∈ R
3V×L, where L is the dimensionality of the

latent space. All other fully-connected layers are initialized

to identity, including the PReLU units. We initialize the

sub-matrix of log-variance entries to 0, and set the bias to

a sufficiently large negative value. The network will thus,

effectively initialize from the linear model, while keeping

additional parameters to a minimum, compared to PCA.

3.2. Variational Facial Expression Autoencoder

The variational shape autoencoder can represent various

body proportions, including the variances of face shapes. To

additionally support complex facial expressions (as opposed

to just anthropometric head and face variations at rest) we

introduce additional facial modeling. We build the model

from thousands of facial expression motion sequence scans

available in GHS3D. In addition to a 3-DOF articulated jaw,

two 2-DOF eyelids and two 2-DOF eyeballs, the parame-

ters of the articulated joints on the head, including skinning

weights and pose space deformation, will be updated to-

gether with the rest of pipeline. For facial motions caused

by expression and not articulation, we build a nonlinear em-

bedding βf with the same network structure as the varia-

tional body shape autoencoder. The input to the VAE is a

facial expression ∆X̄
f ∈ R

3V f

(V f = 2, 056 for GHUM

and 596 for GHUML) at neutral head pose by removing

all articulated joint motion (including neck, head, eyes and

jaw). To un-pose the registered head mesh to neutral, we

first fit the articulated joint motion θ for the neutral head

shape (without expression) that matches the registration as

much as possible c.f . (4). The displacement field between

the posed head and the registration is accounted to facial

expressions, and before estimating it, we undo (unpose) the

effect of articulated joint motion θ.

Figure 5. Pose space deformation architecture sketch and illustra-

tion showing the benefit of PSD, here around non-passive articu-

lation points, e.g. right hip and thigh, as well as chest and armpits.

For simplicity of illustration, here we use θ as the input feature,

instead of Ri(θi)−Ri(θ̄i).

3.3. Skinning Model

Besides nonlinear shape and facial expression models,

we rely on optimal skinning functions estimated from multi-

subject and multi-pose mesh data. Specifically, we share the

same data term as in (4) but now the optimization variables

are parameters of the joint center predictor C(ψ) : X̃ → c,

pose-dependent corrections to body shape D(γ) : θ →
∆X̃, and skinning weights ω. A natural choice for the

skeletonal joint centers is to place them at average positions

on the ring of boundary vertices connecting two mesh com-

ponents (segmentations) maximally influenced by a joint.

The average of boundary vertices, C̄X̃ ∈ R
3J , imposes

that the skeleton lies in the convex hull of the mesh sur-

face, thus adapting the center placement to different body

proportions. However, we observe downgraded skinning

quality when using such predictors. For better skinning,

we keep the estimate C̄ but on top build a linear regressor

∆C : R3V → R
3J to learn joint center corrections given

the body shape

c(X̃) = C̄X̃+∆CX̃ (7)

Instead of learning joint centers globally by pooling over all

mesh vertices, we only estimate locally from those vertices

skinned by the joint. This leads to considerably fewer train-

able parameters going down from 3N×3J to 3N×3I , with

I = 4 in practice. We also encourage sparsity, through L1

regularization, and also alignment of the bone directions to

the template. To avoid singularities and prevent joint centers

from moving outside the surface, we regularize the magni-

tude of center corrections ‖∆CX̃‖2.

To correct skinning artifacts as a result of complex soft

tissue deformation, we learn a data-driven pose-dependent

corrector (PSD) ∆X̃(θ) applied to the rest shape. We esti-

mate a nonlinear mapping D : Ri(θi)−Ri(θ̄i) ∈ R
9J →
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∆X̃(θ) ∈ R
3n. However, pose space corrections on a

mesh vertex should intuitively be sourced from neighbor-

ing joints. We therefore use a fully-connected ReLU acti-

vated layer to extract a much more compact feature vector

than the input (we use 32 units), from which we then lin-

early regress the pose space deformation. Moreover, our

X̃(θ) is sparse, and a joint can only generate local deforma-

tion correctives to its skinned mesh patch. Compared to the

dense linear regressor in SMPL [24], our network produces

similar quality deformations with considerably fewer (17×
fewer) trainable parameters. We regularize the magnitude

of pose space deformation to be small, preventing matching

the targets by over-fitting through PSD corrections. This is

implemented by a simple L2 penalty as

Lp(∆X̃) = ‖∆X̃(θ)‖2. (8)

High-frequency local PSD is often undesirable and most

likely due to overfitting. Therefore we encourage smooth

pose space deformations with

Ls(∆X̃) =

V
∑

i=1

∑

j∈N(i)

‖li,j(∆x̃i −∆x̃j)‖
2, (9)

where N(i) are the neighboring vertices to vertex i and li,j
are cotangent-based Laplacian weights.

Even with PSD regularizers and a reduced number of

trainable weights, overfiting could still occur. Differently

from SMPL or MANO [35], where pose space deforma-

tion were built specifically for only certain regions (body or

hand), we construct a PSD model for the entire humanoid,

trained jointly based on high-resolution body, hand and

head data closeups. Consequently our body data has limited

variation on hand and head motions, whereas head and hand

data has no motion for the rest of the body. Hence, there is

a large articulation space where all joints can move without

an effect on the loss, which is undesirable. To prevent over-

fitting, we filter (mask) the input pose feature vector into 4
feature vectors, consisting of the head, body, left hand and

right hand joints. Each feature vector will be taken into the

same ReLU layer and we sum up the outputs before the next

regressor (fig. 5). We formulate a loss

Lf (∆X̃) = ‖F∆X̃−∆X̃‖2, (10)

that enforces PSDs outside masked regions to be small, thus

biasing the correctives produced by the network towards

limited global impact. However, deformations of shared

surface regions corresponding to areas at the interface be-

tween the head, hand, and the rest of body, are learnt from

all relevant data.

To estimate skinning weights, at the end of the pipeline,

we create a linear blending layer which, given poses θ and

pose-corrected rest shape with facial expression X̃+∆X̃+

Table 1. Registration error for GHUM and GHUML, on Caesar

and GHS3D, with detail for faces, hands, and the rest of the body.

ICP error (mm) Chamfer distance (mm)

Dataset GHUM GHUML GHUM GHUML

Caesar 0.265 0.465 19.13 31.84

body 0.371 0.725 20.76 33.64

head 0.442 0.519 10.12 12.38

hand 0.164 0.423 14.88 22.01

∆X̃
f , outputs a posed mesh (2) controlled by trainable

skinning weight parameters ω. Each skinned vertex is max-

imally influenced by I = 4 joints in the template. We also

include a prior onω based on the initial artist painted values

ω̄, ensure that weights are spatially smooth, and per-vertex

weight components are non-negative and normalized

Ls
ω(ω) =

V
∑

i=1

∑

j∈N(i)

I
∑

k=1

‖li,j(ωi,k − ωj,k)‖
2

Li
ω(ω) =

V
∑

i=1

I
∑

k=1

‖ωi,k − ω̄i,k‖
2

s.t.

I
∑

k=1

ωi,k = 1, ωi,k ≥ 0. (11)

We also weakly regularize the final skinned mesh X to

be smooth by adding

Lm(X) =

V
∑

i=1

∑

j∈N(i)

‖li,j(xi − xj)‖
2. (12)

Pose Estimator. Given body shape estimates and current

skinning parameters, we re-optimize poses θ over the train-

ing set. To limit the search space, enforce consistency,

and avoid unnatural local minimal, we leverage anatomical

joint angle limits available with our anthropometric skele-

ton. The problem can be efficiently solved using an L-

BFGS solver with box constraints, and gradients evaluated

by (e.g. TensorFlow’s) automatic differentiation.

4. Experiments

Datasets. In addition to Caesar, which contains diverse

body and face shapes (4, 329 subjects), we also use mul-

tiple proprietary systems operating at 60Hz to capture 48
subjects (24 females and 24 males) with 55 body poses, 60
hand poses and 40 motion sequences of facial expressions.1

The subjects have a BMI range from 17.5 to 39.2, height

from 148 cm to 192 cm and are aged from 21 to 56. For

all multi-pose data, we use 4 subjects for evaluation, and 4
subjects for testing, including a freestyle motion sequence

containing poses generally not in the training set. Each face

1Subject data was collected in a lab setting with informed consent.
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Figure 6. Sample registrations from Caesar (top left) as well as our GHS3D. Notice the quality of registration that captures subtle facial

detail, and the soft tissue deformation of the other body parts as a result of articulation.

Figure 7. Analysis of VAE and PCA models illustrate the advan-

tage of non-linear representations in the low-dimensional regime.

capture sequence starts from a neutral face to a designated

facial expression and each sequence lasts about 2s. Regis-

tration samples from the data are shown in fig. 6.

Registration. In Table 1, we report registration to the point

clouds using ICP and the (extended) Chamfer distance [19].

ICP error is measured as point-to-plane distance to the near-

est registered mesh facet, whereas Chamfer distances are

estimated point to point, bidirectionally. Registration has

low error and preserves local point cloud detail (fig. 6).

Model Evaluation. We build both a full resolution and a

low-resolution human model (GHUM and GHUML) using

our end-to-end pipeline. Both models share the same set

of skeleton joints but have 10, 168 vs. 3, 194 mesh ver-

tices (with 1, 932 vs. 585 vertices for facial expressions).

For both models, we evaluate the mean vertex-based Eu-

clidean distances of meshes X to registrations X
∗ on test-

ing data. Numbers are reported in Table 2 and visualizations

are shown in figs. 1, 4, and 9. We compare the outputs of

both models to registered meshes under their correspond-

Table 2. Mean vertex-based Euclidean reconstruction error from

registration (mm).

Dataset Caesar GHS3D → body face hand

GHUM 2.81 5.21 2.96 2.22

GHUML 3.27 6.32 3.28 2.81

ing topology. Both models can closely represent a diversity

of body shapes (modeled as VAEs, fig. 4), produce natural

facial expressions (represented as facial VAEs), c.f . fig. 5

in Sup. Mat., and pose smoothly and naturally without no-

ticeable skinning artifacts for a variety of shapes and poses

(resulting from optimized skinning parameters, c.f . fig. 1).

GHUM vs GHUML. The low resolution model preserves

the global features of the body shape and correctly skins the

body and facial motion. Compared with GHUM, we ob-

serve that GHUML loses some detail for lip deformations,

muscle bulges at the arms and fingers, and wrinkles due to

fat tissue. Performance-wise, GHUML is 2.0× faster, in

feed-forward evaluation mode, than GHUM.

VAE Evaluation. For body shape, our VAE supports both a

16-dim and a 64-dim latent representation where the former

has 1.72× higher reconstruction error (our report is based

on a 16-dim representation). We use a 20-dim embedding

for our facial expression VAE. Fig. 7 shows the reconstruc-

tion error of facial expressions as a function of the latent di-

mension, for both VAE and PCA. The 20-dimensional VAE

has a reconstruction error similar to the one that uses 96 lin-

ear PCA bases, at the cost of 1.4× slower performance.

GHUM vs SMPL. In fig. 8, we evaluate the skinning qual-

ity of GHUM and SMPL, for multiple subjects and poses,

total of 1, 100 scans. We have different mesh and skeleton
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Figure 8. From left to right, registration, GHUM, and SMPL.

GHUM produces skinning with fewer pelvis artefacts for this mo-

tion sequence (0.76 mm lower error on average).

typologies from SMPL and SMPL does not have hand and

facial joints. We therefore take a captured motion sequence

(all the poses, not in our training dataset) from GHS3D,

and register the captured sequence with SMPL and GHUM

mesh respectively. We use one-to-one point-to-plane Eu-

clidean distance for error calculations (to avoid sensitivity

to surface sliding during registration), and we only evaluate

error on the body (minus face and hands) for fair compari-

son with SMPL. GHUM’s mean reconstruction error is 4.23
mm whereas SMPL has 4.96 mm error.

Figure 9. Evaluation and rendering as in fig.1 with emphasis on

the hand reconstruction of GHUM and GHUML. Notice additional

deformation detail around the flexion region of the palm preserved

by GHUM over GHUML. See Sup. Mat. for facial expressions.

3D Pose and Shape Reconstruction from Monocular Im-

ages. We also illustrate image reconstruction using GHUM.

The kinematic prior (for hands and the rest of the body, ex-

cluding the face) is based on normalizing flows and has been

trained using Human3.6M, CMU, and GHS3D [42]. We do

not use an image predictor for pose and shape, but initialize

at 6 different kinematic configurations and optimize α pa-

rameters under anatomical joint angle limits. As loss we use

the skeleton joints reprojection error and a semantic body-

part alignment c.f . [6, 43]. We show results in fig. 10, see

Sup. Mat for more.

Application Use Cases: Our construction of GHUM/L

models is motivated by the breadth of transformative, im-

mersive 3D applications, that would become possible, in-

cluding clothing virtual apparel try-on, fitness, personal

well-being, health or rehabilitation, AR and VR for im-

proved communication or collaboration, special effects,

human-computer interaction or gaming, among others. In

contrast, applications like visual surveillance and person

identification would not be effectively supported currently,

given that model’s output does not provide sufficient detail

or resolution for these purposes. The same is true for the

creation of potentially adversely-impacting deepfakes, as an

appearance model or a joint audio-visual model are not in-

cluded to support photorealistic visual and voice synthesis.

Figure 10. Monocular 3D human pose and shape reconstruction

with GHUM by relying on non-linear pose and shape optimization

under a semantic body part alignment loss.

5. Conclusions

We have presented GHUM and GHUML(ite), two new

generative 3D human shape and pose models of both

moderate resolution (10, 168 vertices) and low-resolution

(3, 194 vertices), respectively. The models are trained based

on a new dataset, GHS3D, of over 60, 000 human scans,

containing both full-body and closeups for faces and hands.

We present a new end-to-end deep learning framework that

supports – for the the first time, and based on all data simul-

taneously – the combined training of all model component

parameters including non-linear shape spaces, pose-space

deformation correctives, skeleton joint center estimators,

and surface blend skinning functions. We run extensive

experiments in the low-resolution and medium-resolution

regime for both registration and constrained articulated 3D

shape fitting and illustrate 3D pose and shape estimation

from monocular images. A perhaps surprising conclusion

is that appropriately trained, a low resolution nonlinear

model of about 3, 000 vertices could have surprisingly good

human shape representation capacity. Models will be made

available for research.
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