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The conventional virial expansion of thermodynamic functions is converted into a new 
expansion scheme, similar to the former but more powerful. The new method is particularly 
suitable to dealing with the interaction of long-range character, such as Coulomb potential, 
since it suffers from no divergence difficulties contrary to the conventional one. As an 
application of the method, the equilibrium properties of high temperature plasma is studied 
and the term of next higher orders than the Debye-Hiickel limiting law is obtained exactly. 
The order estimation indicates that the Debye-Hiickel law is accurate within the error of a 
few per cent in this case. A possible extension of the present method to the theory of non­
equilibrium properties of plasma or to quantum statistics is suggested. 

~ 1. Introduction 

In classical statistical mechanics, thermodynamic functions of an imperfect gas 

are expanded in a form of power series of particle number density p, and coeffi­
cients are known to be expressed in terms of irreducible cluster integrals1

). In some 
cases, however, these expansion formulae are no longer valid, because of the diver­
gence difficulties of cluster integrals. For instance, in an ionic solution or classical 

plasma, the interaction potentials between particles are of long-range character and 
all cluster integrals diverge to infinity. Mathematically speaking, this implies that the 
point p = 0 is a singular point of thermodynamic functions, since these functions 
cannot be expanded in powers of p. Therefore, according to the theory of functions 
of complex variables, the point p=O should be one of the following three cases: 
the pole, the essentially singular point and the branch point. In any case, the 
thermodynamic functions are expected to have some singular properties at low den­
sItIes. Then it is quite clear that the usual virial expansion method cannot afford 
to describing the low density behaviour of the system. 

So far, there have been several attempts to overcome the difficulties mentioned 
above. Among them, Mayer2) has shown that the long-range interaction cap be re­

duced to the short-range one, if the integral over the intermediate particles of a chain 
is performed for a given type of prototype graph. Thus, the expansion formula in 
terms of prototype graphs is free from the divergence difficulties arising from the 
long-range correlation. In fact, Mayer has proved that the Debye-Huckel limiting 
law is derived by a summation procedure over the clusters of ring type. 

* A short account of this paper was published in Prog. Theor. Phys. 21 (1959), 475. 
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214 R. Abe 

However, it is important to note that Mayer's procedure brings about new diffi­
culties owing to the short"range correlation. One may encounter with these 
difficulties if he investigates into the contributions of the complex prototype graphs 

beyond the ring type. In Mayer's theory, the existence of hard-core potential is 

assumed and each term corresponding to one prototype graph is calculated without 

any divergence difficulties. However, if one makes the core radius approach zero, 

some terms considered by Mayer are shown to diverge to infinity. Thus, the develop­
ment in terms of prototype graphs is not applicable to the pure Coulomb potential 
without a hard-core. 

The purpose of this paper is to develop a systematic expansion. procedure 
without suffering from difficulties arising from both long- and short-range correlations. 

In § 2 we shall briefly account for Mayer's expansion method in terms of proto­

type graphs and discuss how the divergence difficulties arise from the short-range 
correlation. In § 3 we shall discuss how to avoid these difficulties, taking a simple 
example of graphs of watermelon type3

),4). Generalizing this procedure to the more 

complex graphs, we shall obtain an expansion formula which has a form similar 

to the usual one. Each term of new series corresponds to an aggregate of all usual 

clusters of a given type, and therefore the expansion developed here will be called 
"giant cluster expansion." The giant cluster integrals corresponding to the usual 
irreducible cluster integrals are defined and shown to have topological properties 
similar to the usual one but dependent on (I. Then § 4 is devoted to an application 
of the method to an electron gas in a uniform positive ion background and the term 

corresponding to the usual second virial coefficient is calculated. Calculations are 

carried out in two different ways: the one based on the use of Bessel functions and 
the other which will clarify how the lowest order term of giant cluster can be 
obtained by a summation of the most highly divergent terms of prototype graphs. 

In § 5 the contributions of higher order giant clusters are briefly discussed and it 

is verified that the thermodynamic functions are exact up to and including the 

order considered in this paper. The orders of magnitude are estimated for the 

high temperature plasma and it is shown that the Debye Huckel law is accurate 
within the error of a few per cent. It is suggested that the thermodynamic func­
tions of plasma are written as a double power series of ). and log J., with } the 
characteristic non-dimensional parameter for plasma. In § 6 is discussed a discre­
pancy between the results obtained by Ichikawa5

) and ours. A possible generali­

zation of the present method to the study of non-equilibrium properties of plasma 
or to quantum statistics is suggested, and these matters will be the subjects of 
forthcoming papers. 

§ 2. Mayer's expansion scheme 

In order to deal with the thermodynamic properties of an imperfect gas, it IS 

convenient to introduce a function S defined by 
OJ 

S= ~Pnpnq/(n+l) (1) 
n=l 
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Giant Cluster Expansion Theory and Its Application 215 

where Pn is the irreducible cluster integral, p is the particle number density gIven 

by N I V, N being the particle number and V the volume of the system. Then 
the Helmholtz free energy and the equation of state are given respectively by,l) 

AI NtcT=log (h2/27rJntcT) 3/2 p/ e- Sip, 

P/tcT=p+S-pas/op. 

(2) 

(3) 

Here m stands for the mass of particle, tc Boltzmann's constant, h Planck's constant, 

T the absolute temperature. All other thermodynamic functions are derived from 
the S, therefore the investigation of equilibrium properties of an imperfect gas reduces 

to calculating the function S. In this section we shall give a brief account of 

Mayer's expansion scheme in terms of prototype graphs. 
If we set the potential function between the i-th and j-th particles to be ¢ij 

and substitute an explicit expression for Pn in Eq. (1), we have 

Here f function IS gIVen, as usual, by 

All products in which all particles 

are more than singly connected 

+ .. =exp(- P0·.)-1 J 1,.) jJ, ~J 

(4) 

(5) 

with p=l/tcT. Usually, each term in Eq. (4) is represented by a bond diagram 

composed of n points and of bonds representing the f function. Hereafter we shall 

call this bond the f-bond. If the f is expanded in powers of - P¢ij and if we take 
the term (-P¢i.i) '/ k !, the (-bond is splitted into k ¢-bonds as shown in Fig. 1. Then 
each term in Eq. (4) will be represented by 

diagrams composed of ¢-bonds. The difference 

between the diagrams composed of f and ¢-bonds 

is clear: in the former case one and only 

one bond is permitted to connect the points 

directly, while in the latter an arbitrary number 
of bonds are permitted. 

The diagrams of ¢-bonds constructed in 

this way may be classified according to their 

• 

fbond 

• 
) 

¢-bond 

(k=5) 

Fig. 1 

topological properties. For this purpose, we introduce the terminology "junction," 
which is defined as a point to which three or more bonds are connected3

), and 

let us consider the diagram of which all points are junctions. Mayer has called 
such a diagram "prototype graph." Then it is clear that all the diagrams are 
constructed by adding the points on the bonds between junctions of prototype graphs 

(except for the diagrams of ring type of which contribution should be calculated 
separately) . Therefore, if we first select one prototype graph and then sum up the 

terms of all the diagrams derived by this prototype graph, the S is expanded in 
terms of prototype graphs. In fact, as Mayer2) has proved, S is written as 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/22/2/213/1934693 by guest on 21 August 2022



216 R. Abe 

S=So+ ,t2 ::', ~ i m~~;~lJ1 (-:i~ir)kij d(m). (6) 

Here So is the contribution of clusters of ring type, and is given by 

So= - (,02 (J/2) v(O) + (1/2 V) 2J { -log [1 + p(Jv(k) J + ,o(Jv (k) } (7) 
k 

with v(k) the Fourier component of ¢ defined by 

v(k)= J¢(x)e- i1c
•
x dx. (8) 

Furthermore, 2.;' in Eq. (6) implies the summation over prototype graphs, ki } the 
number of bonds between the i-th and j-th junctions, d(m) the integrations over 

m junctions, and qij is given by 

(9) 

In the case of electron gas in a uniform positive ion background, v (k ) IS 

given by 

where 8 IS the absolute value of eletronic charge. Then qij IS shown to be 

q(r) =82 exp( -/Co r) / r 

with /Co=V 4ir(Jpe. Furthermore from Eqs. (7) and (10) it follows that 

So = 2 V1n (33 (J3/2 ,03/2/3, 

In this case. From Eqs. (3) and (12), we have 

P /,o/C T= 1-vn (33 (J3/2 ,01/2/3, 

which is the Debye-Huckel limiting law. 

(10) 

(11) 

(12) 

(13) 

§ 3. Contributions of prototype graphs and giant cluster expansion 

We have calculated in § 2 the term So which is the contribution of clusters of 

ring type, i.e., clusters without junctions. We now proceed in this section to dis­
cuss the more complicated clusters with some junctions. As we have mentioned in 
§ 2, the contributions of these clusters can be expressed in terms of prototype graphs, 
and we shall first consider the graphs with 2 junctions. The simplest one of 
these is shown in Fig. 2, Le., the graph with 3 bonds. Its contribution to S is 
given by 

from Eqs. (6) and (11). Obviously, this integral is divergent at r=O. In a 
similar manner, it is shown that the contributions of graphs with 4,5,6,'" bonds are 
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Giant Cluster Expansion Theory and Its Application 217 

all divergent. In }\tlayer's theory, however, the correspond­

ing results are convergent, since the assumed existence of 

hard-core potential makes the lower limit of integration the 
finite value, thus preventing the divergence at r= 0. How­
ever, if we make the core radius tend to zero, the integrals 
become co as mentioned above. This is the main reason 

Fig. 2. The simplest 
prototype graph with 
2 junctions. 

why the development in terms of prototype graphs is not satisfactory for dealing 
with the pure Coulomb potential without a core. 

Let us now discuss how to avoid this divergence difficulty. For this purpose, 

it may be instructive to consider the procedure in which the f-bond is expanded in 
powers of ¢-bonds, as we have done in § 2. If the function ¢ has a dependence 1/ r 

near r= 0, the integration for ¢-bonds may be divergent at r= 0, in· spite of the 
convergence of the integral for the f-bond. This in turn suggests that the diver­

gence arising from the short-range character can be avoided by summing up the 

graphs over the number of bonds. Keeping this in mind, let us sum up all the 

prototype graphs with 2 junctions as shown in Fig. 3. If we set the contributions 

of th.ese graphs to 3 to be 3 2, we obtain 

+ ... 

Fig. 3. All the prototype graphs with 2 junctions. The contribution of 
these graphs to S is 8 2 • 

(15) 

From this equation, it is clear that the divergence at r= 0 no longer appears. The 
similar equation to this has been obtained by Yukhnovsky6), by the use of the method 

of collective variables. It is also possible to obtain the corresponding equation 
without expanding the f-bond in terms of ¢-bonds, as we have shown previously in 
the theory of watermelon approximation for classical fluids. 3

) 

The generalization of the above procedure to the more complicated prototype 

graphs is straightforward. For example, let us consider the graphs with 3 junctions. 
The simplest one is that shown in Fig. 4 at the left end. If we sum up all the 
graphs in Fig. 4, keeping the number of bond between the junctions 1 and 2 to 
be one, we have from Eq. (6) 

(16) 
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218 R. Abe 

as a contribution to S. Here w function is generally defined by 

co 

w n = 2.j (_/3q)1c/k1, (n =1= 0) (17) 
!c=n 

and wo=-pq. (18) 

Furthermore, the factor 3 in front of the integral corresponds to the three types 

of graphs as shown in Fig. 5. 

Fig. 4. Prototype graphs with 3 junctions, 

in which one bond is connected between the 

junctions 1 and 2. Their contribution to S 
is Ss(n,). 

Fig. 5. Three types of graphs in which Wo 

bond is connected between junctions. The 

dotted line is Wo bond and the double bond 
is W 2 bond. 

If we further consider the prototype graphs in which at least 2 bonds are con­

nected between junctions as shown in Fig. 6, we have 

S~'J) =1 ___ (' W2 (12) '[Ch (23) '[Ch (31) dCl dC2dcS 
31 V J 

(19) 

as a contribution to S. 
It is obvious that the similar 

procedure can be carried out for proto­

type graphs with 4, 5, 6···· junctions. 

In general, if we write 

co 

S = So + 2_~ __ r_rn_em'+l 
rn=l m+l 

(20) 

Fig. 6. Prototype graphs in which the number 

of bonds is larger than 2. Their contribution to 
S is SpJ). 

r m. IS expressed as an integral of a sum of products of w functions, 1.e., 

rrn= m~ V J'ln+~i>{_LWn(ij)d(m+l). 
For example, rl and r2 are given respectively by 

1 (' 
rl=TT \ w3(12) dcl dc2, 

y J 
3 (' 

r2 =-----J WO (12) W2 (23) W2 (31) dCl dC2 dcs 
2! V 

+ __ I~JW2 (12)w2 (23) W2 (31) dCl dC2 dC3' 
21 V 

(21) 
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Giant Cluster Expansion Theory and Its Application 219 

Comparing Eq. (20) with Eq. (1), one may easily see 
that I'm is a counterpart of the usual irreducible cluster 

integral. However, I'm corresponds not to a single cluster 
but to an aggregate of all the usual clusters of a given type. 

For example, 1'2 represents the contributions of usual clusters 

of ¢-bonds shown in Fig. 7. For this reason, we shall call 

I'm the giant cluster integral and the expansion given by Eq. 
(20) the giant cluster expansion. It is quite easy to see 

that this expansion scheme suffers neither from the diver­

gence difficulty due to the long-· range character nor from 

the one due to the short-range character. 

Fig. 7. Clusters of ¢­

bonds contributing to 

Just as in the usual cluster expansion, the giant cluster integral is represent­
ed by the bond diagram composed of 'w-bonds. For example, the bond diagrams 

of 1'1 and 1'2 are given in Fig. 8. Furthermore, those of 1'3 are shown in Fig" 9. 

Fig. 8. Bond diagrams of rl and r2. The triple 
bond is W3. (a) and (b) correspond to S3((1.) 

and S3(1», respectively. 

Fig. 9. Some type of bond diagrams 
contributing to r3. The single bond is 

WI· 

From these figures one may see that the bond diagrams representing the 
giant cluster integrals are quite similar to the usual one. However, the essential 
difference lies in the fact that they should be drawn so that all the points are junc­
tions in this case. For example, the bond diagrams shown in Fig. 10 do not ap-
pear, since these are not consistent with this 
requirement. As long as this is satisfied, 

there are several ways in which w-bonds are 
connected for a given type of bond diagram, 
as being shown in Fig. 9.. Accordingly, there 
appears, so to speak, the fine structure of 
usual bond diagram in our case. 

DOD 
Fig. 10. Bond diagrams not appearing 
in the giant clusters. 

Furthermore, it should be noted that I'm IS dependent on density, contrary to 
{dn, so that the giant cluster expansion is not a simple power series of density but 

a more complicated one. But, as will be shown in the next section, it enables one 
to study the low density behaviour of the system for which {dn diverges. 
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220 R. Abe 

Before closing this section, we should like to mention that the similar procedure 
to the present one was discussed by Meeron7

) in his theory of nodal expansion for 

the potential of average force and for the distribution function. Furthermore, 

Morita4
) has succeeded in a partial summation of giant clusters in his theory of 

hyper-netted chain approximation. However, it seems that these authors stayed 

in a rather formal stage. We shall give an actual application of the method to 
the electron gas in the next section. 

§ 4. Application to electron gas 

In this section we shall calculate the function 8 2 given by Eq. (15) for the 

electron gas. As can be seen from Fig. 8, this function corresponds to the 

usual second virial coefficient. In the following, we shall give two different ways 
of calculating the 8 2 : the one based on the use of Bessel functions and the other 

on the summation of the most highly divergent terms of prototype graphs. 

Substituting Eq. (11) in Eq. (15), we have 

In order to carry out further calculations, it is convenient to introduce a dimen­

sionless parameter characteristic of the classical electron gas: 

(22) 

Then we have 

P 2 
(23) 

If we perform the partial integration, it follows that 

(24) 

where I(A) IS gIVen by 

I(i-) = I (t+h') exp (- J.t - e~A<) dt. (25) 
o 

In calculating this function, we assume that ). is small, that IS, we consider the 

low density and high temperature limit. In such a case, it may be possible to write 

-At-e-At/t as -At-1/t+ (l-e- Al )/t and expand exp[(l-e- At)/t] as a power series 
of its exponent which is of the order of A. Then we obtain 

00 

I(A) = ~ In (A) /n! (26) 
n=O 

where 
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Giant Cluster Expansion Theory and Its Application 221 

~ (l-e- M )n 
In () = J (t+).t2) e- At

-
1

/
t 
----;:;--- dt 

o 

(27) 

The integral in Eq. (27) can be expressed in terms of Bessel functions, if we notice 
the formulaS) 

oJ 

Kn(z) = .\ e-zcoshO cosh nfJ dfJ. 

o 

In this way, we find 

In= ± (n) (_1)1' ).n/2 (r+ 1)n/2 [~~-~-----Kn-2(2 V) (~+ 1» 
1'=0 r A(r+ 1) 

+ 2/ _ K n - 3 (2 vT(r+l)]. (28) 
(r+ 1) V )'(r+ 1) 

If we substitute in this equation the explicit expression for Kn (z) : 

Kn(Z) =_1_:8
1 

(-l)m(n-·m-1)! (~)2m-n + (_l)n+l ~ _(z/2)_:~ 
2 m=O m! 2 1n=O m! (n+m) ! 

X {log (z/2) -1/2 e ¢(m) -1/2 e ¢(m+n)} 

1 1 
¢(m) = -r+ 1 +2-+ ... +-;;;-, ¢(O) = -r, 

(r: Euler's constant=0.57721566 .. ·), 

we have 

and 

Io=3/i.2-2/)+1/2-1/2- {logi.-¢(O) -¢(2)} +O(i.), 

II =5/ 4i.-1/2-log2 +0 (), 

12=2 log 2-log 3+1/3+0(i.) 

13=0(i.). 

It is easily verified that In for n~3 can be ignored if we confine ourselves up 
to the order of ).0. Substituting above equations in Eq. (26), we have from Eq. 
(24) 

S2 =).2 (~g~+L_~) + ).2 log}. +0(i.3). 
P 12 6 72 12 

(29) 

On the other hand, the contribution of clusters of ring type, SO, IS written as 

(30) 
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222 R. Abe 

from Eqs. (12) and (22). Thus we see that the contribution of giant cluster 
with 2 junctions is of orders higher than that of clusters without junctions at low 

density limits. Furthermore, it should be noted that there appears the term log}. in 
Eq. (29). This implies that the point ,0=0 is a branch point of logarithmic charac­
ter, while in Eq. (30) it is of algebraic one, [see Eq. (22) J. 

Let us now discuss to derive Eq. (29) in an alternative way. As we have 
mentioned in § 2, the contribution of each prototype graph diverges to co. However, 
if the existence of hard-core potential is assumed, it is convergent. Then the con­

tribution of the prototype graph with 2 junctions and 3 bonds is given by 

where () = a/ fjc2
, a being the diameter of hard-core. 

Similarly, the contributions of the prototype graphs with 4, 5,·,· bonds are gIVen 

by 

Though these terms become co as ()~O, we observe here the most highly 
divergent terms in this limit. They are given by 

S ).2 1 1 }.2 1 ~ dt 
~ "-' - -- ----=- --- 1-

p 2 4! 0 2 4! J t 2
' 

r5 

_ S2'~ "-' _~ _1 ___ ~ ___ ~ 1 r dt 
p - 2 5! 202 - 2 51 J 7' etc. 

r5 

Then summmg up these terms, we obtain 

(31) 

Now, this integral is finite as O~O, and then one may easily verify that the in­
tegration leads to the same result as is given by Eq. (29). Thus we see that the 
lowest order term of contribution of giant cluster can be calculated by summing up 
the most highly divergent terms of prototype graphs of which the giant cluster is 

composed. This situation seems somewhat analogous to the case of correlation 
energy of electron gas as was discussed by Gell-Mann and Brueckner.9

) We shall 
use this method in the next section for the order estimation of giant clusters with 
3 junctions. 
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Giant Cluster Expansion Theory and Its Application 

§ 5. Contribution of higher order giant cluster and equation 
of state of high temperature plasma 

223 

We have calculated in § 4 the contribution of giant cluster with 2 junctions. 
In this section we shall discuss the order estimation of more complicated giant clus­
ters for small i.. 

The term expected to be important besides So and S2 for small i. is SJa) given 
by Eq. (16). The bond diagram corresponding to this term is shown in Fig. 8, 
and is a counterpart of the usual third virial coefficient. Combining Eq. (16) with 
Eq. (17), we have 

~~- =_L_ (e-Bq2~-1 + (3q23) (e-~ql~-l + (3q13) (- PQ12) dTl dT2. (32) 
S,(a) r? Jf' 

P 2 

Carrying out the change of variables and the integration for the angular part, 

we find 

(33) 

where 

(34) 

The calculation of the first term on the right-hand side of Eq. (33) is straight­
forward, if we use the second method discussed in § 4. Then we obtain for this 
term 

(35) 

for small i.. On the other hand, the second term in Eq. (33) is not calculated 
analytically, yet it is verified that its contribution for small i. is of the same order 
as is given by Eq. (35). In order to show this, we sum up the most highly 
divergent terms of prototype graphs, as was discussed in § 4. Then, after some' 
manipulation, we have 

Differentiating this equation by i., we find 
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224 R. Abe 

(36) 

The right-hand side of Eq. (36) is equal to 

-1/) 0 [2 (3) -1 K2 (2 V3) - (3) -2 + (3) -IJ . 

Therefore, for small ) Eq. (36) becomes 

d1·· ~ _1_ [log (3) - ¢ (0) - ¢ (2) J + 0 (A0) . 
dA 2A-

Integrating this equation, we have 

A(A) ~const.+1/2.[10g3-¢(0) -~lj(2)J 10g)+1/4. (log)2. (37) 

Comparing the above equation with Eqs. (33) and (35), we see that the contri­

bution of the second term in Eq. (33) is of the order same as the first one. Though 

the value of constant in Eq. (37) is not determined by the above argument, it is 

clear that the order of Sia
) /p is )3, if we consider the term log) as if it were of 

the order )0. Under the same prescription, S2/P is of the order of )2 as can be 

seen from Eq. (29). Thus, it is verified that the contribution of giant cluster of 
type (a) shown in Fig. 8 is of orders higher than 1'1 in the same figure. 

The calculation of terms of type (b) and of more complex giant clusters is 

very difficult, and we shall not enter into this problem here. However, as was 

shown in the above calculation, it is quite probable that their contributions are of 

orders higher than that of 1'1' Then, up to the order of )2, we obtain from Eqs. 

(29) and (30) 

(38) 

By the use of Eqs. (3) and (22), the equation of state is written as 

Pip KT=1-)/2 8 d/d). (S/p). 

Therefore, substituting Eq. (38) in the above equation, we have 

~=1 __ ~_)2 ( log 3) .+L_.l:_) +0()3). 
pKT 6 12 6 9 ' 

(39) 

The third term on the right-hand side is graphically shown in Fig. 11. As IS seen 

from this figure, when) is smaller than about 0.4, the third te~m makes the P/pKT 
larger than that calculated without this term. This situation is represented in Fig. 

12. 
In order to estimate orders of magnitude for the high temperature plasma, let 

us suppose T'"'-'10 5 OK and p'"'-'1015cm- 3
• Then we have )'"'-'10-2. If we set )=10-2, 

the Debye-Huckel term, )/6, in Eq. (39) is 1.6667 X 10-3
• On the other hand, the 

correction term P(log 3)/12+1'/6-1/9) in Eq. (39) takes the value -0.0308XI0-3
• 

Thus we see the latter amounts to only about 2% of the former. The higher the 
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O~--~----~-----~----7-----~ 

-0.001 

-0.002 

-0.003 0.90 L--__ --'-____ --'-___ --'-____ -'--___ .L1 --

o 0.1 0.2 0.3 0.4 0.5 

Fig. 11. Graphical representation of A2(log 

3A/12+r/6-1/9) as a function of A. 

Fig. 12. Equation of state for high tempera­
ture plasma. The dotted line is the Debye­

Huckel limiting law and the full 'line is based 
on our calculation. 

temperature is, the smaller the correction becomes. Thus we may conclude that 
the Debye-Hiickel law is accurate within the error of a few per cent for the plasma 
at sufficiently high temperature. 

Here we wish to add some remarks about the functional dependence of S/p on 
),which is suggested by the present calculations. We have shown that S2/P 
includes the terms F and ).2 log Ii, s~a)/p the terms ).3, )3 log ). and )3 (log) 2 for small 

J.. Furthermore, it is easily verified that S2/P is a sum of terms Am and Am log J. 

(m = 2, 3",')' In all these cases, the Sip is expressed as a sum of terms ).m (log i.) n 

(m > n) . If we assume these properties to be more general, Sip may be written 
as 

co 

S/ ,-1 b 'mel ')n . p=.Li 'Inn/. og.l. 
m>n=O 

where brnn is independent of).. This implies that the thermodynamic function of 
plasma is a double power series of J. and log J.. 

§ 6. Concluding remarks 

A systematic expansion scheme quite suitable to dealing with the long-range 
interaction has been developed. We can safely conclude that the fundamental diffi­
culties associated with the interaction of this sort are completely solved by this 
method, as far as the behaviour of the system at low densities and high temperatures 
is concerned. The method has been applied to the study of equilibrium properties 
of high temperature plasma, and the equation of state beyond the Debye-Hiickel 
limiting law has been obtained exactly up to the order of ).2. It in turn indicates 
that the Debye-Hiickel law is exact up to the order of ). 
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Now, with respect to this point, we must mention the calculation carried out 
by Ichikawa.5

) He has shown that the long-range correlation effects of the Coulomb 

interaction increase the free energy of the Debye-Huckel law by about 22%. Ob­

viously, his conclusion is not consistent with ours. The origin of this discrepancy 

is due to the fact that he dealt with the high density behaviour of plasma, though 

his result is reduced to the Debye-Huckel law at low density limit. 

The giant cluster expansion developed here may be generalized to the multi­
component system, and more realistic description of plasma in which the positive 

ion is not smeared may be possible. Moreover, it seems that the similar technique 

combined with the recent theorieslO
) on the irreversible process will be usefully ap­

plied to the investigation of non-equilibrium quantities such as mobility, relaxation 

time, of plasma. We shall discuss these problems elsewhere. 
Furthermore, it may also be possible to extend the present method to quantum 

statistics. In this case the expansion scheme corresponding to the classical cluster 
expansion is "linked cluster expansion" in terms of Feynman graphsll ). These 

graphs have a strong resemblance to the bon:1 diagrams in classical theory, except 

for the terms representing the exchange effects. In fact, the summation of Feyn­

man graphs of ring type leads to the result derived by Montroll and Wardl2
) in a 

quite simple way.13) It is further possible to develop the expansion scheme in terms 

of prototype Feynman graphs, in parallel with classical theory. We hope that the 

quantum statistical treatment of electron gas along the line conjectured here may 

give a deeper insight into the electron correlation in metals and prove useful in 

connection with the problems on correlation energy, thermodynamic properties, 

electromagnetic properties, transport phenomena, superconductivity, etc. In a forth­

coming paper we shall undertake a quantum statistical generalization of the present 

method. 
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Note added in proof After I had written this paper I knew that Dr. Harold L. Friedman deve­
loped the similar expansion scheme for the multi-component system (Molecular Phys. 2 (1959), 23). 
I would like to express my sincere thanks to Prof. S. Ono at Tokyo University for informing me 
of this paper. 
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