Giant H II regions as distance indicators - II.
Application to HII galaxies and the value of the Hubble
constant ${ }^{\star}$
Jorge Melnick $\dagger \ddagger$ European Southern Observatory, Karl Schwarzschild Str. 2,
D-8046, Garching bei Munchen, FRG
Roberto Terlevich $\dagger \ddagger$ Royal Greenwich Observatory
Mariano Moles $\dagger \ddagger$ Instituto de Astrofisica de Andalucia
Accepted 1988 March 22 . Received 1988 February 26 ; in original form 1987 April 28
Summary. The (integrated) $\mathrm{H} \beta$ luminosities of giant $\mathrm{Hin}_{\text {regions and of }} \mathrm{H}_{\text {II }}$ galaxies (giant Hir regions in dwarf galaxies) can be predicted with an accuracy comparable to the observational errors from the velocity widths of their emission-

 of sə!xe[eठิ ІІ

 systematic errors is presented.

1 Introduction

In the first paper of this series (Melnick et al. 1987, Paper I) we showed that the correlations between global parameters of giant $\mathrm{H}_{\text {II }}$ regions can be used as distance indicators. In particular, *Partly based on observations obtained at the European Southern Observatory, La Silla, Chile.
\dagger Visiting astronomer, Cerro Tololo Interamerican Observatory operated by AURA Inc. under
\dagger Visiting astronomer, Cerro Tololo Interamerican Observatory operated by AURA Inc. under contract with the National Science Foundation of the USA.
\ddagger Guest investigator, Mount Wilson and La

we showed that the reddening corrected $\mathrm{H} \beta$ luminosities of giant Hif regions, $L(\mathrm{H} \beta)$, are well
correlated with σ, the rms velocity width of the emission-line profiles. We also showed that the
scatter in the relation between $L(\mathrm{H} \beta)$ and σ is correlated with the oxygen abundance of the
nebular gas $(\mathrm{O} / \mathrm{H})$, and we used Principal Component Analysis (PCA) techniques to show that
the $\mathrm{H} \beta$ luminosities of young H II regions are determined by the parameter $M_{z}=R_{\mathrm{c}} \sigma^{2} /(\mathrm{O} / \mathrm{H})$
which is thus a good distance indicator for giant HiI regions (R_{c} is the nebular core radius).
In order to apply these results to determine the value of Hubble's constant, H_{0}, it is imperative
to observe galaxies whose recession velocities are not affected by local mass concentrations and
(if that were possible) by large-scale streaming motions. This requires observations of galaxies
outside the Local Supercluster and, ideally, beyond $50-60 \mathrm{Mpc}$.
The brightest HiI regions found in the most luminous spirals reach H β luminosities of
10^{40} erg s s^{-1} and linear diameters of a few hundred parsec. If located at the edge of the Local
Supercluster, these Hil regions would have an apparent flux of only a few times 10^{-14} erg s ${ }^{-1} \mathrm{~cm}{ }^{-2}$
and angular diameters of $2-3$ arcsec. Thus, using HiI regions in bright distant spirals is clearly a
tortuous path towards the Hubble constant.
1.2 H iI Galaxies
Haro (1956), Zwicky (1966), Markarian (1967) and Sargent \& Searle (1970), among others, have identified a new class of galaxies (known as blue compact or HII galaxies) characterized by having

Figure 1. Spectra of three representative $\mathrm{H}_{\text {II }}$ galaxies and of the prototype giant $\mathrm{Hil}_{\text {r }}$ region 30 Doradus.

662	

 indistinguishable from those of low-abundance giant extragalactic Hir regions. This is illustrated
in Fig. 1 where spectra of three representative HII galaxies are compared with the spectrum of the in Fig. 1 where spectra of three representative $\mathrm{H}_{\text {II }}$ galaxies are compared with the spectrum of the
proto-typical giant $\mathrm{H}_{\text {II }}$ region 30 Doradus (LMC).
Hir galaxies are frequently found in objective prism surveys; about 20 per cent of the emission line galaxies in the Tololo (Smith, Aguirre \& Zelman 1976) and Michigan (McAlpine \& Williams 1981) surveys belong to this type. In most cases Hir galaxies are associated with low surface brightness amorphous galaxies, probably Magellanic type irregulars (Melnick, Terlevich \&

 (Melnick 1987). Giant Hir regions also tend to be associated with low surface brightness regions of galaxies. For example NGC 5471, the largest HII region in the giant Sc galaxy M101, was for a
 The only important spectral difference between Hir galaxies and the giant Hir regions dis-
cussed in Paper I is that the former are systematically metal poorer. This difference is mostly a
 1988) but is also partly due to a selection effect; for abundances larger than that of the Orion
 suggest that the methods discussed in Paper I for deriving distances to giant HII regions can be applied to $\mathrm{H}_{\text {II }}$ galaxies and thus extended to much larger distances. In this paper we present a detailed study of the global properties of a sample of $\mathrm{H}_{\text {II }}$ galaxies selected from the Spectrophotometric Catalogue of HII Galaxies (Terlevich etal., in preparation). We show that H II galaxies exhibit correlations which are very similar to those observed in giant Hir regions and we
combine the two classes to derive a value of the Hubble constant.

2 Observations

2.1 SELECTION OF THE SAMPLE
 the SCHG) contains data for more than 400 objects selected from objective prism surveys mostly of the southern hemisphere. We have selected about $100 \mathrm{H}_{\text {II }}$ galaxies for high S / N spectrophotometric studies, aimed at determining reliable elemental abundances, and for lineprofile studies of the kinematics of the ionized gas.
The objects were chosen primarily on the basis of their $\mathrm{H} \beta$ fluxes (secondary criteria included position in the sky and equivalent width of $\mathrm{H} \beta$) using as a starting point low dispersion
spectrophotometry obtained with the IDS scanner at the 3.6 -m telescope at La Silla. Thus, our sample is magnitude limited although it does not comprise all the brightest galaxies in the SCHG which, in any case, is not complete in any well-defined statistical sense. The sample for which we
 than $F(\mathrm{H} \beta)=5 \times 10^{-15} \mathrm{erg} \mathrm{s}^{-1} \mathrm{~cm}^{-2}$ and with $\mathrm{H} \beta$ equivalent widths, $W(\mathrm{H} \beta)$, larger than $30 \AA$. This restriction is necessary to limit the sample to young nebulae in order to minimize evolutionary effects (Copetti, Pastoriza \& Dottori 1986). Although, in principle, age effects can be explicitly considered because $W\left(\mathrm{H} \beta\right.$) is a reliable age indicator for giant $\mathrm{H}_{\text {II }}$ regions (Copetti et al. 1986,
 by the background stellar population of the parent galaxies and therefore $W(\mathrm{H} \beta)$ is not a reliable age indicator for all $\mathrm{H}_{\text {II }}$ galaxies.

 (

LOE

We obtained additional photometry using the Boller and Chivens spectrograph of the $2.2-\mathrm{m}$ telescope at La Silla on 1986 December 6 and 7. The spectra were recorded with a cooled
RCA SID5 $01320 \times 512 \mathrm{CCD}$ and cover a spectral range of about $3000 \AA$ centred at $5500 \AA$. The weather conditions were photometric and we used a long, 6 arcsec wide, entrance slit, in order to obtain the integrated spectrum (the seeing on both nights was better than 1 arcsec). A minimum of eight standard stars were observed each night to ensure photometric reductions. The reductions, including bias and flat field corrections, and standard calibrations were done using the IHAP package at ESO Garching. From these data we extracted $\mathrm{H} \beta$ fluxes and Balmer decrements which are presented in Table 1. In the cases where we had previous IDS photometry, the results presented in Table 1 are averages. From these averages and/or from the internal consistency of the instrumental response curves obtained from different standard stars we estimate the $\mathrm{H} \beta$ fluxes to be accurate to better than 10 per cent and the Balmer decrements to be accurate to 5 per cent or better. In total we have accurate fluxes for 42 galaxies in the echelle sample.
Ile observations of Hir galaxies were carried out in five observing runs between 1981 January and 1983 May using the echelle spectrograph of the $4-\mathrm{m}$ telescope at Cerro Tololo. The spectra were recorded using blue sensitive Vidicon television detectors and covered different spectral ranges. Exposure times ranged from 15 min to 2 h . A typical Hir galaxy spectrum is reproduced in Plate 1 which shows a Versatec copy of a full Vidicon frame of the double galaxy SCHG 1150-021 (Mich 462).
An important instrumental effect that needs to be discussed in the present context is beam
bending. This is a distortion of the instrumental profile due to the deflection of the TV-reading beam in regions of high surface density of charge on the silicon target. Thus, beam-bending affects mostly the cores of strong, narrow emission lines. We have not attempted to correct our profiles for this effect; we have merely discarded lines with peak fluxes stronger than the minimum levels at which we detected significant distortions in the lines of the thorium-argon calibration spectrum. In practice, this meant that in the majority of cases the [O III$] 25007$ line could not be used.
The data were reduced in a straightforward manner using the VAX computers at ESO, Garching. The spectra along each echelle order were extracted using the MIDAS/Caspec package and the resulting one-dimensional spectra were measured using the line analysis package alice. alice fits the continua with polynomials and the line profiles with single Gaussians. The resulting widths in pixels were transformed to wavelength units using equations obtained from the comparison spectrum. The resulting velocity dispersions, corrected for thermal and instrumental broadening, $\sigma_{0}^{2}=\sigma_{\text {obs }}^{2}-\sigma_{\mathrm{th}}^{2}-\sigma_{\text {inst }}^{2}$, are presented in Table 1 together with estimates of their uncertainties. The uncertainties were assessed either from multiple observations or from the internal consistency of several lines. The width of the instrumental profile was obtained from unsaturated thorium lines and was typically 2.2 pixels, corresponding to $0.44 \AA$ FWHM at $\mathrm{H} \beta$ $\sigma_{\text {inst }}=11.5 \mathrm{~km} \mathrm{~s}^{-1}$. This varied slightly with the different instrumental configurations we
 temperature of $T_{e}=10000 \mathrm{~K}$ for all objects. This does not introduce any serious systematic effect since the widths were mostly derived from the [Omi] 24959 lines which are only marginally

 but unsaturated thorium line. Because of beam-bending the line is broadened to 3.3 pixels and shows a small bump in the blue wing. The similar bumps present in the wings of some (especially the narrow line) HII galaxies are due to this effect. The Gaussian fits used to derive the linewidths

are shown in this figure. Notice that in some cases, in particular in the galaxies with the broadest
2.5 RADIAL VELOCITIES AND DISTANCES
It is very easy to get accurate radial velocities for Hir galaxies: their strong, narrow emission lines can be adequately detected in exposures of only a few seconds. Our redshifts are accurate to a few tens of $\mathrm{km} \mathrm{s}^{-1}$, but the observed radial velocities must be corrected by several effects before they can be used to infer the distances of the objects, and these corrections are somewhat uncertain. We have applied the standard IAU correction for the motion of the Sun relative to the Local Group. This correction does not include the motion of the Galaxy in the Local Group (Yahil, Sandage \& Tammann 1977; Sandage 1986) and this may introduce uncertainties of several tens of
Two additional corrections must be applied: infall into the Virgo cluster (of the galaxy as well as of some of the programme objects) and large-scale streaming motions (as inferred from the dipole anisotropy of the Cosmic Microwave Background, CMWB). We have closely followed the
 al. 1986) to correct the radial velocities for the influence of the Virgo cluster, and we have
 are at the redshift and position of the Virgo cluster.
The removal of large-scale streaming motions poses a severe problem. The simplest interpretation of the dipole anisotropy of the CMWB is that the Local Group moves, with respect to the
CMWB, with a velocity of $614 \mathrm{~km} \mathrm{~s}^{-1}$ towards $1=269, b=28$ (Lubin et al. 1985), roughly in the
 Thus, in principle, we should remove the corresponding projection of this velocity from our objects if they are at rest with respect to the CMWB. Galaxies closer than $c z \sim 6000 \mathrm{~km} \mathrm{~s}^{-1}$, however, appear to have significant peculiar velocities, particularly those lying in the direction of the CMWB dipole (Dressler et al. 1987). Therefore we have not a priori corrected our velocities
for the motion of the Sun relative to the CMWB but we will consider this effect explicitly in the discussion of our result for the Hubble constant (Section 5).

3 Data analysis

In order to construct a distance indicator using giant Hir regions and $\mathrm{H}_{\text {II }}$ galaxies we must be sure that their global properties are the same. Specifically, we must ascertain that the integrated $\mathrm{H} \beta$ luminosities of $\mathrm{HII}_{\text {II }}$ galaxies depend only upon their velocity dispersions, core radii and
 I for giant HII regions. In this section we will apply the analysis of Paper I to the echelle sample. however, it turns out that velocity dispersion and oxygen abundance suffice to completely determine (within the observational errors) the luminosities of HiI galaxies, a result not unex pected since for giant HII regions the radii are correlated with the velocity dispersions.

3.1 CORRELATIONS

Fig. 3 presents a logarithmic plot of $L(\mathrm{H} \beta)$ (assuming a Hubble constant of $H_{0}=100 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ to compute the distances) as a function of velocity dispersion σ corrected for redshift
 regression line for the giant $\mathrm{H}_{\text {II }}$ region data alone. There are two features of this plot which we

305

 regression line for giant HII regions. We will show below that this is an effect of metallicity: on
 of Paper I. Thus, for a given velocity dispersion, Hir galaxies are on average a factor of 1.5 brighter than giant Hir regions (see below).
 region line. The discrepancy is not a metallicity effect; both galaxies are relatively metal rich but not enough to explain their location in the $[\log L(\mathrm{H} \beta), \log \sigma]$ plane. Therefore, either a significant fraction of the line-broadening in these two galaxies is independent of the $\mathrm{H} \beta$ luminosity (and hence of the ionizing source) or the $\log L(\mathrm{H} \beta)-\log \sigma$ relation is curved. The two galaxies are

 follows, we will restrict the analysis to HIn galaxies with lines narrower than $\sigma=60 \mathrm{~km} \mathrm{~s}^{-1}$. We

 curvature of the $[\log L(\mathrm{H} \beta), \log \sigma]$ relation in the final analysis of the results.
The dashed line in Fig. 3 shows the least-squares fit for the H iI galaxies alone.

The dashed line in Fig. 3 shows the least-squares fit for the H II galaxies alone. The parameters
of that line are given by,

$\log L(\mathrm{H} \beta)=(4.70 \pm 0.30) \log \sigma+33.61 \pm 0.50$.

[^0][^1]积
 test for this effect in Hir galaxies, following Paper I, we will make use of Principal Component Analysis (PCA) techniques. Table 2 shows the result of the PCA table for the echelle sample in the $[L(\mathrm{H} \beta), \sigma, \mathrm{O} / \mathrm{H}]$ parameter space. Unfortunately our PCA routine (Paper I) does not include error analysis but even without considering errors, the eigenvalues and eigenvectors of the principal components of Hir galaxies are remarkably similar to those of giant Hir regions, also shown in Table 2. The PCA table shows that for Hif galaxies two principal components contain 99

 specified by the line-profile widths and the oxygen abundances. The functional form of this relation, obtained from a least-squares fit is,

$\log L(\mathrm{H} \beta)=(5.15 \pm 0.27) \log \sigma-(0.85 \pm 0.23) \log (\mathrm{O} / \mathrm{H})+$ const.

with an rms scatter of $\delta \log L(\mathrm{H} \beta)=0.21$ for 29 objects. The corresponding equation for giant HII regions is (Paper I),

$\log L(\mathrm{H} \beta)=(0.86 \pm 0.11) \log R_{\mathrm{c}} \sigma^{2}-(0.65 \pm 0.33) \log (\mathrm{O} / \mathrm{H})+$ const

with an rms scatter of $\delta \log L(\mathrm{H} \beta)=0.21$. In giant $\mathrm{H}_{\text {II }}$ regions the core radius, R_{c}, appears in the PCA. Since, from Paper I, $R_{\mathrm{c}} \propto \sigma^{3}$, the relations for giant $\mathrm{HII}_{\text {II }}$ regions and for $\mathrm{HII}_{\text {II }}$ galaxies are [L $\left.\mathrm{H} \beta), R \sigma^{2} \mathrm{O} / \mathrm{H}\right]$ relation is the same as the scatter of the $[L(\mathrm{H} \beta), \sigma, \mathrm{O} / \mathrm{H}]$ relation. Thus, the effect of introducing the core radius is to reduce the sensitivity of the results to observational errors and errors in the distances but not to remove an additional degree of freedom. This illustrates the dangers, discussed in Paper I, of using least-squares techniques when the independent variable is subject to errors.
 regions, and that, within the errors, the global $\mathrm{H} \beta$ luminosities of both classes of objects are determined by their profile widths and oxygen abundances in the manner described by equation
 variable IMF model proposed by Terlevich \& Melnick (1981, cf. Paper I and references therein) to explain these correlations.

4 The distance indicator

The luminosities of HII galaxies can be predicted, with accuracies consistent with the observational errors, from their velocity dispersions and metallicities, which are independent of distance.

Giant Hil regions as distance indicators - II 307 From the results of the previous section, the luminosities and therefore the distances of $\mathrm{H}_{\text {II }}$
galaxies can be obtained using the parameter.

$M_{\mathrm{z}}=\frac{}{(\mathrm{O} / \mathrm{H})}$

which we shall call our 'distance indicator'. We have approximated the coefficients given by equation (1) to values consistent with their statistical errors. Fig. 4 shows a plot of L (of this line is $1.03+0$ (1). $\delta \log L(\mathrm{H} \beta)=0.217$, only slightly larger than the scatter from equation (1). The dotted line in Fig. 4 shows a maximum likelihood fit to the data taking into account the observational uncertainties in both axes. The slope of this line is 1.07 ± 0.04.

Figure 4. Logarithmic plot of $\mathrm{H} \beta$ luminosity versus the distance indicator parameter $M_{z}=\sigma^{5} /(\mathrm{O} / \mathrm{H})$. The solid line shows a least-squares fit to the data and the dashed line shows a maximum-like
into account. $H_{0}=100 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ was used to compute the luminosities.

Because the slopes determined using Hir galaxies may, at least in principle, be affected by Malmquist bias, ideally both the zero point and the slope of the distance indicator should be determined using giant H H regions. In practice, however, as discussed in Section 3, the slope one determines for the 14 giant HIr regions is very sensitive to the observational errors. For the data of Paper I using least-squares fitting techniques we obtain a slope of 0.83 ± 0.13 while maximum-
 of 1.02 ± 0.08. Therefore, the 'true' slope of the correlation for giant Hir regions is not signifi-

 0.99 ± 0.04, consistent with the value determined for giant HII regions. Consequently, we have fixed the slope of the correlation to 1.0 , and used this value to obtain the zero point from the giant HII regions. Thus, the 'complete' distance indicator has the functional form

$\log L(\mathrm{H} \beta)=(1.0 \pm 0.04) \log M_{z}+(41.32 \pm 0.08)$.

We recall from Paper I that we have used the local distance scale of Aaronson et al. (1986) to
compute the $\mathrm{H} \beta$ luminosities of giant HII regions. If we use the Sandage \& Tammann (1974,
 Tammann local scale (Tammann 1987; TA87) we obtain 41.39 ± 0.07. We note that the residuals are minimal for the TA87 scale $[\delta \log L(\mathrm{H} \beta)=0.255$ compared with 0.271 for our adopted scale and 0.324 for ST74]. For completeness, we present in Table 3 the list of the galaxies used in the calibration of the zero point, together with the relevant distance moduli.

5 The distance to $\mathrm{H}_{\text {II }}$ galaxies

Before applying equation (2) to infer distances to $\mathrm{H}_{\text {II }}$ galaxies it is necessary to consider the effect of Malmquist bias. Malmquist bias affects the $\left[L(\mathrm{H} \beta), M_{z}\right]$ correlation in exactly the same way it influences the Tully-Fisher relation and this has been extensively studied in the literature (Teerikorpii 1984; Bottinelli et al. 1986; Giraud 1987).
Giraud's formulation provides a quantitative way of correcting the observed luminosities for Malmquist bias as a function of the limiting flux of the sample, the precision of the distance indicator, and the mean and width of the luminosity function of $\mathrm{H}_{\text {II }}$ galaxies in a bias free zone. M иои! $(\mathrm{H} \beta)>30 \AA$ required to minimize age effects (cf. Section 2.1). The dashed line presents the uminosity distribution for galaxies within $750<c z<7500 \mathrm{~km} \mathrm{~s}^{-1}$, and the shaded area the
 clearly visible in Fig. 5 where most high luminosity objects appear at large redshifts. About 20 per

 magnitude brighter than that of the whole SCHG) in order to measure linewidths and oxygen abundances accurately. Thus, about 70 per cent of the $\mathrm{H}_{\text {II }}$ galaxies in the echelle sample have radial velocities lower than $c z=7500 \mathrm{~km} \mathrm{~s}^{-1}$ and, a priori, therefore, our results should not be seriously affected by Malmquist bias. Indeed, using Giraud's (1987) equations assuming that the dashed curve in Fig. 5 is a good representation of the luminosity function of Hir galaxies in the
 by only ~ 10 per cent (Table 4).

[^2]The luminosity distance of a given Hin galaxy is given by the expression (Sandage 1975)

og
Figure 5. The solid line shows the luminosity function of all Hif galaxies in the SCHG with $W(\mathrm{H} \beta)>30 \AA$. The dashed-dot line presents the luminosity function of HiI galaxies within $750<c z<7500 \mathrm{~km} \mathrm{~s}^{-1}$ and the shaded area
shows the luminosity distribution of the galaxies in the echelle sample ($H_{0}=100 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$). where $L_{\mathrm{i}}\left(M_{\mathrm{z}}\right)$ is the luminosity predicted by the distance indicator (equation 2), z_{i} is the redshift and $F_{\mathrm{i}}(\mathrm{H} \beta)$ is the observed flux corrected for extinction. The Hubble constant for an individual
 values of H_{0} are presented in Table 4 for different cuts of the echelle sample. Also included in that table are the standard deviations about these mean values and the corrections for Malmquist bias

 little to alleviate the discrepancy since the zero point difference corresponds to a change of only 8
 the motion of the Local Supercluster relative to the CMWB are mostly positive and therefore

 Section 2.5) to correct our velocities, we get $H_{0}=89 \pm 6 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$, to be compared with the value of 86 ± 7 given in Table 4 .

5.2 the distance to the virgo cluster

The distance to Virgo allows the calibration of the zero point of several distance indicators
(Tammann 1987) and in particular of methods based on the properties of elliptical galaxies
(Dressler et al. 1987, and references therein). There are five $\mathrm{H}_{\text {II }}$ galaxies in the echelle sample at
the position and redshift of the Virgo cluster. From these we obtain a true distance modulus of
$<(m-M)>=30.70 \pm 0.20$ to Virgo. However, the galaxy SCHG $1148-020$ (Mich 461) has a
modulus of only 30.0 so it may not be a member of the cluster. Excluding this galaxy we obtain a
true distance modulus $(m-M)_{\text {vir }}=30.9 \pm 0.1$ to Virgo, which agrees with the value of
$(m-M)_{\text {vir }}=30.82 \pm 0.12$ given by Aaronson et al. (1986) but which is significantly lower than the
modulus of $(m-M)_{\text {vir }}=31.6 \pm 0.3$ favoured by Sandage and Tammann (TA87). In the following
section we discuss possible systematic errors that may affect the giant HII region method and
which eventually may have led us to overestimate the value of H_{0}. We consider, however, that our
distance to Virgo is largely independent of systematic errors related to the extrapolation of the
giant HII region relationships discussed above and in the next section, because the H β
luminosities of the HiI galaxies in the Virgo cluster are well within the range covered by the giant
HII regions used as zero point calibrators.

5.3 the hubble constant from galaxy clusters

Any measurement of the Hubble constant within $50-100 \mathrm{Mpc}$ of the Local Group is likely to be affected by important systematic errors due to the existence of large scale bulk motions (Dressler et al. 1987). We may use the distance to the Virgo cluster together with the relative distances to rich clusters of galaxies obtained by Dressler et al. to quantify the importance of the effect. The distance ratios between several clusters were determined by Dressler et al. independently of H_{0}. Thus, if V_{c} is the radial velocity of a cluster and D_{c} its distance, H_{0} can be obtained as,

$H_{0}=\frac{V_{v}}{}$

where D_{v} is the distance to Virgo. The radial velocities and the distance ratios to Virgo for six rich
 H_{0} obtained using a distance of $D_{\mathrm{v}}=15 \mathrm{Mpc}$ to Virgo. Assuming that these clusters are at rest relative to the CMWB, we can correct their radial velocities for the motion of the Local Group relative to the CMWB. The relevant projections of this motion, $V_{\text {mwb }}$ determined using
 the table shows the values of H_{0} that are obtained after removing $V_{\text {mwb }}$ from the cluster radial velocities. Lynden-Bell (1987) has argued that the peculiar motion of the Centaurus cluster relative to the CMWB is due to the gravitational pull of a huge mass concentration located just beyond the Hydra-Centaurus complex. The large value of H_{0} for Centaurus may be partly due to this effect and partly due to the gravitational pull of the Perseus cluster on the Local Group.
 ing four clusters in Table 5, which is in remarkably good agreement with the value of $H_{0}=86 \pm 7 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}$ we obtain from Hin galaxies (internal consistency errors are quoted). We

Plate 2. CCD image in blue light of the double Higgalaxy SCHG 1150-021 (Mich 462) where the two components are
clearly resolved. The echelle spectrum of this galaxy is shown in Fig. 1.
 conclude that galaxies of moderate redshift $\left(c z<5000 \mathrm{~km} \mathrm{~s}^{-1}\right)$ can be used to measure the Hubble constant provided they lie at large angular distances from the direction defined by the microwave background dipole.

6 Discussion

Since there is very little overlap in luminosity and velocity dispersion between giant $\mathrm{H}_{\text {II }}$ regions and $\mathrm{H}_{\text {II }}$ galaxies, we must worry about possible systematic differences between the two classes of objects that could bias our distance estimates towards lower values. There are two possible (related) effects that must be considered: zero point errors and curvature of the $[\log L(\mathrm{H} \beta), \log \sigma]$ relation. An underestimate of the zero point calibration may arise if many Hif galaxies consist of more than one giant $\mathrm{H}_{\text {II }}$ region superimposed along the line of sight. In fact a surprisingly large fraction of Hin galaxies show complex morphology (Melnick 1987). This is illustrated in Plate 1,
where we show the echellogram of the double galaxy SCHG 1150-021 (Mich 462), and in Plate 2 where we reproduce a direct CCD image of this galaxy. The two components of this and most other double galaxies in the echelle sample are clearly resolved. In fact, in the case of SCHG $1150-0211$ both components are in the sample (Table 1). In other cases, the equivalent widths were too low or the second component too faint to be included in the present study. From deep high resolution CCD imagery and from long-slit spectroscopy we find no evidence for a significant incidence of unresolved multiple objects in our sample. Of course if all HiI galaxies consist of several components of the same radial velocity exactly superposed on the line of sight we would systematically underestimate their distances without finding any observational evidence of multiplicity! We conclude that, although at high redshifts this may be a serious difficulty, the influence of multiplicity in our present sample does not introduce serious systematic effects
Curvature of the $\log L(\mathrm{H} \beta)-\log M_{\mathrm{z}}$ relation is the second potentially serious problem we must worry about. The broadening of the emission lines may be affected by the gravity of the overall
 line broadening will be dominated by the gravity of the old stellar component. However, excluding the two galaxies with $\sigma>60 \mathrm{~km} \mathrm{~s}^{-1}$, where this effect is clearly present, the correlation
between $L(\mathrm{H} \beta), \sigma$ and O / H, for $\mathrm{H}_{\text {II }}$ galaxies has the same functional form and the same scatter as the correlation for giant Hir regions. This strongly suggests that any broadening of the lines by a source not related to the young stellar population must be small. In fact, by imposing the
 the young component is severely affected by the underlying stellar population. The functional

 limit the applicability of HII galaxies in cosmology to relatively small distances.
(i) The $\mathrm{H} \beta$ luminosities of $\mathrm{H}_{\text {II }}$ galaxies can be inferred with an accuracy comparable to the observational errors from the widths of their emission lines and their oxygen abundances.
Moreover, the correlation between $L(\mathrm{H} \beta), \sigma$ and O / H for Hir galaxies has the same functional

Acknowledgments
It is a pleasure to thank the mountain staff at La Silla, Las Campanas and Cerro Tololo for their friendly help during the many observing runs needed to complete the data for this paper. We also thank Jack Baldwin for his help with the echelle and with the reduction programs at the CTIO computing centre. We are grateful to Leon Lucy for advice on the maximum likelihood methods
 for his patience in teaching us how to deal with the devilish Malmquist bias. Of course, if we have done it wrong it is all his fault!
References
Aaronson, M., Huchra, J., Mould, J., Schechter, P. L. \& Tully, R. B., 1982. Astrophys. J., 258, 64.
Aaronson, M., Bothun, G., Mould, J., Huchra, J., Schommer, R. A. \& Cornell, M. E., 1986. Astrophys. J., 302,
536.
Bottinelli, L., Gouguenheim, L., Paturel, G. \& Teerikorpii, P., 1986. Astr. Astrophys., 156, 157.
Campbell, A. W., Terlevich, R. \& Melnick, J., 1986. Mon. Not. R. astr. Soc., 223, 811.
Campbell, A. W., Terlevich, R. \& Melnick, J., 1986. Mon. Not. R. astr. Soc., 223, 811.
Coppetti, M. V. F., Pastoriza, M. A. \& Dottori, H. A., 1986. Astr. Astrophys., 152, 427.
de Vaucouleurs, G. \& Peters, W. L. 1986. Astrophys. de Vaucouleurs, G. \& Peters, W. L., 1986. Astrophys. J., 303, 19.
Dressler, A., Faber, S. M., Burstein, D., Davies, R. L., Lynden-
Dressler, A., Faber, S. M., Burstein, D., Davies, R. L., Lynden-Bell, D., Terlevich, R. \& Wegner, G., 1987.
Astrophys. J., 313, L37.
Fairall, A. P., 1980. Mon. Not. R. astr. Soc., 191, 391. Giraud, E., 1987. Astr. Astrophys., 174, 23
Haro, G., 1956. Bull. Ton. Tac., 14, 2, 8.
Hazard, C., 1985. In: Star Forming Dwarf Galaxies and Related Objects, p. 456, eds Kunth, D., Thuan, T. X. \& Tran
Thanh Van, J., Frontières, Paris.
Lubin, P. M., Villela, T., Epstein, G. L. \& Smoot, G. F., 1985. Astrophys, J., 298, L1. Lubin, P. M., Villela, T., Epstein, G. L. \& Smoot, G. F., 1985. Astrophys. J., 298, L1.
Lynden-Bell, D., 1987. Q. Jl R. astr. Soc., 28, 187.
Markarian, B. E., Lipovetskii, V. A. \& Stepanian, D. A., 1981. Astrofizika, 17, 619. McAlpine, G. M. \& Williams, G. A., 1981. Astrophys. J. Suppl., 45, 113.
Melnick, J., 1987. In: Starbursts and Galaxy Evolution, p. 215, eds Thuan, T. X., Montmerle, T. \& Tran Thanh Van,
T., Frontières, Paris.
Melnick, J., Moles, M., Terlevich, R. \& Garcia-Pelayo, J. M., 1987. Mon. Not. R. astr. Soc., 226, 849 (Paper I). Pagel, B. J. E., Terlevich, R. \& Melnick, J., 1986. Publs astr. Soc. Pacif., 98, 1005.

[^0]:

[^1]: The rms scatter is $\delta \log L(\mathrm{H} \beta)=0.29$. For comparison, the slope of the $[L(\mathrm{H} \beta), \sigma]$ correlation for
 giant H II regions (Paper I) is 4.17 ± 0.47 with an rms scatter $\delta \log L(\mathrm{H} \beta)=0.22$. From Paper I we
 The rms scatter is $\delta \log L(\mathrm{H} \beta)=0.29$. For comparison, the slope of the $[L(\mathrm{H} \beta), \sigma]$ correlation for
 giant HiI regions (Paper I) is 4.17 ± 0.47 with an rms scatter $\delta \log L(\mathrm{H} \beta)=0.22$. From Paper I we The rms scatter is $\delta \log L(\mathrm{H} \beta)=0.29$. For com

[^2]: 5.1 THE HUBBLE CONSTANT

