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We present the results of a detailed analytical study of light scattering by a particle with high refractive index

m + iκ and low losses (m ≫ 1, 0 < κ ≪ 1) based on the exact Mie solution. We show that there is a dramatic

difference in the behavior of the electromagnetic field within the particle (inner problem) and outside it (outer

problem). With an increase in m at fixed values of the other parameters, the field within the particle asymptotically

converges to a periodic function of m. The electric and magnetic type Mie resonances of different orders overlap

substantially. It may lead to a giant concentration of the electromagnetic energy within the particle. At the same

time, we demonstrate that the solution for the outer problem makes it possible to present each partial scattered

wave as a sum of two partitions. One of them corresponds to the m-independent wave, scattered by a perfectly

reflecting particle and plays the role of a background, while the other is associated with the excitation of a

sharply m-dependent resonant Mie mode. The interference of the partitions brings about a typical asymmetric

Fano profile. The profile is obtained from the exact Mie solution by means of identical transformations without

any additional assumptions and/or fitting. It makes it possible to generalize rigorously the Fano theory to the

case of finite dissipation. At an increase in m the Fano resonances in the outer problem die out and the scattered

field converges to the universal, m-independent profile. The behavior of the resonances at a fixed m and varying

particle size parameter (x) is also discussed in detail. The similarities and differences of the two cases (fixed x,

varying m and fixed m, varying x) are disclosed. We also show that under certain very general conditions the

scattering cross section of a large lossy sphere cannot be smaller than half its geometric cross section, while its

absorption cross section cannot exceed three halves of the geometric one. Numerical estimates of most discussed

effects for a gallium phosphide particle irradiated by the second harmonic of a Nd:YAG laser are presented as

an example. In addition to purely academic interest, the obtained results may be employed to design new highly

nonlinear heterogenic nanostructures and other metamaterials.
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I. INTRODUCTION

Presently, the resonant light scattering by particles related

to excitation of different eigenmodes attracts a great deal

of attention of researchers all around the world [1–8].

In addition to purely academic interest, there is a broad

spectrum of applications of the phenomenon in physics,

chemistry, biology, medicine, data storage and processing,

telecommunications, micro- and nanotechnologies, etc.; see,

e.g., [9,10]. In particular, plenty of hopes were pinned on

the resonant excitation of localized and/or bulk plasmons in

metal nanoparticles [11]. Unfortunately, plasmonic resonances

in such nanoparticles are usually accompanied by rather

large dissipative losses, which in many cases diminish the

advantages of the resonances. For this reason recently the

frontier of the corresponding study has been shifted to light

scattering by dielectric particles with high refractive index

(HRI) m̂ = m + iκ, m ≫ 1 and low losses (κ ≪ 1) [12]. In

contrast to the plasmonic resonances, they exhibit the high-Q

Mie resonances of both electric and magnetic types [13–15],

which bring more opportunities for wider applications in
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sensing, spontaneous emission enhancement, unidirectional

scattering, etc.

Despite the fact that the exact Mie solution, describing

light scattering by a sphere with an arbitrary size and

material properties, has been known for more than 100 years

and the case of a sphere with HRI has been repeatedly

discussed in textbooks and monographs (see, e.g., [16,17]),

some important peculiarities of this problem have not been

disclosed yet. Meanwhile, the quantitative feature of HRI

brings about qualitatively new, unusual effects and paradoxes,

which merely do not exist at moderate values of the refractive

index [13,18,19].

The aim of this paper is to fill the gap in the understanding

of the light scattering by a HRI homogeneous particle.

Specifically, in contrast to the common belief that in this case

the field within the particle should be weak, we show that

the scattering may be accompanied by a giant concentration

of the electromagnetic field within the particle. We also reveal

the nature of the Fano resonances exhibited by partial scattered

waves and rigorously extend their description to a scatter with

dissipation. Though in what follows just the Mie solution for

a sphere is discussed, the results obtained may be readily

generalized to a cylinder and any other analytically tractable

case. The general discussion is illustrated by calculations

of the scattering of light with the wavelength 532 nm by
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a nanosphere made of gallium phosphate. These estimates

are typical for other widely used semiconductors (Si, Ge,

GaAs, etc.). We believe that in addition to the shedding a

light on the mentioned fundamental problem, our results may

be important for numerous applications, especially in the

design of new generations of highly nonlinear heterogenic

optical nanostructures and other metamaterials [20]. The paper

presented here is a revised and extended version of Ref. [21].

The paper is arranged as follows. In Sec. II the problem

formulation is presented. In Sec. III we consider general

properties of the Mie solution at the limit of high, purely

real m. In Sec. IV the line shapes and linewidths of partial

resonances for the scattered field and the field concentrated

within the particle are inspected. In Sec. V the generic nature

of the Fano resonances for partial modes of the scattered field

is disclosed, and the explicit expressions for the parameters of

the Fano profile are obtained from first principles by means of

identical transformations of the exact Mie solution. In Sec. VI

we show that in the nondissipative limit the entire set of the

infinite number of the cascades of the resonances possesses

a certain scaling and may be reduced to a universal set of

lines by simple scale transformations. In Sec. VII, effects of

finite dissipation are inspected. In Sec. VIII the resonances at

a fixed m and varying size parameter are discussed and the

manifestation of the resonances in a particle made of gallium

phosphide is presented as an example. In the Conclusions

section a brief summary of the obtained results is presented. In

the Appendix certain cumbersome but important calculations

are performed.

II. THE PROBLEM FORMULATION

It is well known that at the limit m → ∞ a small (relative

to the incident light wavelength) dielectric sphere scatters

light as a perfectly reflecting one “into which neither the

electric, nor the magnetic field penetrates” [16]. Then it

may be concluded that the electromagnetic field within the

scattering particle should vanish at m → ∞. Seemingly, the

conclusion is supported by the argument that a HRI implies

a high polarizability of the sphere. Then, from the point

of view of the polarizability by an external electric field at

m → ∞, a dielectric sphere becomes equivalent to a perfectly

conducting one [16], and the electric field induced within the

particle owing to its polarization by the incident light should

compensate the field inducing the polarization. That is to say,

the field within the particle should vanish.

In fact, the question is much more subtle, and the actual

situation is far from this simple picture. The point is that

the wavelength inside the particle vanishes at m → ∞.

Then, at large-enough m the wavelength within the particle

becomes smaller than the particle size, no matter how small

geometrically the particle is. In this case the incident wave

may resonantly excite in the particle the Mie electromagnetic

eigenmodes. Moreover, an unlimited growth in m results

in infinite cascades of these resonances; see below. The

interference of the resonant eigenmodes with the incident

wave and, what is most important, with each other gives rise

to dramatic changes in the aforementioned simple scattering

process. To reveal these changes is the goal of our study. To

this end the full Mie theory is employed.

We show that at m → ∞ the scattered field for the outer

problem does converge to the one for the sphere made of a

perfect electric conductor (PEC), no matter whether the sphere

is small or large. In contrast, though it sounds paradoxical,

the field within the particle does not have any limit at all.

Such a difference between the outer and inner problems is

related to the different line shapes of the Mie resonances in

the two problems. For the former an increase in m makes the

resonances less pronounced. For the latter in the nondissipative

limit the amplitude of the resonances increases with an increase

in m. In the case of a finite dissipation rate (regardless how

small it is), the growth of the amplitudes eventually saturates

and the resonance lines become periodic functions of m. In

both cases (with and without dissipation) the field within the

particle does not tend to any fixed limit at m → ∞.

It is important to stress that the resonance lines of different

orders and different origin (i.e., electric and magnetic) may

overlap substantially. Note that overlaps of resonances have

been extensively studied in optics. It is well known that they

may result in many interesting effects; see, e.g., [22,23]. Here

we discuss the overlap in connection with the problem in

question.

The mentioned peculiarities of the inner field in the vicinity

of the resonances may result in a giant concentration of the

electromagnetic energy inside the particle. At realistic values

of the refractive index, the proper selection of the particle

radius and/or the wavelength of the incident radiation the field

inside the particle may exceed the one in the incident wave by

several orders of magnitude. Such a huge field may give rise

to numerous nonlinear effects. For this reason the discussed

results may appear extremely important in the design and

fabrication of highly nonlinear nanostructures.

Regarding the outer problem, it is known that the scattering

coefficients in the one have the well-pronounced asymmetric

Fano resonance profiles. Recent publications of Rybin et al.

(Refs. [24–26]) should be mentioned in this context. Based on

the analysis of the exact Lorenz-Mie solution for a cylinder, the

authors of these publications have revealed that the resonant

Mie scattering can be presented through infinite cascades

of the Fano resonances caused by the interference between

the narrow-line resonant Mie scattering and the nonresonant

(background) scattering from the object. The analytical ex-

pressions for both the partitions have been obtained through

the Maxwell boundary conditions. The numerical fit of the

line shape, resulting from the exact solution in the vicinity

of the resonances, to the conventional Fano profile [27] has

allowed the authors of Refs. [24–26] to obtain the dependence

of the Fano asymmetry parameter q [27] on the ratio of the

radius of the cylinder R to the wavelength of the incident

light x = 2πR/λ (size parameter) in rather a broad range

of its variations. They also have shown that in the inspected

cases q(x) ∼ cot x. This dependence agrees with their previous

results for disordered photonic crystals [28], as well as with

the general expression for q in terms of the phase shift of the

background partition [29].

Nonetheless, despite the observation of the cascades of the

Fano resonances at light scattering by a particle, these authors

have not disclosed the physical nature of the background

partition. Regarding the results obtained by the numerical fit,

the great advantage of this procedure is the possibility to fit any
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curve with any set of the basic functions. However, precisely

because of that, based on the fitting solely, one can never

answer the question whether the studied profile is the Fano

profile indeed, or it is just fitted to that profile. It also remains

unclear how far beyond the inspected numerical domain the

obtained results could be extended; e.g., what happens with

the modes with the multipolarity higher than that examined by

the authors, etc.
For this reason, a self-consistent analytical examination of

the problem, connecting the parameters of the Fano profiles
with the fundamental parameters of the light scattering x and
m would be highly desirable. Such a study is produced in
the present paper. Specifically, we show that the Fano profile
may be obtained by identical transformations of the exact
Mie solution. As a result, the exact analytical expressions for
the parameters of the profile follow from this transformation
automatically. Regarding the background partition, we reveal
that it is just the corresponding partial wave scattered by a PEC
sphere with the same x. Another advantage of our approach is
the rigorous extension of the concept of the Fano resonances
to dissipative systems.

We should emphasize that the resonances discussed in
the present paper have nothing to do with the well-known
whispering gallery modes. These modes are associated with
the waves propagating along the surface of the particle,
confined there by “continuous total internal reflection” [30]
and cannot be excited by a plane incident wave. Closest to
the topic of our study is another well-known phenomenon: the
ripple structure in the spectrum at light scattering by droplets
with m ≈ 1.5 (see, e.g., [17,31,32]), with accidental ultrasharp
resonances [33] and related problems. The resonances we
discuss and the ripple structure have the same nature. However,
the large value of the refractive index makes the manifestation
of our resonances quite different from what is known for the
ripple structure. In addition, the specific characteristics of the
resonances examining in our paper usually are not discussed
in connection with the ripple structure.

Note also the very close effects discussed in Ref. [34]
for a magnetic particle. However, up to now materials with
large magnetic permeability at optical frequencies remain
hypothetical objects, while the ones with HRI may be easily
found among the common semiconductors; see below.

It is necessary to stress in this context that all the effects

discussed in the present paper occur to optically thick particles,

i.e., R should be about or larger than λ/m, where λ is the

wavelength of the incident light. Regarding R, from here and

in what follows it designates the radius of the sphere. The

important peculiarity of the HRI particles is that an optically

thick particle simultaneously may be geometrically small with

R ≪ λ; cf. [18].

Last but not least, the only thing we do below is a detailed

analysis of the well-known Mie solution at the range of high

refractive index of the scattering sphere. It would have been

nothing but a mathematical exercise if it did not reveal new

unusual features of the phenomenon. It did. Let us proceed

discussing these features in detail.

III. HIGH REFRACTIVE INDEX LIMIT

The subsequent analysis is based upon the exact Mie

solution describing light scattering by a spatially homogeneous

sphere with an arbitrary radius R and a given permittivity

ε. The case of a cylinder and core-shell structures may be

inspected in the same manner.

Since we are interested in the optical properties of a particle

with low dissipation, we first focus on a discussion of the

nondissipative limit, i.e., a purely real positive refractive index

m ≡
√

ε. The general case of a complex refractive index along

with the applicability condition for the nondissipative limit will

be produced later on.

According to the Mie solution, the scattered field is pre-

sented as an infinite series of partial multipolar contributions

(dipolar, quadrupolar, etc.) of the two types: the so-called

electric and magnetic modes. The modes differ in the radial

components of fields E and H. For the electric modes Hr = 0;

for magnetic modes Er = 0. For this reason the former and

the latter are often called transverse magnetic and transverse

electric waves, respectively [35]. For the sake of brevity

in what follows only the electric modes are discussed in

detail. The behaviors of the magnetic modes usually are alike.

Therefore, the corresponding discussion of these modes is

rather brief.

The key quantities of the Mie solution are the properly

normalized complex amplitudes of the field components. Two

of them, an and bn, are related to the scattered field outside

the particle. Two others, cn and dn, describe the internal

field within the particle. These coefficients should satisfy

the boundary conditions, following from the continuity of

the tangential components of the electric and magnetic fields

on the surface of the particle. The conditions are split into

two independent pairs for the electric (an, dn) and magnetic

(bn, cn) modes, respectively [36],

ξn(x)an + ψn(mx)dn = ψn(x), (3.1)

mξ ′
n(x)an + ψ ′

n(mx)dn = mψ ′
n(x), (3.2)

mξn(x)bn + ψn(mx)cn = mψn(x), (3.3)

ξ ′
n(x)bn + ψ ′

n(mx)cn = ψ ′
n(x). (3.4)

Here x = 2πR/λ is the size parameter for the sphere; ψn(z),

ξn(z) = ψn(z) − iχn(z), ψn(z) = zjn(z), and χn(z) = −zyn(z)

are the Riccati-Bessel functions; jn(z) and yn(x) stand for

the spherical Bessel functions [36]; ′ ≡ ∂/∂z designates

derivative relative to the entire argument. Integer n indicates

the multipolarity of the mode, so that n = 1, 2, . . . correspond

to the dipole mode, quadrupole mode, etc. It should be stressed

that functions ψn(z) and χn(z) are real for real z.

Solving Eqs. (3.1) and (3.2) with respect to an and dn, we

obtain [36]

an =
mψn(mx)ψ ′

n(x) − ψn(x)ψ ′
n(mx)

mψn(mx)ξ ′
n(x) − ξn(x)ψ ′

n(mx)
, (3.5)

dn =
im

mψn(mx)ξ ′
n(x) − ξn(x)ψ ′

n(mx)
, (3.6)

where the identity

ψn(x)ξ ′
n(x) − ψ ′

n(x)ξn(x) ≡ i, (3.7)
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following from the expression for the Wronskian of the

Riccati-Bessel functions (χnψ
′
n − ψnχ

′
n ≡ 1) [37], has been

employed.

The corresponding treatment of the magnetic modes yields

bn =
mψn(x)ψ ′

n(mx) − ψn(mx)ψ ′
n(x)

mξn(x)ψ ′
n(mx) − ψn(mx)ξ ′

n(x)
, (3.8)

cn = −
im

mξn(x)ψ ′
n(mx) − ψn(mx)ξ ′

n(x)
. (3.9)

Note that, according to Eqs. (3.6), (3.7), and (3.9),

dn ≡ cn ≡ 1 at m = 1, i.e., when the optical properties of the

particle are identical to those of the embedding medium. Thus,

|dn| and |cn| may be regarded as the enhancement parameters

for the field within the particle.

Equations (3.5), (3.6), (3.8), and (3.9) may be written in the

equivalent, identical form,

an =
F (a)

n

F
(a)
n + iG

(a)
n

, dn =
i m

F
(a)
n + iG

(a)
n

, (3.10)

bn =
F (b)

n

F
(b)
n + iG

(b)
n

, cn = −
i m

F
(b)
n + iG

(b)
n

, (3.11)

with

F (a)
n = mψ ′

n(x)ψn(mx) − ψn(x)ψ ′
n(mx), (3.12)

G(a)
n = −mχ ′

n(x)ψn(mx) + χn(x)ψ ′
n(mx), (3.13)

F (b)
n = mψn(x)ψ ′

n(mx) − ψn(mx)ψ ′
n(x), (3.14)

G(b)
n = −mχn(x)ψ ′

n(mx) + χ ′
n(x)ψn(mx). (3.15)

Let us focus on the electric modes. At the limit of large

refractive index we can keep just the first terms in Eqs. (3.12)

and (3.13):

F (a)
n −−→

m≫1
mψ ′

n(x)ψn(mx), (3.16)

G(a)
n −−→

m≫1
−mχ ′

n(x)ψn(mx). (3.17)

Equations (3.16) and (3.17) lead to two important conclusions.

First, the internal coefficients dn in this limit converge to

dn −−→
m≫1

d (lim)
n =

i

ψn(mx)ξ ′
n(x)

, (3.18)

i.e., remain m dependent.

Second, in contrast to dn, the partial scattering coefficients

an converge to the m-independent form, valid for a PEC sphere,

an −−→
m≫1

a(PEC)
n =

F (a,PEC)
n

F
(a,PEC)
n + iG

(a,PEC)
n

=
ψ ′

n(x)

ξ ′
n(x)

, (3.19)

with

F (a,PEC)
n = ψ ′

n(x), G(a,PEC)
n = −χ ′

n(x). (3.20)

It is relevant to mention that while expressions (3.18)

and (3.19) satisfy boundary condition (3.1) identically, bound-

ary condition (3.2) for these expressions is satisfied only

asymptotically at m → ∞.

Expression (3.19) can be also obtained from the boundary

condition [Eq. (3.2)] if we suppose there that dn = 0, as it

should for a PEC, or by direct solution of the light-scattering

problem for PEC.

We have to emphasize here that the problem of light

scattering by a PEC is a bit tricky. The point is that the

field inside the PEC is zero identically. Then, instead of

the four independent scattering coefficients — the two for

the scattered field outside the particle and the two for the

field within the particle — only the former two remain. The

reduction of the independent constants of integration of the

Maxwell equations requires the corresponding reduction of

the boundary conditions. For PEC the boundary conditions

stipulate vanishing of the tangential component of the electric

field at the surface of the sphere [38]. Eventually, they result in

the expressions which may be obtained from Eqs. (3.1)–(3.4)

if we drop there Eqs. (3.1), (3.4) and set dn = cn = 0 in

remaining Eqs. (3.2) and (3.3).

Another type of perfect reflection corresponds to the so-

called perfect magnetic conductor (PMC). In this case the

boundary conditions require the vanishing of the tangential

components of the magnetic field [38]. For PMC the cor-

responding reduction of Eqs. (3.1)–(3.4) keeps Eqs. (3.1)

and (3.4) supplemented by the same conditions dn = cn = 0,

while Eqs. (3.2) and (3.3) should be removed. The case of PMC

is achieved when μ → ∞, where μ is the particle magnetic

permeability. Since at the optical frequencies μ = 1 the case

of PMC has nothing to do with the problem in question and is

not discussed here.

It is interesting to note also that, while limit Eqs. (3.19)

and (3.20) corresponds to a perfect electric conductor, for

the problem under consideration a sphere is supposed to be

made of a perfect insulator with zero conductivity (Re ε ≫ 1,

Im ε = 0). The coincidence of the two limits occurs owing to

the fact that, despite the vanishing of the conduction current

in our case, the displacement current plays its role. If the field

E inside the particle does not vanish, the displacement current

diverges at Re ε → ∞. To avoid the divergence the electric

field inside the particle must be set equal to zero.

It should be stressed that limit (3.19) is not valid in the

vicinity of the points, where ψn(mx) = 0 owing to departures

of F (a)
n and G(a)

n from asymptotic expressions (3.16) and (3.17)

in these regions, no matter how large m is. On the other hand,

exactly at these points |d (lim)
n | → ∞; see Eq. (3.18). Regarding

|dn|, they undergo a sharp growth but remain finite due to the

mentioned properties of F (a)
n and G(a)

n ; see below for more

details. Such a behavior of dn allows us to conclude that in a

HRI dielectric sphere at large-enough m in the vicinity of the

points defined by the condition

ψn(mx) = 0 (3.21)

the resonant excitation of the electric eigenmodes occurs.

This resonance condition can be further simplified in the so-

called Fraunhofer regime, when the Riccati-Bessel functions

are reduced to simple trigonometrical ones. Specifically, in this

case

ψn(z) ∼= sin

(

z −
nπ

2

)

, (3.22)
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so that expression ψn(mx) = 0 reads

sin

(

mx −
nπ

2

)

= 0. (3.23)

Strictly speaking, the applicability condition for the Fraun-

hofer regime is z ≫ n2. However, the Fraunhofer asymptotics

still provide an acceptable approximation of ψn(z) and χn(z)

for z as small as z ≈ 2n [39]. Therefore, in the present study

the range of validity of the Fraunhofer regime, as a rule, is

adopted as z � 2n.

An analogous treatment of the magnetic coefficients bn

(for the outer problem) and cn (for inner) brings about the

expressions

F (b)
n −−→

m≫1
mψn(x)ψ ′

n(mx), (3.24)

G(b)
n −−→

m≫1
−mχn(x)ψ ′

n(mx), (3.25)

bn −−→
m≫1

b(PEC)
n =

F (b,PEC)
n

F
(b,PMS)
n + iG

(b,PEC)
n

=
ψn(x)

ξn(x)
, (3.26)

F (b,PEC)
n = ψn(x), G(b,PEC)

n = −χn(x), (3.27)

cn −−→
m≫1

c(lim)
n = −

i

ψ ′
n(mx)ξn(x)

, (3.28)

with the condition for the magnetic modes resonances

ψ ′
n(mx) = 0, (3.29)

leading in the Fraunhofer regime to the equation

ψ ′
n(mx) ∼= cos

(

mx −
nπ

2

)

= 0. (3.30)

It is interesting to discuss Eqs. (3.21) and (3.29) from the

viewpoint of the boundary conditions imposed on fields E and

H of a resonant mode on the surface of the sphere from inside,

i.e., within the particle. To avoid misunderstanding, we have

to remind the reader that boundary conditions (3.1)–(3.4) are

derived from the primary boundary conditions which stipulate

continuity of the tangential components of E and H on the

surface of the sphere. These primary conditions are identical

to Eqs. (3.1)–(3.4), but look different [36]. We do not present

them here.

Inspection of the primary boundary conditions for the

fields shows that in the case of the electric mode resonance

[Eq. (3.21)] the tangential components of field H for the

resonant electric mode vanish on the surface of the sphere.

Since the radial components of H for any electric mode by

definition is zero, it means that in this case the entire field H for

the resonant electric mode vanishes on the surface. Regarding

the electric field of this mode, under condition (3.21) its radial

component vanishes, so the field becomes tangential to the

surface.

In the case of the magnetic mode resonance [Eq. (3.29)]

only tangential components of field H for the resonant

magnetic mode vanish. Other components of E and H do not

exhibit any peculiarities at this type of resonance.

An unexpected conclusion, following from these features

is that at both types of the resonances for the field within the

sphere its surface acts as a PMC mirror, forcing the tangential

component of H to vanish on the boundary.

Resonance conditions (3.23) and (3.30) may be rewritten

in a unified form:

m(res,E)
n,p

∼= (n + 2p)
π

2x
, (3.31)

m(res,H )
n,p

∼= (n + 2p + 1)
π

2x
, (3.32)

where p is a non-negative integer number. The meaning of

resonance conditions (3.31) and (3.32) becomes absolutely

clear if we recall that x = 2πR/λ and λ/m is the wavelength

inside the scattering particle. Then, Eqs. (3.31) and (3.32) may

be presented as

λ

m
(res,E)
n,p

(

n

2
+ p

)

∼= 2R,

λ

m
(res,H )
n,p

(

n + 1

2
+ p

)

∼= 2R;

i.e., the resonances occur when an integer number of the half-

waves equals the diameter of the sphere (cf. [14]).

These resonance conditions lead to a number of interesting

conclusions; cf. [17]. First, each multipole has, in general, an

infinite number of resonances, associated with p = 0,1,2, . . ..

Actually, this feature is nothing but a direct consequence

of the well-known oscillatory nature of the Riccati-Bessel

functions. Second, owing to the additional degree of freedom

related to variations of p, there is the multiple degeneracy

of the resonances. Specifically, the resonances with different

multipolarity n occur at one and the same value of m, provided

that for these resonances the variation of n is compensated by

the corresponding variation of p; i.e., n1 + 2p1 = n2 + 2p2

for two electric resonant modes.

Next, at a given n the points of the nth electric resonances

correspond to those of the (n + 1)th magnetic and vice versa.

Note also that at a fixed n the points of resonances of one type

(i.e., either electric, or magnetic) are situated in the m axis just

in the middle of the spacing between the points of the other

type, so that the maxima for the electric modes correspond

to the minima of magnetic and the other way around; see

Eqs. (3.31) and (3.32).

In Fig. 1 we plot the dependence of the first two electric

d1,2 and magnetic c1,2 internal coefficients vs size parameter

x and refractive index m, calculated according to the exact

Mie solution. In this figure we also plot asymptotic resonance

conditions (3.31) and (3.32). The agreement between the

positions of the resonances according to the exact solution

and approximate conditions (3.31) and (3.32), is surprisingly

good.

It should be stressed, however, that the obtained results do

not imply a strong overlap of the resonances yet. The point is

that the right-hand side of Eq. (3.22) and the corresponding

expression in Eq. (3.30) are just the first terms of the asymptotic

expansions of the Riccati-Bessel functions in powers of small

1/(mx). Higher-order terms dropped in these equations bring

about the mismatches between the points of the resonances for

different modes. To claim the strong overlap of the resonances,

we must make sure that the mismatches are smaller than the

corresponding linewidths. Let us proceed to a discussion of

these issues.
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FIG. 1. Dependence of electric d1,2 (a),(c) and magnetic c1,2

(b),(d) internal coefficients vs size parameter x and refractive index m

calculated according to the exact Mie solution. Dashed lines indicate

the asymptotic resonance conditions in limit m → ∞; see Eqs. (3.31)

and (3.32) at p = 0, 1, 2, 3. Despite that the employed values of m

are not so large, the agreement between the dashed lines and the

positions of the actual resonances is very good.

IV. LINEWIDTH AND LINE SHAPE

To understand the meaning of the existence of the limit

at m → ∞ for scattering coefficients an and bn, and its

absence for internal ones, dn and cn, we have to inspect

Eqs. (3.12)–(3.15) more carefully.

First of all, note that direct calculations of an based upon

Eqs. (3.10), (3.16), and (3.17) at the points of the resonances

defined by Eq. (3.21) bring about the uncertainty of the

type 0/0. To resolve the line shape, let us consider a small

departure of the refractive index from a certain resonant value:

δm = m − m(res), where m(res) satisfies Eq. (3.21). Here and

in what follows, for simplicity of notation, we use m(res) for

m(res,E)
n,p . Then, bearing in mind that in the vicinity of the

resonance ψn[(m(res) + δm)x] ∼= ψ ′
n(m(res)x)xδm, we readily

obtain the following formulas for F (a)
n , G(a)

n :

F (a)
n

∼= ψ ′
n(m(res)x){m(res)ψ ′

n(x)xδm − ψn(x)}, (4.1)

G(a)
n

∼= −ψ ′
n(m(res)x){m(res)χ ′

n(x)xδm − χn(x)}. (4.2)

It is seen from Eqs. (3.10), (4.1), and (4.2) that scattering

coefficient reaches its maximum (the points of the constructive

interference), an = 1, at

δm
(a)
G

∼=
1

xm(res)

χn(x)

χ ′
n(x)

(4.3)

and minimal value, an = 0 (the points of the destructive

interference), at

δm
(a)
F

∼=
1

xm(res)

ψn(x)

ψ ′
n(x)

. (4.4)

−1.0 −0.5 0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

1.0

ζ

|a
1

2

x=1

FIG. 2. Contraction of the resonance lines for |a1|2 with an

increase in m; x = 1; ζ = m − m(res). Here m(res) = 10.75 (solid

line) and m(res) = 111.5 (dashed line). A yellow horizontal line

corresponds to a
(PEC)
1 .

The corresponding expressions for bn read

F (b)
n

∼= m(res)ψn(x)ψ ′′
n (m(res)x)xδm − ψ ′

n(x)ψn(m(res)x),

(4.5)

G(b)
n

∼= −m(res)χn(x)ψ ′′
n (m(res)x)xδm + χ ′

n(x)ψn(m(res)x),

(4.6)

δm
(b)
G

∼=
1

xm(res)

χ ′
n(x)ψn(m(res)x)

χn(x)ψ ′′
n (m(res)x)

, (4.7)

δm
(b)
F

∼=
1

xm(res)

ψ ′
n(x)ψn(m(res)x)

ψn(x)ψ ′′
n (m(res)x)

. (4.8)

where now m(res) stands for m(res,H )
n,p , satisfying Eq. (3.29).

Note that ψn(m(res)x)/ψ ′′
n (m(res)x) ∼= −1 at m(res)x > 2n; see

Eqs. (3.22) and (3.23).

The properties of the resonance lines discussed in the

previous paragraphs are typical for the Fano profiles [27].

However, presently we are interested in the linewidth of these

profiles solely. A detailed discussion of the line shape of the

Fano resonances for the problem in question is produced in

Sec. V.

The obtained results explain the mentioned convergence

of an to the m-independent form at m → ∞: At an increase

in m the width of the resonance line |δmG − δmF | contracts

as 1/xm(res), while the amplitude of the resonances and

spacing between two adjacent maxima (minima), both remain

m independent. Asymptotically, at m → ∞ the maxima and

minima merge with each other, and the resonance profile

vanishes. An example of such a process is shown in Fig. 2.

Now let us inspect coefficients dn. As it follows from

Eqs. (3.2) and (3.19)

an = a(PEC)
n −

ψ ′
n(mx)

mξ ′
n(x)

dn. (4.9)
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Then, it is convenient to introduce the normalized coefficient

d̃n =
ψ ′

n(mx)

mξ ′
n(x)

dn ≡
i

m
ψn(mx)

ψ ′
n(mx)

− ξn(x)

ξ ′
n(x)

1

ξ ′2
n (x)

. (4.10)

Next, utilizing the identity
∣

∣

∣

∣

ξ ′2
n (x)Im

[

ξn(x)

ξ ′
n(x)

]
∣

∣

∣

∣

≡ 1 (4.11)

(see Appendix), its modulus may be presented as

|d̃n|2 =
1

[

m
ψn(mx)

ψ ′
n(mx)

− A
(d)
n (x)

]2
B

(d)2
n (x) + 1

, (4.12)

where

A(d)
n (x) = Re

[

ξn(x)

ξn(x)′

]

; B(d)
n (x) =

∣

∣ξ ′2
n (x)

∣

∣ ≡
∣

∣ξ ′
n(x)

∣

∣

2
.

(4.13)

The conclusion, which immediately follows from

Eq. (4.13), is that the resonant values of |d̃n|2 equal unity

and the resonances are achieved at the values of m, satisfying

the equation

m
ψn(mx)

ψ ′
n(mx)

= A(d)
n (x). (4.14)

We should emphasize that the resonance condition stipu-

lated by Eq. (4.14) is an exact result, valid at any m and x.

To obtain the line shape in the proximity of m = m(res), with

m(res) defined by Eq. (3.21), as usual, we have to expand the

argument of ψn(mx) in powers of a small δm = m − m(res), so

that ψn(mx) ∼= ψ ′
n(m(res)x)xδm. Then the general expression,

Eq. (4.12), is reduced to the following simple form:

|d̃n|2 =
1

[

m(res)xδm − A
(d)
n (x)

]2
B

(d)2
n (x) + 1

. (4.15)

It is a typical Lorentzian profile with Max{|d̃n|2} = 1 at

δm
(res)

|dn|2 =
A(d)

n (x)

m(res)x
(4.16)

and the half-maximum linewidth (FWHM)

γ|dn|2 =
2

m(res)xB
(d)
n (x)

. (4.17)

Note that Eq. (4.16) gives a mismatch of the order of

1/m between the positions of the resonance points defined

according to Eq. (3.21) and the ones corresponding to the

actual maxima of |dn|2.

It seems we have encountered a paradox. On one side, we

have obtained that, in contrast to the outer problem, the inner

one does not have a definite limit at m → ∞; see Eq. (3.18).

On the other side, d̃n = a(PEC)
n − an; see Eqs. (4.9)

and (4.10). This equality means that since an −−−→
m→∞

a(PEC)
n ,

coefficient d̃n should vanish in this limit. The latter reasoning

agrees well with that following from the just obtained for d̃n

line shape. Indeed, Max{|d̃n|2} always equals unity, while the

linewidth for |d̃n|2 vanishes at m → ∞ as 1/m(res) and the

value of |d̃n|2 at off-resonance regions tends to zero as 1/m2;

see Eq. (4.12).

Then, at m → ∞ the resonance lines become infinitesi-

mally narrow and the entire profile |d̃n(m)|2 vanishes. Finally,

because the difference between d̃n and dn is just in the

multiplicative scaling factor the same conclusion, seemingly,

may be applied to the profile |dn(m)|2.

However, one should be careful here, because the scaling

factor itself depends on m. Since max |d̃n|2 = 1, the maximal

value of |dn|2 increases as m(res) 2; see Eq. (4.10). It means that

the total area under a given resonance line increases with an

increase in m(res) linearly in m(res), see Eq. (4.17), making (in

contrast to an) the resonances more pronounced.

Nevertheless, it does not mean the absence of any univer-

sality in the profile |dn(m)|2 at m → ∞. Let us consider a part

of the profile from its bottom to any fixed value D2
n. According

to Eq. (4.10),

dn =
mξ ′

n(x)

ψ ′
n(mx)

d̃n ≡
m[ψ ′

n(x) − iχ ′
n(x)]

ψ ′
n(mx)

d̃n. (4.18)

Then, bearing in mind that in the Fraunhofer regime for

the discussed resonances |ψ ′
n(m(res)x)| = 1 [see Eqs. (3.22)

and (3.31)], the width of the line at this distance from the

bottom (γD) is given by the difference |δm1 − δm2|, where

δm1,2 are the two roots of the equation

m(res)2
[

ψ ′2
n (x) + χ ′2

n (x)
]

[

m(res)xδm − A
(d)
n (x)

]2
B

(d)2
n (x) + 1

= D2. (4.19)

Trivial calculations show that at

D2 ≪ m(res)2[ψ ′2
n (x) + χ ′2

n (x)] the quantity γD converges to

the following m-independent expression:

γD
∼=

2
√

ψ ′2
n (x) + χ ′2

n (x)

DB(x)x
. (4.20)

This asymptotic is valid for any D satisfying the aforemen-

tioned constraint. It means that at large m the shape of the

bottom part of the resonance line becomes universal. An

example of this universality for n = 1 and x = 1 is shown

in Fig. 3.

Thus, instead of the vanishing (as it should be for a PEC)

at m → ∞, the resonance lines for coefficient |dn|2 at the

bottom converge to a certain universal form, while the maximal

value of |dn|2 at the peak of the resonance increases as m(res) 2

and the half-maximum line width contracts as 1/m(res). The

behavior of cn is quite analogous to that of dn. The expressions

describing this behavior are presented below for reference:

bn = b(PEC)
n − c̃n, c̃n ≡

ψn(mx)

mξn(x)
cn, (4.21)

|c̃n|2 =
1

[

m
ψ ′

n(mx)

ψn(mx)
− A

(c)
n (x)

]2
B

(c)2
n (x) + 1

≈
1

[ψ ′′
n (m(res)x)

ψn(m(res)x)
m(res)xδm − A

(c)
n (x)

]2
B

(c)2
n (x) + 1

,

(4.22)

δm
(res)

|cn|2 =
A(c)

n (x)ψn(m(res)x)

m(res)xψ ′′
n (m(res)x)

, (4.23)

γ|cn|2 =
2

m(res)xB
(c)
n (x)

∣

∣

∣

∣

ψn(m(res)x)

ψ ′′
n (m(res)x)

∣

∣

∣

∣

. (4.24)
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FIG. 3. Independence of the bottom parts of the resonance lines

from m(res) for profiles |c1|2 and |d1|2 at x = 1 and large values

of m(res); ζ = m − m(res). Here profiles |c1(ζ )|2 and |d1(ζ )|2 are

presented at m(res) = 14.1019 . . . (thick blue solid line), m(res) =
1013.1631 . . . (thick yellow dashed line) and m(res) = 15.5792 . . .

(red solid line), m(res) = 1014.7325 . . . (black dashed line), respec-

tively. Three orders of magnitude increase in m(res), practically, does

not affect the shape of the lines. Note the perfect coincidence of the

corresponding lines, even in the off-resonance regions, despite that

Eq. (4.20) is valid only in the vicinity of the points of the resonances

and, generally speaking, cannot be applied to describe the line shape

far from them.

Here m(res) is defined according to Eq. (3.29),

A(c)
n (x) = Re

[

ξ ′
n(x)

ξn(x)

]

; B(c)
n (x) =

∣

∣ξ 2
n (x)

∣

∣ ≡ |ξn(x)|2,

(4.25)

and to obtain Eq. (4.22) the identity

∣

∣

∣

∣

ξ 2
n (x)Im

[

ξ ′
n(x)

ξn(x)

]
∣

∣

∣

∣

≡ 1,

whose proof is completely analogous to that for Eq. (4.11),

has been employed.

Let us make numerical estimates. At x = 1.3 and m ≈ 3–5

(typical values for a number of semiconductors in the visible

and IR diapasons) the resonant |d1|(res) ≈ 3.01 (m(res) ≈ 3.33);

|d2|(res) ≈11.78 (m(res) ≈4.27); |d3|(res) ≈93.59 (m(res) ≈5.30).

It gives an estimate for the range of the growth of the

electric field inside the particle with respect to the incident

wave. The corresponding values for the volume density of the

electromagnetic energy will be the squire of these values.

To conclude this section, a certain important remark should

be made. Though in a formal theoretical study it is convenient

to inspect the resonances at varying m and fixed values of the

other problem parameters, such an approach seems completely

irrelevant from the physical viewpoint. Indeed, while in an

actual experiment it is rather easy to change the value of the

size parameter, x just varying the wavelength of the incident

light, it is very difficult to change m. The refractive index is a

fixed property of a given material. To change it, either materials

with strong dispersion should be employed, or one has to have

a set of particles with the same size made of different materials

with their refractive indices changing in small steps. Both the

options look unrealistic.

Thus, it seems our study is meaningless. Fortunately, this

is not the case. The point is that the actual parameter of the

theory is the product, ρ = mx. The problem in question cor-

responds to ρ ≫ 1, while the spacing between two sequential

resonances δρ = π ; see Eqs. (3.31) and (3.32). Now, if instead

of variations of m at a fixed x, we have variations of x at a fixed

m to cover the distance between the two sequential resonances

we have to consider departures of x from a resonant value

x(res) [defined by the same conditions, Eqs. (3.21) and (3.29)]

of the order δx ∼ 1/m ≪ 1. It means that in slowly varying

functions of x solely, namely in ξn(x), ψn(x), and χn(x),

we may neglect these small variations of x, replacing these

functions by their values at x = x(res). The only remaining

step is to replace δρ = xδm by δρ = mδx. Then, all the

expressions obtained in this section and in what follows are

readily recalculated for the case of varying x and fixed m. More

detailed discussion of this issue is presented in Sec. VIII.

V. FANO RESONANCES IN PARTIAL-WAVE SCATTERING

Up to now we have inspected the modula of the scattering

coefficients. Let us focus on their phases. Following the

approach, described in monograph [17], it makes sense to

introduce a real angle �(a)
n according to the expression

tan �(a)
n ≡

F (a)
n

G
(a)
n

. (5.1)

In this case an can be written in the following form:

an =
tan �(a)

n

tan �
(a)
n + i

=
i

2
(1 − e2i�

(a)
n ). (5.2)

We recall that an may be presented as a sum of two terms:

a(PEC)
n and d̃n = dnψ

′
n(mx)/[mξ ′

n(x)]; see Eq. (4.9). Here the

first term does not depend on m, while the second is a sharp

function of m. Then, it is convenient to split �(a)
n into two parts

in the same manner, namely to present it as

�(a)
n ≡ �(a,PEC)

n + �(a,res)
n , (5.3)

where �(a,PEC)
n is defined for a PEC quite analogous to the

definition of the just introduced �(a)
n for a particle with

arbitrary m, i.e.,

tan �(a,PEC)
n ≡

F (a,PEC)
n

G
(a,PEC)
n

= −
ψ ′

n(x)

χ ′
n(x)

; (5.4)

see Eq. (3.20). Next, the quantity �(a,res)
n is defined by the

identity

tan �(a)
n ≡ tan

(

�(a,res)
n + �(a,PEC)

n

)

=
tan �(a,res)

n + tan �(a,PEC)
n

1 − tan �
(a,res)
n tan �

(a,PEC)
n

. (5.5)

Taking into account Eqs. (3.7), (3.10), and (5.4), after some

algebra it is possible to show that to satisfy Eq. (5.5) identically,

the tangent of �(a,res)
n must be

tan �(a,res)
n = −

ψ ′
n(mx)

F
(a,PEC)
n F

(a)
n + G

(a,PEC)
n G

(a)
n

. (5.6)
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If now we introduce the notations

ǫ(a)
n ≡ − cot �(a,res)

n , q(a)
n ≡ − cot �(a,PEC)

n =
χ ′

n(x)

ψ ′
n(x)

,

(5.7)

expression Eq. (5.2) for an may be rewritten as follows:

an =
ǫ(a)
n + q(a)

n

ǫ
(a)
n + q

(a)
n − i

(

ǫ
(a)
n q

(a)
n − 1

)
. (5.8)

Then,

|an|2 =
(

ǫ(a)
n + q(a)

n

)2

(

1 + q
(a)2
n

)(

1 + ǫ
(a)2
n

)
. (5.9)

Equation (5.9) is the conventional Fano profile, normalized to

its maximal value [27,40].

A similar treatment of bn gives rise to the expression for

tan �(b,res)
n

tan �(b,res)
n =

ψn(mx)

F
(b,PEC)
n F

(b)
n + G

(b,PEC)
n G

(b)
n

. (5.10)

The rest is the same as that for an. Specifically, introducing

ǫ(b)
n ≡ − cot �(b,res)

n , q(b)
n ≡ − cot �(b,PEC)

n =
χn(x)

ψn(x)
.

(5.11)

we arrive for bn and |bn|2 at the same type of the profiles given

by Eqs. (5.8) and (5.9) with replacement a → b.

Once again we encounter a discrepancy, this time with our

own results. It seems that by means of just identical trans-

formations we have proven that the profiles of |an|2 and |bn|2
are of the Fano type always. On the other hand, it has been

shown in our previous publication [41] that, at least in the case

of small particles (mx ≪ 1), the Fano resonances in partial

scattered coefficients cannot happen.

Naturally, the discrepancy, as usual, is a misapprehension.

The fact is that the condition mx ≪ 1 does not allow m to be

large enough to reach the point of the first Fano resonance.

Therefore, to prove that the profile [Eq. (5.9)] does

correspond to the Fano line shape, we have to show that

(i) in the specified range of variations of m, ǫ(a)
n (m) reaches

the values corresponding to the constructive (ǫ(a)
n = 1/q(a)

n )

and destructive (ǫ(a)
n = −q(a)

n ) conditions (i.e., the problem

in question may exhibit the Fano resonances, indeed), and

(ii) for a given Fano profile in the vicinity of both the

constructive and destructive interferences ǫ is one and the same

linear function of m. Regarding the former, the manifestation

of the constructive and destructive resonances in the problem

has been already shown in the previous sections of this

paper and in other publications [18,24,26]. As for the latter,

employing Eqs. (4.1) and (4.2), after simple calculations, it is

possible to show that

ǫ(a)
n = m(res)

[

ψ ′2
n (x) + χ ′2

n (x)
]

xδm

−ψn(x)ψ ′
n(x) − χn(x)χ ′

n(x). (5.12)

The corresponding expression for ǫ(b)
n reads

ǫ(b)
n = −m(res) ψ

′′
n (m(res)x)

ψn(m(res)x)

[

ψ2
n (x) + χ2

n (x)
]

xδm

+ψn(x)ψ ′
n(x) + χn(x)χ ′

n(x). (5.13)

We remind the reader that for the magnetic modes m(res)

is defined by condition ψ ′
n(m(res)x) [see Eq. (3.29)]; i.e., it

corresponds to local extrema of ψ ′
n. Now recall that ψ ′

n(z)

is a function oscillating about zero. Then its local extrema

are either positive maxima or negative minima. In both cases

ratio ψ ′′
n (m(res)x)/ψn(m(res)x) is a negative quantity. Thus, the

overall sign of the δm prefactor in Eq. (5.13) is plus.

In the Fraunhofer regime, i.e., at x > 2n, Eqs. (5.12)

and (5.13) are simplified dramatically, namely,

ǫ(a)
n

∼= ǫ(b)
n

∼= m(res)xδm. (5.14)

Here the asymptotic

χn(x) ∼= cos

(

x −
nπ

2

)

(5.15)

for χn(x) at x � 2n [42] has been used.

Equations (5.12) and (5.13) imply that in the vicinity of the

resonances ǫn is a linear function of δm, indeed. Regarding the

validity of this approximation up to the points of the extrema

of the profile, it follows from Eqs. (4.3), (4.4), (4.7), and (4.8).

Note that Eqs. (5.12) and (5.13) yield the characteristic scale

for the Fano profiles in δm of the order of 1/m, which agrees

with the previous consideration of the linewidths; see Sec. IV.

It is worth mentioning that the accuracy of approxima-

tions (5.12) and (5.13) is surprisingly good. As an example, a

comparison of Eqs. (5.7), (5.9), and (5.12) with the exact Mie

solution for |a1|2 at x = 1 in the vicinity of m = 4.5 is shown

in Fig. 4.

It is important that the asymmetry parameter q(a,b)
n in this

case is expressed by simple formulas, Eqs. (5.7) and (5.11),

in terms of ψn(x) and χn(x); i.e., it depends just on the

multipolarity of the scattered partial wave n, radius of

the scattering sphere, and wavelength of the incident light

(we remind that x ≡ 2πR/λ) and does not depend on the

reflective index of the particle m.

Note also that the expressions for q(a,b)
n may be obtained

in a less formal way, too. According to the preceding analysis

in the off-resonance regions an
∼= a(PEC) and bn

∼= b(PEC). In

3.5 4.0 4.5 5.0 5.5

0.0

0.2

0.4

0.6

0.8

1.0

m

|a
1

2

x=1

FIG. 4. Comparison of profile |a1(m)|2, given by the exact Mie

solution (blue solid line), with that produced by Eqs. (5.7), (5.9);

Eq. (5.12) (black dashed line), x = 1. The yellow horizontal line

corresponds to a
(PEC)
1 .
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) ,
q

1( b
)

FIG. 5. Dependence of the asymmetry parameter q on the size

parameter x: q
(a)
1 (x) (solid blue line) and q

(b)
1 (x) (dashed red line),

according to Eqs. (5.7) and (5.7).

terms of the Fano resonances, these regions correspond to

the limit ǫ → ∞, when the Fano profile tends to 1/(1 + q2);

see Eq. (5.9). Equalizing a(PEC) to 1/(1 + q(a)2) and b(PEC) to

1/(1 + q(b)2), we again arrive at Eqs. (5.7) and (5.11) for q(a,b)
n .

Let us discuss the dependence q(a,b)
n (x) in detail. At x � 2n

we just can take the first term of the asymptotical expansions

of the Riccati-Bessel functions. Then

q(a)
n

∼= − tan

(

x −
nπ

2

)

, q(b)
n

∼= cot

(

x −
nπ

2

)

; (5.16)

see Eqs. (3.22) and (5.15). Note that Eq. (5.16) yields

q(a)
n = q

(b)
n±1 = q

(a)
n+2.

In the opposite limit of small x, utilizing the known

asymptotic expressions for the Bessel functions at a small

value of the argument, we arrive at the following expressions

for q(a,b)
n at x ≪ 1,

q(a)
n

∼= −
n

n + 1

21+2nŴ
(

n + 1
2

)

Ŵ
(

n + 3
2

)

πx2n+1
, (5.17)

q(b)
n

∼=
21+2nŴ

(

n + 1
2

)

Ŵ
(

n + 3
2

)

πx2n+1
, (5.18)

where Ŵ(z) stands for the Gamma function. As an example,

the dependencies q
(a,b)
1 (x) in domain 0 � x � 10 are shown

in Fig. 5.

Both expressions, Eqs. (5.17) and (5.18), diverge as 1/x2n+1

at x → 0. On the other hand, at large q2 the Fano profile,

Eq. (5.9), is reduced to the Lorentzian one:

(ǫ + q)2

(1 + q2)(1 + ǫ2)
−−−→
q→∞

1

1 + ǫ2
. (5.19)

To understand the physical grounds for this reduction,

we have to highlight the following. At the point of the

constructive resonance (ǫ = 1/q), the Fano profile exhibits

its maximal value, equal to unity. So does the Lorentzian

profile. However, if for the latter its increase from the off-

resonance region also equals unity, for the former it equals

the difference between unity and the background level; i.e.,

(a)

14.85 14.90 14.95 15.00 15.05

10−8

10−5

10−2

m

|a
1

2

x=0.3

(b)

FIG. 6. Example of reduction of the Fano profile to Lorentzian at

x = 0.3. While the logarithmic plot of |a1(m)|2 (a) clearly exhibits

the Fano line with the point of the constructive resonance [|a1(m)|2 =
1] at m ≈ 14.905 and the destructive resonance [|a1(m)|2 = 0] at

m ≈ 15.012, a linear plot of the same dependence (b) is, practically,

indistinguishable from the Lorentzian profile, centered about the point

of the constructive resonance. The high-resolution line shape in the

vicinity of the constructive and destructive resonances is shown in the

inset. The background level |a(PEC)
1 |2 ≈ 0.000 340 4. It corresponds to

q (a)2 ≈ 2937.

1−[1/(1+q2)] = q2/(1+q2). In the point of the destructive

resonance the Fano profile drops below the background up

to zero; that is to say, the amplitude of the corresponding

modulation of the profile equals the background level 1/(1 +
q2). The ratio of the amplitudes of the two modulations of

the profile (constructive to destructive) is just q2. The larger

q2, the less pronounced the destructive resonance relative to

constructive and the closer the Fano profile to Lorentzian.

If now we remember that the case x ≪ 1 corresponds

to a small particle and a small particle in the off-resonance

regions is a weak scatterer, we immediately understand why

the background level at x ≪ 1 is small and the Fano profile is

close to Lorentzian.

Thus, we have arrived at an important conclusion: Though,

formally, the Mie resonances for the partial scattered waves of

the outer problem for small particles still belong to the Fano

type, actually, the corresponding line shape is very close to the

Lorentzian; cf. [18]. An example of such a profile is presented

in Fig. 6.
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FIG. 7. Collapse of lines of the resonances to a single universal set, as a result of the scale transformation (6.1) and (6.2) at x = 3;

ζ = (m − m(res))m(res): Color solid and black dotted lines respectively correspond to: (a) m(res) = 9.944 . . . and m(res) = 50.788 . . . (local

maxima of |a1|2); (b) m(res) = 9.350 . . . and m(res) = 50.252 . . . (local maxima of |a2|2); (c) m(res) = 9.441 . . . and m(res) = 50.263 . . . (local

maxima of |c1|2); (d) m(res) = 9.919 . . . and m(res) = 50.783 . . . (local maxima of |c2|2).

VI. SCALE INVARIANCE

The results discussed in the previous sections give rise to a

simple but significant conclusion. Namely, we have obtained

that at any fixed x and n the profiles of |an(m)|2 and |bn(m)|2
exhibit infinite sequences of the Fano resonances. All these

resonances have one and the same m-independent value of

q [see Eq. (5.7)] and the characteristic scale, decreasing as

1/m(res); see Eqs. (4.3) and (4.4). Since the shape of the Fano

profile is completely defined by the value of q, the latter

means that at a given x all the Fano resonances are identical

and may be reduced to a single universal form by the scale

transformation

δm → m(res)δm. (6.1)

Regarding |cn|2 and |dn|2, at a fixed m these profiles are

Lorentzian and, therefore, also universal. The corresponding

scale transformations are Eq. (6.1), supplemented with the

rescaling of the coefficients

cn → cn/m(res), dn → dn/m(res). (6.2)

Finally, bearing in mind that the mismatches in the positions

of the points of the resonances for modes with different

n are also scaled as 1/m(res), we obtain that the stipulated

scale transformations should reduce the entire variety of the

resonances (including the mutual position of the resonances

with different n) to a single universal set. An example of such

a collapse is shown in Fig. 7.

It is also seen from Fig. 7 that an increase in n results in

shifts of the resonances |cn|2 and |dn|2. The same is true for

|an|2 and |bn|2. However, for the Fano resonances [Figs. 7(a)

and 7(b)] the increase in n is accompanied with the change

of the asymmetry parameter q [see Eqs. (5.7) and (5.11)] and,

hence, by the change of the corresponding line shape. Thus,

to identify the shift one should look at the position of the local

extrema. Note also that for the lines |cn|2 and |dn|2 the increase

in n results in an increase in the Q factor of the resonances;

see Figs. 7(c) and 7(d). These peculiarities are generic for the

problem in question and valid for any n.

VII. DISSIPATIVE EFFECTS

Recall now that the nondissipative limit discussed above

is an idealized abstraction. In fact, dissipative losses always

remain finite, as long as a real material is a concern. Then

the natural question “How the obtained results are affected

by the dissipative losses?” arises. In this section we answer

the question. To this end, we have to introduce a complex

refractive index,

m̂ = m + iκ. (7.1)

Note that, actually, there are two cases: strong dissipation

(m and κ are of the same order of magnitude) and weak
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dissipation (κ ≪ m). The former case is trivial; the dissipation

just suppresses the resonances. Thus, the most interesting is

the weak-dissipation case, especially its limit of the extremely

weak dissipation (κ ≪ 1), when the dissipative damping may

compete with the small radiative one. It may give rise to the

absorption resonances [43] and other effects similar to those

at the anomalous scattering [44].

Examples of the extremely weak dissipation may be readily

found among widely used semiconductors. For instance, at the

wavelength of 532 nm (the second harmonic of a Nd:YAG

laser) the complex refractive indices for gallium phosphide, sil-

icon, and gallium arsenide are m̂
GaP

= 3.4932 + i0.002 631 1,

m̂
Si

= 4.1360 + i0.010 205, and m̂
GaAs

= 4.1331 + i0.336 09,

respectively [45]. In what follows all numerical examples,

illustrating the developed theory, will be given for a particle

made of gallium phosphate irradiated in a vacuum by a plane

linearly polarized electromagnetic wave with λ = 532 nm. The

dispersion of m̂
GaP

will be neglected, since in the proximity of

the specified wavelength it is rather weak. Let us discuss the

weak-dissipation case in detail.

A. Field within the particle

It is convenient to begin the discussion with the effects of

dissipation for the resonant excitation of the modes within

the particle. As usual, first, we inspect the electric modes.

Let us consider small complex departures of δm̂ = δm + iκ

from a purely real m(res), defined by condition ψ(m(res)x) =
0. Expansion of ψ(m̂x) in powers of small xδm̂ about the

point m(res)x results in the following trivial generalization of

expression, Eq. (4.12), for |d̃n|2,

|d̃n|2=
1

[

m(res)xδm−A
(d)
n (x)

]2
B

(d)2
n (x)+

[

1+κB
(d)
n (x)m(res)x

]2
,

(7.2)

with the connection between |d̃n|2 and |dn|2,

|dn|2 =
m2B(d)

n (x)

|ψ ′
n(mx)|2

|d̃n|2, (7.3)

following from Eqs. (4.10) and (4.13). Equation (7.2) yields

the linewidth

γ
(κ)

|dn|2 = 2
1 + κB(d)

n (x)m(res)x

B
(d)
n (x)m(res)x

. (7.4)

The profile |dn|2 is maximized by the same δm
(res)

|dn|2 , given

by Eq. (4.16), but the maximal value now is different:

Max{|dn|2} ∼=
m(res)2B(d)

n (x)

|ψ ′
n(m(res)x)|2

[

1 + κB
(d)
n (x)m(res)x

]2
. (7.5)

It is clearly seen from Eq. (7.4) that there is a point of

crossover (mcr) from the nondissipative regime (at m ≪ mcr)

to dissipative (at m ≫ mcr), where mcr is a solution of the

equation:

κmxB(d)
n (x) = 1. (7.6)

If at m ≪ mcr the linewidth is determined by Eq. (4.17), at

m ≫ mcr it converges to the universal m-x-n-independent

value 2κ .

However, the most dramatic changes happen to the am-

plitude of the resonances. While in the nondissipative limit

the amplitude of the profile |dn|2 at the resonance points at

large m increases as m2 [see Eq. (4.18)], now the entire profile

converges to the universal form

|dn|2 −−−−→
m≫mcr

1

|ψ ′
n(m(res)x)|2x2B

(d)
n (x)

1

δm2 + κ2
, (7.7)

which becomes completely m(res)-independent in the Fraun-

hofer regime, m(res)x � 2n [we remind the reader that in this

regime |ψ ′
n(m(res)x)| ∼= 1].

Equation (7.7), together with the condition γ
(κ)

|dn|2
∼= 2κ at

m ≫ m
cr

and Eq. (3.31), defining the positions of the resonant

points on the m axis, give rise to the conclusion that at m ≫ m
cr

the entire profile |dn(m)|2 converges to a universal periodic

function of m.

Coefficients cn may be inspected exactly in the same

manner. The inspection yields the expressions similar to those

obtained above for dn. For example,

Max{|cn|2} ∼=
m(res)2B(c)

n (x)

|ψn(m(res)x)|2
[

1 − κ
ψ ′′(m(res)x)

ψ(m(res)x)
B

(c)
n (x)m(res)x

]2
.

(7.8)

The reader should not be confused with minus sign in front

of the term with the dissipative constant κ , since, due to the

factor ψ ′′(m(res)x)/ψ(m(res)x), the actual sign in front of the

dissipative term is plus; see the corresponding discussion after

Eq. (5.13). The other expressions for cn, analogous to those

discussed above for dn, are not presented here owing to the

triviality of the corresponding calculations. They result in the

behavior of cn quite similar to that for dn.

B. Dissipation and Fano resonances

These peculiarities of cn and dn bring about a completely

different scenario for the vanishing of the Fano resonances

for coefficients an and bn relative to that in the nondissipative

case. For definiteness, let us focus on an. This coefficient is

expressed in terms of m-independent a(PEC)
n and m-dependent

dn according to Eq. (4.9). Thus, the entire m dependence

of an is given by the second term in the right-hand side of

Eq. (4.9). We remind the reader that in the nondissipative limit

|an|2 always vanishes at the points of the destructive Fano

resonances and reaches unity at the points of the constructive

resonances; see Fig. 2 and Eq. (5.9). Asymptotically, the points

of the constructive and destructive resonances merge, while the

modulations of |an|2 remain the same: Each resonance forces

|an|2 to vary from zero to unity. Thus, the vanishing of the Fano

resonances with an increase in m occurs due to the contraction

of the resonance lines.

In contrast, now at a finite κ and large-enough m the

width of the resonances for |an|2 becomes m independent and

equal to 2κ [according to identity Eq. (4.9) the characteristic

widths of the resonances for an and dn have the same order

of magnitude], while the amplitude of the modulations of

|an − a(PEC)
n |2 decreases as 1/m2; see Eqs. (4.9) and (7.7).

Thus, the vanishing of the Fano resonances (convergence of an

to a(PEC)
n ) occurs owing to the vanishing of the amplitude of the
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modulations of an. Crossover from the nondissipative scenario

to dissipative again is determined by mcr; see Eq. (7.6). The

behavior of bn is analogous.

Now note that the presented in Sec. V Fano profiles

for |an|2 and |bn|2 have been obtained from the exact Mie

solution by the identical transformations. The transformations

remain valid, no matter wether the permittivity is a purely

real (the nondissipative limit) or complex (the case of finite

dissipation) quantity. It provides us with a unique opportunity

to generalize the Fano theory to dissipative cases, i.e., to extend

rigorously the theory beyond its initial quantum-mechanical

formulation, where just effective dissipation attributed to,

e.g., various dephasing mechanisms, may be introduced only

phenomenologically. Such a generalizations permits us to

supplement the semiquantitative discussion of the dissipative

effects, presented above, with a detailed study of the degra-

dation of the Fano profile due to increase of dissipation. In

addition, instead of the discussion of the evolution of the

profile of |an − a(PEC)
n |2, which, according to Eqs. (4.9), (4.10),

and (7.2), is purely Lorentzian, it makes possible to inspect the

transformation of the actual Fano profiles for |an|2 and |bn|2.

In agreement with what has been discussed above, the

generalization is quite trivial: It corresponds to the replacement

δm → δm + iκ . This transformation does not affect the

asymmetry parameter q, since it does not depend on m; see

Eqs. (5.7) and (5.11). However, it does affect ǫ, making it

complex; see Eqs. (5.12) and (5.13).

Thus, in a dissipative case Im q ≡ 0, ǫ = ǫ′ + iǫ′′. Substi-

tution of the complex ǫ into Eq. (5.8) brings about the desired

profile, which after some algebra may be reduced to the form

|an|2 =
(

ǫ(a)′
n + q(a)

n

)2 + ǫ(a)′′2
n

(

1 + q
(a)2
n

)[

ǫ
(a)′2
n +

(

1 + ǫ
(a)′′
n

)2]
. (7.9)

Replacement a → b in Eq. (7.9) yields the corresponding

generalized Fano profile for |bn|2.

Let us discuss briefly the properties of the obtained profiles.

It is seen straightforwardly that Eq. (7.9) transforms into

the conventional Fano profile [Eq. (5.9)] at ǫ′′ → 0 and

that at |ǫ′| ≫ ǫ′′ and |ǫ′| ≫ |q| it tends to the same limit

1/(1 + q2). It is also possible to show that at any fixed q

and ǫ′ the maximum and minimum of profiles [Eq. (7.9)]

are monotonically decreasing and increasing functions of ǫ′′,
respectively.

Regarding the amplitude of the resonance, defined as the

difference between the maximal and minimal values of the

profile, as a function of ǫ′ at fixed values of the two other

parameters, it is given by the expression

�|an|2 =
1

(1 + ǫ′′)2

√

q2 + (1 + 2ǫ′′)2

1 + q2
. (7.10)

At ǫ′′ ≪ 1 the amplitude is close to unity, as it should

be for the conventional, nondissipative Fano resonances. At

ǫ′′ ≫ 1 there are two cases. If |q| is of the order of unity, or

smaller than that, the amplitude vanishes as 2/(ǫ′′
√

1 + q2). If

|q| ≫ 1, there is an intermediate asymptotic: At 1 ≪ ǫ′′ ≪ |q|
the amplitude dies out as 1/ǫ′′2 and only at ǫ′′ ≫ |q| is this

asymptotic replaced with 2/(ǫ′′|q|).
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FIG. 8. Degradation of the Fano profile (7.9) due to increase of

dissipation. The asymmetry parameter is fixed to q = 1. The sharpest

blue line corresponds to ǫ ′′ = 0. For other profiles ǫ ′′ equals 0.2, 0.5,

1.0, and 3.0, respectively. The horizontal brown line designates the

background, which at q = 1 equals 1/2.

As for the linewidth, defined as the difference between

the positions of the points of the maximum and minimum

of the profile on the ǫ′ axis at fixed ǫ′′ and q, it is described by

the formula

γ|an|2 =
√

(1 + q2)[q2 + (1 + 2ǫ′′)2]

|q|
. (7.11)

At ǫ′′ ≪ |q| the linewidth converges to the conven-

tional Fano expression (1 + q2)/|q|. At ǫ′′ ≫ |q| it equals

(1 + 2ǫ′′)
√

1 + q2/|q|.
The calculations yielding Eqs. (7.10) and (7.11) are trivial

but cumbersome and are not presented here. An example of

degradation of the Fano profile with an increase in ǫ′′ is shown

in Fig. 8.

To relate these general analyses of the dissipation-affected

Fano resonances to our problem, we must express ǫ′′ in terms

of the known problem parameters. According to what has

been discussed above and to Eqs. (5.12), (5.13), the desired

expressions are as follows:

ǫ(a)′′
n = m(res)

[

ψ ′2
n (x) + χ ′2

n (x)
]

xκ, (7.12)

ǫ(b)′′
n = −m(res) ψ

′′
n (m(res)x)

ψn(m(res)x)

[

ψ2
n (x) + χ2

n (x)
]

xκ. (7.13)

At x � 2n

ǫ(a)′′
n

∼= ǫ(b)′′
n

∼= m(res)κx; (7.14)

cf. Eq. (5.14). It means that the role of the dissipative effects

unlimitedly increases with an increase in x, no matter how

small κ is.

VIII. RESONANCES AT FIXED REFRACTIVE INDEX AND

VARYING SIZE PARAMETER

In the preceding sections the resonances basically have been

studied at a fixed x (and κ) and varying m. On the other hand, as

mentioned above, the most interesting from the experimental

viewpoint is the dependence of the resonances on the size of
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the particle at a fixed value of the refractive index. In this

case at any fixed n an increase in x again results in a cascade

of resonances, whose positions are determined by the same

conditions [Eqs. (3.21) and (3.29)], regarded now as equations

for x.

At mx ≫ 1, as long as the shape of a single resonance

line is a concern, these two problem formulations (fixed x at

varying m and fixed m at varying x) are easily reduced to each

other by the set of transformations m(res) ↔ m, x ↔ x(res), and

xδm ↔ mδx; see the corresponding remark at the end of

Sec. IV. However, this is not the case anymore if we are

interested in rather a large range of variations of the size

parameter.

For example, if we consider the Fano resonances for

|an|2 and |bn|2, the effective dissipative constant ǫ′′ increases

linearly in x; see Eqs. (7.12) and (7.12). Eventually, it must

result in suppression of the resonances at large-enough x.

However, as shown in Sec. VII B, the dissipative effects depend

substantially on the ratio of ǫ′′ to |q|. This ratio may have a

rather complicated x-dependence, see Fig. 5 and Eqs. (5.7),

(5.11), (7.12)–(7.14). Therefore, to answer the question about

the transformation of the resonance profiles at large variations

of x is not a straightforward matter.

These arguments are illustrated by Fig. 9, where |a1(x)|2
and |a(PEC)

1 (x)|2 for GaP at λ = 532 nm are plotted as functions

of x. In Fig. 9(a), at moderate values of x a cascade of the

Fano resonances, whose asymmetry parameter varies with x

according to Eq. (5.7), is seen clearly. The cascade is quite

analogous to those discussed in Refs. [24,26] for a dielectric

cylinder. It is interesting to note that at the case presented in

Fig. 9 at x = 4.483 . . . , |a1(x)|2 = |a(PEC)
1 (x)|2 = 1; i.e., for

the given partial wave the scattering at this point is exactly

the same as that for a perfectly reflecting sphere at the point of

the dipole resonance.
In Fig. 9(b) the growth of x already results in suppression

of the resonances. In Fig. 9(c) the asymptotic profile of |a1|2
at large values of x is presented. A further increase in x does
not affect this profile. The Fano resonances in Fig. 9(c) are
fully suppressed, indeed. However, in contrast to what may be
expected from the preceding analysis, the profile, which |a1|2
has converged to, is not that for |a(PEC)

1 |2.
As we see below, the behavior of |dn|2 and |cn|2 at a

large variation of x is also rather unexpected. Thus, the
transformations of the scattering coefficients at a fixed m̂ and
large variations of x have their own peculiarities, which are
worth studying. The study is produced in the present section.

A. Scattered field: Fano resonances

In the preceding paragraphs we have faced a puzzle: At a

fixed m̂ and x ≫ 1 the profile |a1(x)|2 for GaP converges to

a certain m̂-independent profile, which, however, differs from

|a(PEC)
1 (x)|2. Direct calculations based upon the exact Mie so-

lution for a particle with arbitrary large m and small κ indicate

that this is quite a general feature for |an|2 and |bn|2 at any n.

The puzzle is solved easily. To this end it is better to

start from the very initial expressions for an and bn, namely

Eqs. (3.10)–(3.15) and use the Fraunhofer approximation

Eqs. (3.22) and (5.15).
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FIG. 9. Dependencies of |a1(x)|2 (blue solid line) and |a(PEC)
1 (x)|2

(red dashed line) for GaP on the size parameter x at various

characteristic values of the latter. Profile (c) is asymptotic; it does

not change its shape at further increase in x.

Then, at κx ≫ 1

ψn(m̂x) ∼= sin

(

mx + iκx −
nπ

2

)

=
eiφ

(m)
n −κx − e−iφ

(m)
n +κx

2i
∼= i

e−iφ
(m)
n +κx

2
, (8.1)

where φ(m)
n stands for mx − nπ

2
. The rest is just trivial transfor-

mations of Eqs. (3.10)–(3.15). Exponents exp(−iφ(m)
n + κx)
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in the numerators and denominators of the expressions for

an and bn are canceled. Since we are interested in the

limit of large x, the Fraunhofer approximation may be used

for ψn(x) and χn(x) too; see Eqs. (3.22) and (5.15). Then,

supposing κ/m ≪ 1 after a little algebra, we arrive at the

expressions

|an|2 −−−→
xκ≫1

1

(m + 1)2
+

m − 1

m + 1
cos2

(

x −
nπ

2

)

+ O

(

κ

m

)

,

(8.2)

|bn|2 −−−→
xκ≫1

1

(m + 1)2
+

m − 1

m + 1
sin2

(

x −
nπ

2

)

+ O

(

κ

m

)

,

(8.3)

while |a(PEC)
n |2 and |b(PEC)

n |2 in the same approximation

equal cos2 (x − nπ
2

) and sin2 (x − nπ
2

), respectively; see

Eqs. (3.19), (3.22), (3.26), and (5.15). Thus, the obtained

asymptotic profiles are different from those for |a(PEC)
n |2 and

|b(PEC)
n |2, indeed. This solves the puzzle.

We should emphasize that the applicability conditions for

Eqs. (8.2) and (8.3) are

x ≫ 1, κx ≫ 1, m ≫ κ; (8.4)

i.e., in contrast to most results of the present paper, they do not

imply m necessarily to be large.

It is important to stress that, though in the leading

approximation the obtained asymptotical expressions for |an|2
and |bn|2 are κ-independent, the asymptotics themselves begin

at x ∼ 1/κ; see Eq. (8.1). At κ → 0 the asymptotics shift to

infinity and disappear. Such a behavior makes the case of any

large x and small but finite κ qualitatively different from the

nondissipative limit, discussed above and in various previous

publications; see, e.g., [36,46].

B. Large lossy sphere: The lower bounds for the scattering

cross section and the upper bound for the absorption one

Equations (8.2) and (8.3) result in an important and rather

unexpected conclusion. Let us consider the partial scattering

efficiency Qsca,n (the corresponding partial cross section

normalized over the geometric cross section of the sphere

πR2). In terms of the scattering coefficients this quantity is

expressed as follows [36]:

Qsca,n =
2(2n + 1)

x2
{|an|2 + |bn|2}. (8.5)

At xκ ≫ 1, κ ≪ m, in accord with Eqs. (8.2) and (8.3), in

the leading in κ/m approximation Eq. (8.5) reads

Qsca,n
∼=

2(2n + 1)

x2

m2 + 1

(m + 1)2
. (8.6)

Note that in this case the corresponding dimensional partial

cross section σsca,n = πR2Qsca,n occurs independent of both

κ and R, while its n dependence is reduced to that in the

prefactor of general expression Eq. (8.5). This is true as long

as the Fraunhofer regime is valid. At a fixed value of x ≫ 1

it corresponds to n � N ≡ [x/2], where [x/2] stands for the

integer part of x/2; see the comment to Eq. (3.22).
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FIG. 10. Partial scattering efficiency at n = 6 as a function of

the size parameter. The real part of the refractive index is fixed for

all the curves at m = 4. The imaginary part equals 0.1 (thin blue

oscillating curve) and 1.0 (thick red curve). The thin yellow curve

shows asymptotic dependence Eq. (8.6). The Fraunhofer regimes

corresponds to x � 12. Note that in this regime all the three curves

are very close to each other.

The accuracy of Eq. (8.6) is very good. As an example,

dependencies Qsca,6 on x at m = 4 and two values of κ (0.1

and 1.0), as well as the one given by Eq. (8.6), are shown in

Fig. 10. For n = 6 the Fraunhofer regimes is valid at x � 12.

At x = 12 all the three curves are already very close to each

other. Then, at further increase of x they practically merge.

Equation (8.6) makes it possible to readily calculate the net

contribution of the modes obeying this asymptotic (Q(Frhf)
sca ) to

the overall scattering efficiency (Qsca):

Q(Frhf)
sca =

N
∑

n=1

2(2n + 1)

x2

m2 + 1

(m + 1)2
=

2N (N + 2)

x2

m2 + 1

(m + 1)2
.

(8.7)

If here N = [x/2] ≫ 1, expression Eq. (8.7) is reduced to a

simple x-independent form,

Q(Frhf)
sca −−→

x≫1

m2 + 1

2(m + 1)2
−−→
m≫1

1

2
. (8.8)

Of course, at large x there is a number of the modes with n <

x/2, which do not belong to the Fraunhofer range but still make

a substantial contribution to the overall scattering efficiency.

Since any partial efficiency, by definition, is a positive quantity

[see Eq. (8.5)], it means that Q(Frhf)
sca should be regarded as the

lower bound for Qsca.

Recall now the well-known facts that the extinction effi-

ciency for a sphere, Qext, appears to approach the limiting value

2 as the size parameter increases (the extinction paradox) [36]

and that the absorption efficiency, Qabs, equals Qext − Qsca.

Then Eq. (8.8) yields the upper bound for Qabs:

Qabs < 3/2 at x ≫ 1, xκ ≫ 1, κ ≪ m. (8.9)

Thus, we have obtained that under the specified conditions

the scattering cross section of a large lossy sphere cannot

be smaller than half of its geometric cross section, while its

absorption cross section cannot exceed three halves of the

geometric one.
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C. Field within the particle: Individual modes

As always, we begin the analysis with inspection of the

electric modes. The results obtained in Sec. VII show that

the key function determining the behavior of the resonances

at large variations of x is B(d)
n (x) = |ξ ′

n(x)|2. The known

expansions of the Bessel functions in powers of their small

argument yield the following behavior of B(d)
n (x) at x → 0:

B(d)
n (x) ∼=

n24nŴ2
(

n + 1
2

)

πx2(n+1)
, (8.10)

where Ŵ(n + 1
2
) stands for the Gamma function. An increase in

x is supplemented with a monotonic decrease in B(d)
n until this

function reaches its minimal value at x ≈ n. A further increase

in x results in a slow monotonic growth of B(d)
n , asymptotically

approaching unity at x → ∞; see Eqs. (3.22) and (5.15).

Accordingly, the entire domain 0 � x < ∞ of variations of x

is partitioned into two subdomains: 0 < x � n, where a sharp

fall of B(d)
n (x) from infinity to its minimal value below unity

occurs, and the one of a slow asymptotical growth B(d)
n (x) to

unity (n < x < ∞). As an example, functions B(d)
n (x) for the

first five multipoles are presented in Fig. 11(a).

Thus, at any n both B(d)
n (x) and xB(d)

n (x) are singular

functions at x → 0. It brings about a dramatic enhancement

of the dissipative effects at small x; see Eq. (7.4). On the

other hand, an increase in B(d)
n (x) increases the numerator in

the right-hand side of Eq. (7.5), defining the amplitude of the

resonance. That is to say, at small x there is a competition

between the growth of the amplitude of the resonance owing

to the increase in B(d)
n (x) in the numerator of Eq. (7.5) and

its suppression because of the growth of the same quantity in

the denominator of the same equation. In this case we have to

distinguish two limits.

(i) Despite the large value of B(d)
n , the first (smallest)

resonant x
(res)
n,1 < n still corresponds to weak dissipation

[κmx
(res)
n,1 B(d)

n (x) ≪ 1]. Then the amplitude of this resonance

is the largest for the given n. An increase in x gives rise to the

fall of the amplitudes of the sequential resonances, first due

to the decrease of B(d)
n (x) in the numerator of Eq. (7.5) and

then owing to the transition to the dissipation-controlled region

because of the increase of κB(d)
n (x)mx in the denominator of

this expression.

(ii) x
(res)
n,1 < n is so small [i.e., B(d)

n (x
(res)
n,1 ) is so large],

that κB(d)
n (x

(res)
n,1 )mx

(res)
n,1 ≫ 1, despite smallness of κ . Then,

the amplitude of the corresponding resonance approximately

equals

Max{|dn|2} ∼=
1

[ψ ′
n(mx(res))κx(res)]2B

(d)
n (x(res))

;

see Eq. (7.5). Since, by definition, in a given cascade x
(res)
n,1 <

x
(res)
n,2 < x

(res)
n,3 < · · · , the next resonances in the same cascade

result in a decrease of B(d)
n (x(res)

n,p ) and, hence, in an increase

of their amplitude. It goes on in this manner until the decease

of B(d)
n , eventually, drives the problem out of the dissipation-

controlled regime. Then, a further increase in x(res) results in

the effects, described above in item (i).

Thus, now we have two dissipation-controlled domains:

the first at small x and the second at large, separated by

a nondissipative domain. The maximal amplitude of the

resonance mode is achieved at x(res) situated at the boundary

between the first dissipation-control domain the nondissipative

one.

It is important to stress also the quite different asymptotic

behavior of profiles |dn(m)|2 at a fixed x, and |dn(x)|2 at a fixed

m, respectively. If |dn(m)|2 at m → ∞ converges to a certain

universal periodic function [see Eq. (7.7)], |dn(m)|2 at x → ∞
vanishes as 1/(κx)2, owing to Eq. (7.5) and limits

|ψ ′
n(mx(res))| −−−−−→

x(res)→∞
1, B(d)

n (x) −−−→
x→∞

1.

The behavior of |cn|2, in general, is analogous to that discussed

above for |dn|. However, in contrast to B(d)
n (x), function B(c)

n (x)

is monotonically decreasing; see Fig. 11(b). This difference in

Bn results in a certain difference in the shape of the envelopes

of the resonances for |dn(x)| and |cn(x)|; see Fig. 12.

D. Field within the particle: Overlap of resonances

One of the key features of the problem in question is the

overlap of a large number of resonances, which may result

in a creation within the particle “bright spots” with a giant

concentration of the electromagnetic field. The corresponding

field structure is determined by the coordinate dependence of

the resonant modes. Its detailed inspection requires a separate

consideration and will be reported elsewhere. In the present

paper we discuss just the necessary conditions for such bright

spots to come into being, namely the overlap of profiles of

the modula of the scattering coefficients, describing the field

within the particle. As usual, for the sake of briefness we

restrict the discussion with the properties of |dn|2 solely. The

behavior of |cn|2 may be studied in the same manner and

exhibits similar peculiarities.

Overlap of two resonances means that the mismatch be-

tween the positions of the maxima of their lines is smaller than

the largest linewidth. Therefore, to begin with, we have to dis-

cuss the linewidths of the resonances at a fixed m and varying

x. To this end, according to the stipulated-above general rules,

we have to replace in Eq. (7.2) xδm → mδx, m(res) → m, and

x → x(res). This brings about the following expression for the

linewidth:

γ
(κ,x)

|dn|2 = 2
1 + κB(d)

n (x(res))mx(res)

B
(d)
n (x(res))m2

. (8.11)

Thus, in the nondissipative region [κB(d)
n (x)mx ≪ 1] the

linewidth is 2/[B(d)
n (x)m2], while in the dissipation-controlled

region [κB(d)
n (x)mx ≫ 1] it is 2κx/m.

On the other hand, the resonant values of x are defined

by the condition ψn(mx(res,E)) = 0 for the electric modes and

ψ ′
n(mx(res,H )) = 0 for magnetic; see Eqs. (3.21) and (3.29). At

relatively small x, lying below the Fraunhofer regime, different

solutions of these equations are situated at distances of the

order of 1/m. It is always much larger than the linewidth

in the nondissipative region and still larger than that in the

dissipation-controlled case, provided that x is of the order of

unity or smaller. Therefore, the overlap of the resonances in

these regions may occur just accidentally.

However, in the Fraunhofer regime, the situation is changed

drastically. In this regime points of different resonances are
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FIG. 11. Behavior of B (d)
n (x) ≡ |ξ ′

n(x)|2 and B (c)
n (x) ≡ |ξn(x)|2

for the first five multipoles. Curves from left to right correspond

to n = 1, 2, 3, 4, and 5, respectively.

going to merge. In the leading (in 1/mx) approximation they

just coincide; see Sec. III. To resolve the mismatch between

the points of different resonances, we have to go beyond the

leading approximation.

The increase of the accuracy forces us to impose more strict

applicability conditions for the validity of the approximation.

Therefore, in this section we suppose that condition z > 2n

employed in the preceding sections is replaced with z ≫ n2;

see the comment below Eq. (3.22).

Utilizing the asymptotic expansion of the Riccati-Bessel

functions at large values of their argument [42] and taking into

account the first subleading terms, instead of Eq. (3.23) we

arrive at the following equation, determining the points of the

electric mode resonances,

sin

(

ρ
E

−
nπ

2

)

+
n(n + 1)

2ρ
E

cos

(

ρ
E

−
nπ

2

)

∼= 0, (8.12)

where ρ
E

> n2 stands for mx(res,E). Looking for a solution of

this equation in the form ρ
E

= ρ(0)
E

+ δρ
E
; |δρ

E
| ≪ 1, where

ρ(0)
E

= [(2p + n)π/2], it is easy to obtain that

δρ
E

∼= −
n(n + 1)

π (n + 2p)
. (8.13)

The solution is valid at n(n + 1) ≪ π (n + 2p). The corre-

sponding mismatch between different resonances is δρ
E
/m.
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FIG. 12. Typical behavior of |dn(x)| and |cn(x)| at n = 20 (as an

example) for a particle made of GaP. Blue solid lines correspond to

the exact solution [Eqs. (3.6) and (3.9)]; the envelopes, calculated

according to the approximate Eqs. (7.5) and (7.8) are shown as

red dashed lines. Note strongly nonmonotonic dependence of the

amplitude of the resonant oscillations on x due to the enhancement

of the dissipative effects at certain domains of variations of x

and a “bottle neck” in the dependence |dn(x)| at the proximity

of x = n = 20. The bottleneck is originated in the corresponding

minimum in B (d)
n (x), which does not have B (c)

n (x); cf. the envelopes

with the profiles of B (d,c)
n in Fig. 11. See the text for details.

Strictly speaking, we have to add to this mismatch another

one, caused by the departure of the position of the maxima

of |dn|2 from the resonance points, determined according to

the employed condition ψn(mx) = 0. However, according to

Eq. (7.2) this mismatch equals A(d)
n (x)/m2 [we recall that to

apply Eq. (7.2) to our case we have to replace xδm → mδx].

At large m this quantity is small relative to δρ
E
/m and may be

neglected.

Similar inspection of |cn|2 gives rise to ρ
H

= ρ(0)
H

+ δρ
H

,

with

ρ(0)
H

=
(n + 2p + 1)π

2
, δρ

H
∼=

n(n + 1)

π (n + 2p + 1)
. (8.14)

Let us put it all together. According to the results discussed

in Sec. III, there are two types of possible overlaps. The first

corresponds to the overlap of the modes of the same type (e.g.,

electric-electric, or magnetic-magnetic) with different n and p,

changed in such a manner that the sum n + 2p remains fixed.
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The adjacent candidates for this overlap have the difference

in n equals 2 and the difference in p equals 1. According to

Eqs. (8.13) and (8.14) the mismatches between the resonance

points for these two modes are

(�x
E
)n,n+2

∼= (�x
H

)n,n+2
∼=

2(3 + 2n)

mπN
, (8.15)

where integer N = n
E

+ 2p
E

= n
H

+ 2p
H

+ 1 satisfies the

condition πN/2 = ρ(0)
E

= ρ(0)
H

= mx(res).

The candidates for the second type of the overlap are modes

with the different nature: electric-magnetic. In this case the

adjacent modes have both n and p differed in unity; however,

the signs of these mismatches are opposite [see Eqs. (8.13)

and (8.14)]. Then the corresponding mismatch is

(�x
E,H

)n,n+1
∼=

2(n + 1)2

mπN
. (8.16)

In all the cases the mismatches monotonically increase with

an increase in n. A rough estimate of the number of modes,

which may overlap, yields from the applicability condition of

the Fraunhofer regime: ρ > n2. For a given x(res) it results in

the inequality n <
√

N ∼
√

mx(res).

Thus, at n ≫ 1 the mismatches between the modes of

the same type are scaled as n/(mN ) ∼ n/(m2x), while the

ones between the modes of different types are scaled as

n2/(mN ) ∼ n2/(m2x). On the other hand, the linewidth in the

dissipation-controlled region is scaled as κx/m; see Eq. (8.11).

An increase in x decreases �x and increases the linewidth. The

overlap begins when the latter becomes larger than the former.

First, it happens with the modes of the same type at x = xovlp,

where

xovlp ∼
√

n

mκ
. (8.17)

A further growth of x increases the number of the

overlapping modes until all modes lying in the Fraunhofer

range overlap. It happens at x > Xovlp, where Xovlp is such a

value of x, when (�x)1,
√

N becomes equal to or smaller than

the linewidth. Here (�x)1,
√

N stands for the mismatch between

the mode with n = 1 and the mode with the maximal n still be-

longing to the Fraunhofer range, i.e., with n ∼
√

N . According

to Eqs. (8.13) and (8.14), (�x)1,
√

N ∼ (n2/mN )
n=

√
N

= 1/m.

It yields a simple estimate Xovlp ∼ 1/κ .

As it follows from Eq. (7.5), Max{|dn(Xovlp)|} ∼ 1. Then,

at the points where all the overlapping modes are summarized

coherently with the weight factor of the order of unity, the

resulting amplitude of the electric (magnetic) field is
√

N times

greater (the density of energy N times greater) than the one in

the incident wave.

E. Examples of the discussed effects for a sphere

of GaP at λ = 532 nm

To give a certain impression about a manifestation of the

discussed resonances in a possible real experiment we produce

some results for a particle made of gallium phosphide. The

corresponding plots are presented in Fig. 13.

Our calculations for GaP show also that the absolute

maximum for a single resonant mode is achieved for the first

resonance of mode c5 at x ≈ 2.318. The corresponding value

of |c5| equals 34.641. The first resonant of |d5| gives rise
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FIG. 13. Cascades of resonances for |cn| and |dn| at a fixed

refractive index and varying size parameter, x, for a spherical

particle made of GaP, irradiated in a vacuum by a plane linearly

polarized electromagnetic wave with λ = 532 nm. Calculations are

according to Eqs. (3.6) and (3.9). Gradual overlap of resonances for

|c1|-|d2|-|c3| and |d1|-|c2|-|d3| at an increase in x is seen clearly. Note

the broadening of the resonance lines with an increase in x and an

increase of the amplitudes of the first resonances in each cascade with

an increase in n. The first resonances in each cascades have the largest

amplitudes. The large mismatches between the first resonances in the

cascades for |c1|-|d2| and |c2|-|d3| are generic, while the overlaps

of the first resonances in the cascades for |d1|-|c2| and |d2|-|c3| are

accidental. For more details, see the text.

to the close value: 33.161 at x ≈ 2.626. The density of the

electromagnetic energy in the bright spots for these solitary

resonances is about 103 greater than that for the incident wave.

Meanwhile, multiple overlap of not-so-sharp resonances for a

particle with x ≈ 25 may produce bright spots with the density

of energy 104 relative to that in the incident wave.

As an example, the field distributions for a spherical GaP

particle at λ = 532 nm are presented in Fig. 14 for two

typical cases: The discussed above sharp individual magnetic

resonance at x = 2.318 (c5) and a multiple overlap of resonant

modes at x = 5.380 (see Fig. 13). The electric and magnetic

fields are normalized over the amplitude of the electric field

in the incident wave. These field distributions reveal several

interesting features, namely the following.

(i) The overall volume of the bright spots at the case of

the individual resonance is larger than that in the case of

the multiple overlap of the resonances. However, if in the

former case the bright spots have rather sharp boundaries,

in the latter the boundaries are much broader (the light blue

areas occupy the substantial part of the particle). In other

words, at the individual resonance the regions of the extreme

field concentration are separated with “dark” region with low

field intensity. At the multiple overlap of the resonances the

concentration of the field may be weaker, but it occurs in a

considerable part of the particle.
(ii) The maximum at the center of the sphere corresponds

to either electric (d1) or magnetic (c1) dipole mode resonances,
since the field distributions for all other multipoles vanish
at this point. In contrast, the secondary maxima along radial
direction indicate the excitation of higher-order modes in the
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FIG. 14. Distribution of electric |E|2, magnetic |H |2 fields, and the Poynting vector |S| within a GaP sphere, irradiated in a vacuum by a

plane linearly polarized electromagnetic wave with λ = 532 nm. Calculations are according to the exact Mie solution. The wave propagates

along z axis with vector E directed along the x axis (do not confuse this x with the size parameter x). The electric and magnetic fields are

normalized over the amplitude of the electric field of the incident wave. The fields are presented in the plane z = 0. The boundary of the sphere

is shown as white dashed line. The size parameter for panels (a)–(c) equals 2.318; for (d)–(f) it is 5.380. See the text for details.

overlapping regime. It is interesting to note that, in contrast to
plasmonic particles, where the absolute maximum of the fields
is achieved at their surfaces, presently the absolute maximum
is close to, or just at the center of the particle (the dominant
role of the dipole modes).

(iii) Though the maximum values of the magnetic field
at the centers of the bright spots for the individual magnetic
resonance [Fig. 14(b)] is considerably larger than that at the
overlap of the resonances [Fig. 14(e)], the case for the electric
field is opposite; see Figs. 14(a) and 14(d), respectively.

Feature (i) makes it possible to employ the particle as
an effective optical nanocavity with both narrow (individual
resonance) and broad (overlap of resonances) lines. Features
(ii) and (iii) provide plenty of degrees of freedom to control
and engineer a desired field distribution. All this may be very
important for numerous applications. However, as said already,
a detailed inspection of the field structure lies beyond the scope
of the present paper and will be reported elsewhere.

IX. CONCLUSIONS

Concluding this extended discussion, we may say that the
detailed study of the light scattering by a high-refractive-index
particle with low dissipation discussed in the present paper has
revealed a number of new important features of the problem. In
particular, we have shown that while at increasing m the partial

scattered waves outside the particle for any fixed values of x

and n tend to the limits, corresponding to the light scattering
by a perfectly reflective sphere, the field within the particle
does not have any limit at all.

The reason for this difference in the behavior between
the solutions of the outer and inner problems is related
to the different manifestations of the infinite sequences of
the cascades of the Mie resonances in the two problems.
Specifically, for the scattered field outside the particle each Mie
resonance in a cascade has the asymmetric Fano line shape. As
m increases the resonances are suppressed, and the expressions
for the scattering coefficients converge to the corresponding
m-independent quantities for the perfectly reflecting, PEC
sphere.

For the field within the particle, each individual resonance
exhibits the Lorentzian line shape. In this case, while at large
m the profile at a fixed distance from its bottom converges to
a certain universal form, the peak values of the modulus of the
electric (magnetic) field amplitudes increase with an increas
in m. Thus, the increase in m makes the resonances more
pronounced. At finite dissipation the growth of the amplitudes
of the resonance eventually saturate, and the resonance lines
become the periodic functions of m.

It is important that at large-enough m the positions of the

electric resonances for a partial mode with multipolarity n cor-

respond to those for magnetic resonances with multipolarity
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n + 1, the electric mode with multipolarity n + 2, etc. The

same is true for the magnetic modes.

For a given multipolarity the points of both types of the

resonances together (i.e., electric and magnetic) are situated

in the m axis periodically with the period equal to the half

of the period for each type of the resonances separately. It

means the points of the magnetic resonances are located just

in the middle of the distance between the adjacent points of

the electric resonances and vice versa.

We have shown that the series of the Fano resonances

for HRI particles is a generic, intrinsic feature of the light-

scattering problem, which can be generalized to an arbitrary

diffraction problem in wave phenomena (e.g., scattering of

sound). In these problems the field scattered by the same

scatterer, but with perfectly reflecting properties, plays the

role of a background partition, while the modes resonantly

excited in the scatterer correspond to the resonant ones.

The characteristics of the Fano profiles, including a simple

expression for the asymmetry parameter q [see Eqs. (5.4)

and (5.7)], have been obtained from “the first principles” based

upon the identical transformations of the exact Mie solution.

It has made possible to obtained the rigorous generalization

of the Fano resonances to the case with finite dissipation [see

Eqs. (7.9)] and to discuss the degradation of the Fano profile

at an increase in the dissipation; see Fig. 8 as well as the

corresponding comment in Sec. VII B.

We have demonstrated that in the nondissipative limit the

discussed resonances (for both the inner and outer problems)

possess a scale invariance, so that at any fixed value of the size

parameter x any resonance line in the infinite cascades of the

resonances may be reduced to the universal, m(res)-independent

form by the scale transformations, Eqs. (6.1), (6.2). It should

be stressed that the universality extends to both the shape of the

lines and the mutual positions of the lines with respect to each

other for modes with different multipolarity and/or of different

types (electric or magnetic). The quantitative applicability

conditions for the nondissipative and dissipation-controlled

regimes as well as the corresponding crossover points have

been obtained in the explicit form.

Under very general conditions [Eq. (8.4)] the scattering

cross section of a large lossy sphere cannot be smaller than

half of its geometric cross section, while its absorption cross

section cannot exceed three halves of the geometric one. It is

important that for the validity of these results the refractive

index of the sphere not necessarily should be large, provided

conditions in Eq. (8.4) hold.

Regarding the peculiarities of the resonances at a fixed

refractive index and a varying size parameter x, we have shown

that, generally speaking, the entire domain 0 � x < ∞ is

partitioned into three subdomains: Two dissipation-controlled

ones (at small and very large x) are separated by a nondissi-

pative subdomain. The explicit expressions, determining the

boundaries between the subdomains as well as the formulas for

the line shape and linewidth, have been derived. The linewidth

is minimal in the nondissipative domain and increases in

the dissipation-controlled subdomains with an increase in the

departure of x from the corresponding boundary.

For the size parameter lying in the nondissipative sub-

domain a high concentration of the electromagnetic field

within the particle may be achieved owing to the individual

narrow-line partial resonances of modes with a high Q factor.

In this case the field structure within the particle has a high

contrast. That is to say, the boundaries between bright spots

with a high concentration of the field and dark regions with

weak field are sharp; see Figs. 14(a)–14(c). For the realistic

values of the complex refractive index, typical for a number of

common semiconductors in the visible and near-IR range of

the spectrum, the peak value of the density of electromagnetic

energy in the bright spots in this case may exceed the one in

the incident plane wave by three orders of magnitude and even

more than that.

For the size parameter, lying in the dissipation-controlled

subdomains, a high concentration of the field may be realized

due to multiple overlap of rather broad resonance lines of

modes of different types (magnetic and electric) and different

multipolarity. In this case the contrast of the field structure

is much lower than the one at the single-mode resonance; cf.

Figs. 14(d)–14(f) and 14(a)–14(c).

The discussed effect of the giant concentration of the

electromagnetic field within a particle with a high refractive

index together with the highlighted differences between the

two cases (the individual resonance and the multiple overlap

of the resonances) provide plenty of opportunities to design

and engineer new materials and/or nanodevices with unique

properties. They may be utilized in numerous applications in

medicine (such as, e.g., cancer therapy [47]), in biology (new

sensors and markers), nanoelectronics and nonoptics (fabri-

cation of high-nonlinear nanostructures), telecommunication,

data storage and processing, etc. We hope that our paper may

stimulate further progress in these important fields.
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APPENDIX: PROOF OF IDENTITY, EQ. (4.11)

The proof is based upon Eq. (3.7). According to it and

the presentation of ξn in the form ξn = ψn − iχn, with real

functions ψn and χn, we may write a chain of identities,

ξn(x)

ξ ′
n(x)

≡
ψ ′

n(x)ξn(x)

ψ ′
n(x)ξ ′

n(x)
≡

ψn(x)ξ ′
n(x) − i

ψ ′
n(x)ξ ′

n(x)

≡
ψn(x)

ψ ′
n(x)

−
iξ ′∗

n (x)

ψ ′
n(x)|ξ ′

n(x)|2
, (A1)

where the asterisk means complex conjugation. Then, bearing

in mind the same presentation ξn = ψn − iχn, and taking the

imaginary part of Eq. (A1) we obtain

Im
ξn(x)

ξ ′
n(x)

= −
1

|ξ ′
n(x)|2

.

Finally, multiplying it by ξ ′2
n (x) and taking modulus, we arrive

at the identity Eq. (4.11).
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