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Atoms coupled to optical fields strongly confined in two spatial dimensions, as in solid state 
microstructures, can experience very large Lamb shifts due to a spectrally strongly asymmetric 
mode density. We use the generic example of a quasi one-dimensional waveguide structure 

driven close to cutoff frequency of a new transverse branch of propagating modes. We 
analytically find strong shifts of the atomic resonance frequency due to the modified vacuum, 
which can be an order of magnitude larger than the atomic linewidth. At the same time one gets 
significantly enhanced scattering of the guided light by the atom, which could be used as a tool 
to investigate these effects or to build non-destructive single atom detectors. 

In the past years we have seen spectacular advances in our ability to cool atoms to nano
Kelvin temperatures and control their motional degrees of freedom down to the quantum 
level [l]. In parallel, the miniaturization of optical microstnictures has reached the level, 
where fabrication almost at the atomic scale is feasible [2]. One of the great goals in the near 
future is to bring together these technologies in a generation of integrated optical quantum 
devices [3]. As a central point to utilize such devices, we must understand the behaviour and 
transport of the atomic matter subject to subwavelength-structured electromagnetic radiation 
fields. Evanescent fields created by tailored dielectric microstmctures are of primary interest 
in this research. A series of experiments have demonstrated the usefulness of evanescent 
optical fields to realize atom mirrors [4] or quasi 2D surface traps [5]. However, these surface 
setups have all been based on macroscopic fields regarding the transverse spatial dimension 
and photon numbers inyolved. Hence a single particle has almost no effect on the field and a 
single photon field would give only a negligible force on an atom. 

In this Letter we show that the effective atom-photon interaction can be strongly enhanced 
for atoms coupled to fields of certain dielectric microstructures. It is well known that for 3D 
confined fields as in cavity QED setups, strong atom field coupling can be achieved [6]. Here 
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we reveal new surprising phenomena beyond the single mode strong coupling limit, considering 
atoms interacting with a whole continuum of travelling wave modes, where the field is confined 
in only one or two transverse dimensions [7]. If the atomic resonance is close to the cutoff 
frequency of a new transverse branch of propagation modes, the modified vacuum can induce 
a huge atomic frequency shift exceeding the natural linewidth by orders of magnitude. In 
conjunction with this large Lamb shift, a strongly increased photon scattering rate by a single 
atom takes place, which could be used for position and state selective single atom detection 
and manip'ulation schemes [8] as well as for very low intensity photonic devices. 

Atomic Lamb shift in 1D continua of modes.- Let us consider a two-level atom with �eso
nance frequency Wa in (or close to) a dielectric medium with refractive index n0 [9], which is 
assumed to be infinitely extended into the z direction but with a transverse dimension of the 
order of an optical wavelength. This microstructure supports a continuum of optical modes 
described by annihilation operators 11n(k), where n labels the transverse mode index and k 
the longitudinal wave number. The annihilation and creation operators fulfill the standard 
commutation relation 

(1) 

The corresponding frequencies are denoted by Wn(k) and the mode functions read fn(k,x) = 

exp( ikz) Jft\ k, x, y). The mode functions are normalized such that 

A= n� f dxdyjf�T}(k,x,y)j2 
+ f dxdyjf�T)(k,x,y)l2, 

jA1 jA2 

(2) 

where the first integral goes over the part of the mode function inside and the second integral 
over the part outside the dielectric medium. A is the cross section of the microstnicture. The 
positive frequency part of the electric field is then given by 

E(+)(x) = L J dkEo(wn(k))fn(k,x)an(k) 
n 

(3) 

with Eo(w) = Jnw/(2foA) the electric field of a single photon. (For simplicity we neglect 
polarization issues here, as polarization should at least qualitatively not change our results.) 

In the following we will assume that only modes with frequencies close to the atomic 
resonance frequency Wa contribute to the dynamics. We will thus replace E0(wn(k)) by the 
corresponding value at the atomic frequency Eo = E0(wa) and take it out of the integral in 
Eq. (3). In dipole and rotating wave approximation the system dynami<;s is then governed by 
the Hamiltonian 

H = WaO'tO' + L J dk wn(k)al(k)t1n(k) 
n 

+ ig L J dk [f�(k,xa)al(k)O" - O't fn(k,xa)t1n(k)].
n 

(4) 

Here O' is the atomic lowering operator, Xa is the position of the atom, and g = µEo whereµ 
is the atomic dipole moment. The first line of Eq. (4) describes the free field evolution and 
the second line the atom-light coupling. 

From this Hamiltonian we obtain Heisenberg equations of motion for the operators u and 
an(k), where we include photon losses from the dielectric medium at a rate 2K and spontaneous 
decay of the atomic excited state into the free space vacuum modes or by non-radiative 
channels, e.g., due to atom-phonon coupling, at a rate 2r. Next, we fonnally integrate the 
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Fig. 1 - Schematic presentation of the sample microstructure. 

equation for o.n (k) and insert the solution into the equation for <r. Up to first order of the 
perturbation series in the small parameter g2 /(waK), the resulting Heisenberg equation for the 
atomic polarization r; is equivalent to 

where 

:t (j = (-iwa - r + I: Ln)u,
n 

L =-'Y +i& =g2Jdk lfn(k,x,.)12 

n n n iwa - iwn(k) - K • 

(5) 

(6) 

Note that we assumed the limit of small atomic saturation and neglected quantum noise terms 
(related to spontaneous decay [10]) here. Moreover, we will in the following use the vacuum 
value for the decay rate r, which is tantamount to neglecting non-radiative decays as well as 
the change of the mode density of the free space (unbound) light modes due to the presence 
of the microstrncture. 

Equations (5), (6) show that the coupling of the atom to the various branches of transverse 
modes gives rise to atomic Lamb shifts 8n and line broadenings 'Yn · Depending on the shape 
of the dispersion relation wn (k), the Lamb shift and the line broadening obtained from the 
coupling of the atom to continuous one-dimensional sets of electric modes can significantly 
alter the atomic dynamics, as we will demonstrate in the remaining part of this Letter with a 
specific example. Since dielectric microstrnctures can be fabricated with high accuracy, this 
offers the possibility to tailor the atom-light interaction to a large extent. 

Specific ,example of a microstructure.- In order to discuss these effects quantitatively in 
more detail, we will in the following concentrate on a specific example of such a microstructure. 

Let us consider a dielectric medium with a rectangular cross section of height Dx and width 
Dy infinitely extended in the .z direction as sketched in Fig. 1. The light is confined within 
this structure in the two transverse directions by two different mechanisms. In x direction 
total internal reflection at the dielectric-vacuum interface is responsible for confinement, while 
in the y direction confi�ement is provided by reflecting metallic coatings. Note, however, that 
this choice only serves for simplification of the calculation and is of no essential importance 
for the effect discussed here. Dx and Dy are chosen such that the structure supports only 
one wave number ky = 1r / Dy in the y direction for the interesting range of frequencies, but is 
close to threshold for the existence of a first excited branch of modes in the x direction. 

In Fig. 2 we show the numerically calculated frequencies and longitudinal wave numbers 
of the modes supported by such a strncture. The width Dy is chosen such that the threshold 



1.1 

a
"' 

·i
2,

g 0.9
a

= 

0�1 -0.5 o. 0.5

k (units ofk ) 
a 

Fig. 2 - Mode frequency wn (k) versus longitudinal wave number k. The parameters are no = 1.5, 
Dx = >.p/ Jnf-=1, and Du is chosen such that the threshold of the first excited branch in x direction 
is Wa, 

of the first excited branch coincides with the atomic resonance frequency, w1{0) = Wa . Hence, 
for all modes in this branch w1{k) � Wa , Therefore, all modes contribute with the same sign 
to the imaginary part of the integral in Eq. (6) and a large Lamb shift c51 can be expected. 
Simultaneously, at threshold we have awa�k) = 0 and therefore a large number of modes 
contributes resonantly to the real part of the integral, that is, to the line broadening ')'1. Similar 
threshold effects are present in photonic bandgap materials, where the three dimensional 
vacuum is restrnctured such that no radiation mode exists in a certain frequency range [11]. 
However, here the multi-branch structure of the dispersion relation of Fig. 2 becomes essential, 
as the fundamental branch of propagating modes serves for resonantly driving the atom and 
for observing a stationary scattering scenario in an input-output system. 

An analytic approximation of Eq. (6) can be obtained. The transverse part of the modes 
is approximated by a unique function f�T\x, y) for all the relevant frequencies within each 
mode branch, i.e. we assume constant values of kx,n and a constant transverse wave number 

Qn = _!_ fk; n + ky2·n0 V 
(7) 

Introducing an exponential convergence factor to cut off high frequencies which in the dipole 
approximation leads to an unphysical logarithmic divergence (missing in the minimal coupling 
scheme), we find by complex contour integration 

1+ Qn 
( )2 

Tn + isn 

Here 

{8) 

(9) 

{10) 

{11) 
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Fig. 3 - Lamb shift 61 (solid line) and level broadening 'Yt (dashed) due to the interaction of the 
atom with the first branch of excited modes versus threshold frequency Wth· The atomic parameters 
correspond to the D2 line of Rb, K. = O.OOlwa, no = 1.5, D:r: = >.p/ Jn� - 1. The atomic position 
is (xa , Ya, za) = (D:r: /2, D11/2, 0), i.e., the point of maximum coupling at the surface of the dielectric 
medium. The plotted range of Wth corresponds to a variation of about 10% of the spatial width D
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For the parameters used in this L�tter we compared these results with numerical integrations 
of Eq. (6) and found excellent agreement. 

As a central result of our calculations we show the Lamb shift and photon scattering rate 
in Fig. 3. These can exceed the natural atomic linewidth by far. The origin of this dramatic 
effect on 81 and ,y1 lies in the appearance of the first (transversally) excited mode branch and 
varies strongly as a function of its threshold frequency Wth· For the given parameters the 
frequencies are well above the threshold of the lowest branch and its contribution to the Lamb 
shift 80 and level broadening 'Yo are below one atomic linewidth and thus much smaller. 

For Wa > Wth, travelling wave solutions exist in the excited branch of modes at the atomic 
frequency, and the dominant effect is enhanced spontaneous atomic decay by emission of 
photons into the microstructure modes. For Wa < Wth, no travelling solutions exist and the 
main effect is a shift of the atomic frequency by 81 . At threshold and assuming "' « wa, 
Eq. (8) can be approximated by 

g
2
n0 (T) 2 i - 1 � 

Li = 21r-c-lf1 (xa,Ya)I -2-vwa/K.. (12) 

Hence, the maximum possible Lamb shift is determined by the ratio of the optical frequency to 
the photon loss rate from the microstmcture. Thus, for our specific example the limiting factor 
is the reflectivity of the metallic coatings on the dielectric surfaces. For example, a reflectivity 
of 99% yields a decay rate "' ::::::i wa/1000 as used in Fig. 3. Note that the magnitude as well 
as the scaling of the ca).culated Lamb shift are very different from the ones found for atoms 
between metallic plates [12] or in photonic band gap materials [11]. 

As a complementary effect of the large Lamb shift, the strong coupling leads to unusually 
enhanced scattering of photons by the atom. Let us calculate the scattered radiation field 
in the following. To this end, we introduce an additional term in the Hamiltonian (4) which 
describes the coupling of a single travelling wave with wave number ko and frequency W

p 
of 

the lower branch of modes to an external driving field. With the same simplifications as used 
to obtain Eq. (8) and assuming"'» l.6.a l (where D.a = W

p 
- Wa is the atom-pump detuning) 



we find the following stationary electric field (3): 

E(x) oc eikoz JJT\x, y)

eno(iro-so}lzl (T) 
-Lo iAa -r+LnLn

10 (x,y) {13) 
eno(ir1 -s1}lzl ff) (xa , Ya) (T} 

-L1iA -r+� L f(T}
( )

f1 (x,y),
a L.,n n 1 Xa,Ya 

where the first line gives the field of the single pumped mode, the second line is the field of 
the light scattered into the lower branch of modes, and the third line is the field scattered 
into the upper branch. Ai; an example we plot the field intensity along the z direction at 
the center of the medium, Fig. 4(a), and on the surface, Fig. 4(b), for an atom sitting at the 
surface position (xa, Ya, Za) = (D,1:/2, D

y
/2, 0) 

At the center of the structure all excited branch modes have zero amplitude and the 
electric field is formed by the lower branch only. Since the corresponding Lamb shift 80 is 
small, the change of the electric field is small too. However, we see that the atom (at position 
z = 0) scatters some light from the pumped mode into its degenerate counter-propagating
mode. Hence, on top of the constant intensity of the pumped mode, there appears a standing 
wave with about 3 % modulation on one side of the atom. Due to the damping of the light 
modes, this standing wave has an exponentially decaying envelope with a decay distance of 
do = c/(noK). The electric field at the surface, on the other hand, is dominated by the large 
Lamb shift 81 due to the excited branch of modes and therefore has a much larger change 
of amplitude, see Fig. 4(b). Similar enhancement of light scattering has been predicted for 
a dielectric wire in a metallic wave guide [13]. According to Eq. (13), we find again an 
exponential decay with an approximate decay length of d1 = c/(n0�), which is much 
shorter than that of Fig. 4{a). A spatially resolved detection of the photons lost through 
the coatings of the dielectric structure would thus reveal the change of field intensity and 
could serve as an implicit measurement of the large atomic Lamb shift. An estimate for the 
parameters of Fig. 4 and assuming an atomic saturation parameter of 0.1 yields a loss of the 
order of 103 photons per µm length and per µs time through the metallic coatings, which 
should easily be detectable. 

An interesting option to detect the frequency shift can come from an atom-optical exper
iment where a cloud of cold atoms is dropped onto the microstructure and reflected by the 
evanescent light field. If the atomic cloud is dilute enough such that the mean distance be
tween the atoms is larger than d1 , each atom will be scattered individually and the reflection 
of the cloud wil.J. essentially be specular. On the other hand if atoms are closer than d1, they 
will interact with a distorted light field as shown in Fig. 4{b). Since the modulation of the 
light intensity along x is roughly of the order of the total intensity and since the periodicity 
is of the order of an optical wavelength, the forces along x will be comparable with the force 
in z direction. Hence the average reflection of a cloud of atoms will be highly diffusive in this 
regime. 

Conclusions.- We discu�sed the drastic changes of the interaction of an atom with a quasi
lD optical waveguide, if one operates the system close to a branch cutoff. Although developed 
on a specific example, our theory is easily applicable to atom-photon interactions for a broad 
variety of optical microstructures. The results should hold as long as the dispersion relation 
for the modes has the very general shape depicted in Fig. 2. Since the mode density can be 
tailored much better by such structures than by Fabry-Perot cavities, the strong enhancement 
of the atom-photon interaction could lead to a completely new generation of cavity QED 
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Fig. 4 - Stationary light field intensity IE(z)l2 along z for y = D11/2 and (a) x = 0, (b) x = D.,/2 in 
the case of a single driven mode. Parameters as in Fig. 3 with Wt,. = wp, D.� = 10r. 

experiments [14] with possible applications such as micro-optical devices involving only very 
few atoms and photons. This could have a similar impact on the field as the advent of quasi 
2D or lD electron systems with tailorable mode densities in semiconductor devices. 
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