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Non-Hermitian skin effect was observed in one-dimensional systems with short-range chiral inter-
action. Long-range chiral interaction mediated by traveling waves also favors the accumulation of
energy, but has not yet showed non-Hermitian topology. Here we find that the strong interference
brought by the wave propagation is detrimental for accumulation. By suppression of interference
via the damping of traveling waves, we predict the non-Hermitian skin effect of magnetic excitation
in a periodic array of magnetic nanowires that are coupled chirally via spin waves of thin magnetic
films. The local excitation of a wire at one edge by weak microwaves of magnitude ∼ µT leads
to a considerable spin-wave amplitude at the other edge, i.e. a remarkable functionality useful for
sensitive, non-local, and non-reciprocal detection of microwaves.

Introduction.—Chiral interaction, also known as non-
reciprocal coupling, refers to the asymmetric coupling
amplitude between the left and right objects [1], such
as the asymmetric hopping amplitude between two near-
est sites in Hatano-Nelson model [2]. It has been suc-
cessfully implemented to realize the non-Hermitian skin
effect in one-dimensional systems, featured by a macro-
scopic number of eigenstates piling up at one end [3–9].
These states turn out to be topologically exceptional as
showing anomalous bulk-boundary correspondence that
may be characterised by generalized Brillouin zone [4, 6],
and are promising for applications such as topological
funneling of light [8].

Chirality is a common ingredient in topological mag-
netic orders [10–12], but in terms of which realization
of non-Hermitian topology is rarely addressed [13, 14].
Chiral interaction between Kittel magnon of a magnetic
wire (or sphere) has been recently discovered when they
couple with the traveling modes such as the spin waves
in films [15–18], waveguide microwaves [19, 20], and sur-
face acoustic waves [21–23], to name a few, in that the
Kittel modes prefer to couple with the traveling waves
propagating in one direction. We have argued that these
traveling waves can mediate a long-range chiral interac-
tion between two magnetic wires if their damping is not
large [17, 18]. It could be thereby speculated that these
long-range chiral interaction might lead to a similar non-
Hermitian skin effect to that by the chiral short-range
interaction in Hatano-Nelson model [2] since the energy
tends to accumulate at one end. However, theoretical ef-
fort showed that these systems do not favor the coalesce
of bulk modes [19] but only hold weak skin tendency for
those modes with large decay rates, nor were the edge
modes ever observed by experiments [18, 24–26]. The
strong interference brought by the propagation of the
traveling waves may be detrimental for the accumulation.

In this Letter, we propose the realization of non-
Hermitian topological phase in the one-dimensional long-
range coupled magnets by figuring out the collective role
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FIG. 1. A periodic array of magnetic nanowires on top of a
thin magnetic film. The direction of the saturated magneti-
zation of the wire is pinned along the ẑ direction, while the
saturated magnetization of the film is tunable by the applied
magnetic field in the film plane. The geometric parameters
are given in the text.

of the chirality and suppression of propagation interfer-
ence via the damping of the interaction mediator. To be
specific, we model an array of magnetic wires saturated
along the wire direction on top of a thin magnetic film
that are coupled via the dipolar interaction, as depicted
in Fig. 1. When the film magnetization is along the wire
direction, the coupling between the Kittel mode and the
film spin waves is chiral in that the former only couples
to the latter propagating in one direction [16], the chiral-
ity being tunable by the direction of the magnetization of
the film [27]. The spin waves in the film then mediate a
chiral interaction with an asymmetric coupling strength
between the left and right wires. We find that when
the damping of the spin waves of the film is sufficiently
strong (while assuming the wire has a small damping),
all the collective modes of the array of wires are localized
at one edge, showing a non-Hermitian skin effect. This
skin effect, however, vanishes when the damping tends to
zero or the chirality is absent. We analytically approach
the generalized Brillouin zone that characterizes a non-
trivial winding of the eigen-frequency only when there
exist both chirality and strong damping of the film spin
waves. The non-Hermitian skin effect can act as a non-
local and non-reciprocal information processor since the
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excitation of wire at one edge leads to a large amplitude
at the other edge. It is extremely sensitive that allows for
the detection of microwaves as small as µT, a function-
ality that may be implemented in classical information
processing and future quantum technology.

Chiral interaction between objects.—We consider an
one-dimensional model with a periodic array of N mag-
netic nanowires of thickness d on a thin magnetic film
of thickness s (Fig. 1) [18, 24–26]. The distance be-
tween the neighbouring wires L0 is much larger than the
wire width w such that the direct dipolar interaction be-
tween wires is negligible. The l-th wire is centered at
rl = Rlŷ = lL0ŷ. The saturated magnetization M̃s of
the wire is pinned along the wire ẑ direction by shape
anisotropy, while the film saturated magnetization Ms

along ẑ′ is tunable by the applied magnetic field Happ

with an angle φ with respect to the wire direction.
The interlayer exchange interaction between the wire

and film is suppressed by an insulating spacer [18, 24].
The magnetization M̃l in the l-th magnetic wire couples
with the stray field h from M in the film via the dipo-

lar interaction Ĥint = −µ0

∫ d
0
dxdρρρM̃l,α(x,ρρρ)hα(x,ρρρ), in

the summation convention over repeated Cartesian in-
dices α = {x, y, z}, µ0 being the vacuum permeability.
We disregard the nonlinear interaction between magnons
when focusing on the linear regime. The magnetizations
in the magnetic wires and film are then expanded by the
magnon operator [28, 29],

M̂x(r) =
√

2Msγ~
∑
k

(
m(k)
x (x)eikyâk + H.c.

)
,

M̂y(r) = cosφ
√

2Msγ~
∑
k

(
im(k)

x (x)eikyâk + H.c.
)
,

ˆ̃Mα={x,y},l(r) =

√
2M̃sγ~

(
m̃K
l,α(r)b̂l + H.c.

)
, (1)

where γ is the modulus of the gyromagnetic ratio,

m
(k)
x (x) and m̃K

l,α(r) represent the amplitude of the spin-

waves and Kittel modes, and âk and b̂l denote the
magnon operators in the film and wire. For simplicity,
k denotes ky. By the dipolar field of magnetic charge
[27, 30], the total Hamiltonian

Ĥ/~ =
∑
l

ωKb̂
†
l b̂l +

∑
k

ωkâ
†
kâk

+
∑
l

∑
k

(
gke
−ikRl b̂lâ

†
k + gke

ikRl b̂†l âk

)
(2)

is expressed by the coupled harmonic oscillators. Here,
ωK is the frequency of the Kittel mode of the wires, ωk =
µ0γHapp+αexµ0γMsk

2 is the dispersion of the spin waves
of the film with slope governed by the exchange stiffness
αex. The coupling constant

gk = D(k)m(k)∗
x (|k|+ k cosφ)

(
m̃K
x + isgn(k)m̃K

y

)
depends on the propagation direction of the spin waves,
the relative direction of the magnetizations in the

film and nanowire, and the geometry of the wire and
film that is characterized by the form factor D(k) =

−2µ0γ
√
MsM̃s/Λ(1 − e−|k|d)(1 − e−|k|s) sin (kw/2) /k3.

Here Λ is the length of the magnetic wire. The spin waves
in the film are circularly polarized when their wavelength
is sufficiently short [18, 24, 27]. Thereby when φ = 0
(φ = π), i.e. the magnetization of the wire and film is
parallel (anti-parallel), the wire Kittel mode only cou-
ples with the spin waves of right-going (left-going) with
g−|k| = 0 (g|k| = 0) [27].

These directional spin waves can mediate a chiral in-
teraction between two wires, approached by the Langevin
equation under Hamiltonian Eq. (2). When the magnetic
quality of the wire is higher than that of the film, we are
allowed to use the Markov approximation [31, 32] when
integrating out the film degree of freedom, yielding the
Langevin equation for wires

db̂l
dt

= −iωKb̂l −
κ

2
b̂l −Gl(ω)b̂l −

∑
l 6=l′

Gll′(ω)b̂l′. (3)

It describes an effective interaction between the Kittel
magnons at any instant by several coupling parameters.
Here, κ = 2α̃GωK and κk = 2αGωk are the Gilbert damp-
ing of the wire Kittel modes and film spin waves, respec-
tively, parameterized by the Gilbert coefficient α̃G and
αG. Additional damping is induced by pumping the spin
waves that loses energy with rates

Gl(ω) =
∑
k

i|gk|2

ω − ωk + iκk/2
→ 1

2v(kω)

(
|gkω |2 + |g−kω |2

)
.

v(k) = 2αexµ0γMsk is the group velocity of the trav-
eling waves and kω =

√
(ω − µ0γHapp)/(αexµ0γMs) is

the positive root of ωk = ω. The spin waves mediate an
effective interaction

Gll′(ω) = i
∑
k

eik(Rl−Rl′ )
|gk|2

ω − ωk + iκk/2
.

We need to take into account of the finite damping of the
spin waves in order to obtain the range of the interaction.
To this end, we find the root of ω−ωk + iκk/2 = 0 to be
qω = kω(1 + iαG/2), in terms of which

Gll′(ω) =
Λ

v(kω)
eiqω|l−l

′|L0

{
|gkω |2, Rl > Rl′

|g−kω |2, Rl < Rl′
.

The interaction is of long-range when αGkωL0/2 � 1.
The constant ΓR = |gkω |2/v(kω) [ΓL = |g−kω |2/v(kω)]
represents the coupling strength from the left to right
(right to left) wires.

We illustrate the effective couplings by exemplifying
CoFeB wires of width w = 150 nm and thickness d =
20 nm on top of a Ni film of thickness s = 5 nm. With
µ0M̃s = 0.6 T for Ni [33] and µ0Ms = 1.6 T [34] for



3

CoFeB of stiffness αex = 8× 10−13 cm2 [35, 36], we plot
the direction dependence of the coupling constants ΓL,R
on the applied magnetic field of strength µ0Happ = 0.1 T
in Fig. 2. With these parameters, the frequency of the
Kittel modes of CoFeB wire is ωK = 60 GHz [27]. The
coupling is perfect chiral when the magnetizations of wire
and film are parallel (ΓR 6= 0 but ΓL = 0) or anti-parallel
(ΓL 6= 0 but ΓR = 0). The chirality vanishes at two
critical angles φc = {0.4π, 1.6π}. Thereby, the system
allows to simulate rich physics from with perfect to in
the absence of chirality.
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FIG. 2. Dependence of the coupling constants ΓL,R on the di-
rection φ of the applied magnetic field. The geometric param-
eters are addressed in the figure, and the material parameters
are given in the text.

Non-Hermitian skin effect.—Conveniently, the effec-
tive non-Hermitian Hamiltonian

Ĥeff =

(
ωK − iα̃GωK − i

ΓR + ΓL
2

) N∑
l=1

b̂†l b̂l

− iΓR
∑
l<l′

eiq∗|l−l
′|L0 b̂†l b̂l′ − iΓL

∑
l>l′

eiq∗|l−l
′|L0 b̂†l b̂l′ ,

(4)

recovers the Langevin equation (3), in which within on-
shell approximation ΓL,R ≡ ΓL,R(ωK) and q∗ ≡ qωK

.
When α̃G < 10−2 for CoFeB, the radiative damping
(ΓR+ΓL)/2 by pumping the spin waves in the film dom-
inates the damping of Kittel magnons in the wire. The
Hamiltonian can be expressed via a non-Hermitian ma-
trix H̃eff via Ĥeff = Ψ̂†H̃effΨ, where Ψ̂ = (b̂1, b̂2, ..., b̂N )T ,
with matrix elements

H̃eff

∣∣
ll′

=


ωK − iα̃GωK − i(ΓL + ΓR)/2, l = l′

−iΓLeiq∗(l−l
′)L0 , l > l′

−iΓReiq∗(l
′−l)L0 , l < l′

. (5)

The phase factor in the coupling constant comes from the
propagation phase of the film spin waves, thus recording
the interference of waves in the range limited by 1/|q∗|.
Although being a generalization of Hatano-Nelson model,
its topological property is, however, much less known

than its short-range version. The right eigenvectors of
H̃eff and H̃†eff be {ψζ} and {φζ} with corresponding eigen-
values {νζ} and {ν∗ζ }, where ζ is labeled from 1 to N by

increasing their decay rates. φ†ζ is then a left eigenvector

of H̃eff . After normalization we have bi-orthonormality
ψ†ζφζ′ = δζζ′ .

With the material parameters in Fig. 2, the resonant
spin waves have wave vector k = 2π/88.9 nm−1. When
taking the Gilbert damping αG = 0.02 for Ni, the range
of spin-wave mediated interaction is 1/Im(q∗) = 1.41 µm.
The interaction is of long range by choosing the distance
of neighboring wires L0 = 300 nm. The chirality is freely
tunable by changing the direction of magnetization in
the film plane as in Fig. 2. Here we typically choose φ =
{0.3π, 0.54π} that renders ΓL/ΓR = 0.2 and ΓR/ΓL =
0.2 for addressing the physics. In Fig. 3(a), all the modes
are localized at the right edge when ΓR > ΓL, but become
localized at the left edge when the chirality is reversed
with ΓL > ΓR as in Fig. 3(b). The skin effect vanishes
without the chirality at the critical angle φc = 0.416π,
as shown in Fig. 3(c) that only the modes with large
damping have a weak tendacy to be localized at the edge.
Also, localization vanishes when taking αG = 2 × 10−3

[Fig. 3(d)] [19]. Profoundly, the mode amplitudes are
enhanced by two orders in magnitude by the skin effect.
This is because that these skin modes are proximity to
the N -th order exceptional points with coalesce of all
eigen-vectors [3, 37] when one of ΓL,R is exactly zero.
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FIG. 3. Distribution of normalized eigenmodes under differ-
ent conditions. All the modes are localized at the edge in
(a) and (b) when the coupling is chiral and film damping is
strong. The skin modes vanish either without chirality [(c)]
or with weak film damping [(d)].

We find an analytical solution for the wavefunction
that allows us to explicitly depict the generalized Bril-
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louin zone, i.e. the distribution of complex momentum
κ, parameterized by βk ≡ eikL0 , on a complex plane [4, 6].
To this end, we construct a Bloch state for a complex mo-
mentum as a traveling wave Ψ̂κ = (1/

√
N)
∑N
l=1(βκ)lb̂l,

obeying, under Hamiltonian (4), the equation of motion
dΨ̂κ/dt = −iωκΨ̂κ − ΓLgκΨ̂q∗ + ΓRhκΨ̂−q∗ [19, 38, 39].
The dispersion relation

ωκ = ωK − iα̃GωK − i
ΓR
2

1 + βκβq∗
1− βκβq∗

+ i
ΓL
2

1 + βκβ−q∗
1− βκβ−q∗

(6)

is singular when κ = ±q∗, implying that around these
points the states have large decay rates. The traveling
modes are not the eigenstates because of the existence of
two edges in the chain that radiates energy with ampli-
tudes

gκ =
1

1− βκβ−q∗
, hκ =

(βκ)N (βq∗)
N

1− βκβq∗
, (7)

and reflects the traveling modes. Thus we may superpose
two traveling modes of the same energy with different
momenta, i.e.

ωκ = ωκ′ (8)

for a new mode. Superposition ∆̂ = gκ′Ψ̂κ−gκΨ̂κ′ obeys

d∆̂

dt
= −iωκ∆̂ + ΓR (gκ′hκ − gκhκ′) Ψ̂−q∗ , (9)

and becomes the eigenmode when

gκ′hκ = gκhκ′ . (10)

Equations (8) and (10) are the desired relations to
find the complex momentum κ, substituting which into
Eq. (6) leads to the dispersion. Numerically diagonaliz-
ing the Hamiltonian with eigen-frequency ωκ solves the
complex momentum

β(±)
κ = (−Bκ ±

√
B2
κ − 4AκCκ)/(2Aκ), (11)

where with ω̃κ ≡ ωκ − ωK + iα̃GωK

Aκ = ω̃κ − i(ΓR − ΓL)/2,

Bκ = −
(
ω̃κ − i

ΓR + ΓL
2

)
βq∗ −

(
ω̃κ + i

ΓR + ΓL
2

)
β−q∗ ,

Cκ = ω̃κ + i(ΓR − ΓL)/2.

Equation (11) contains two roots of momentum κ and κ′

at the same frequency, confirming the relation (8).
On the other hand, for the eigenmodes we expand ∆̂ =∑
l φ
∗
ζ,lb̂l and find the wavefunction

ψζ,l = C
(
gκ′β

N−l
κ − gκβN−lκ′

)
, (12)

to be normalized with a constant C. The exponent (N−l)
controls the distribution of excited wire magnons. When

|βκ| > 1 (|βκ| < 1), the amplitude of ψζ,l decreases (in-
creases) with increasing the sites from 1 to N , implying
the localization at the left (right) edge of the chain. Fig-
ure 4 plots the distribution of the real and imaginary
parts of β±, which form a loop in the complex plane, un-
der different conditions. When there are net chirality and
strong damping of the film, |β±| labeled by the red and
blue dots deviate strongly from unit that is indicated by
the green dashed line. This is the condition for the emer-
gence of the non-Hermitian skin effect [4, 6]. When the
chirality vanishes or the damping of film becomes small,
the distribution of β almost overlaps with the unit circle,
indicating the absence of skin effect.
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FIG. 4. Generalized Brillouin zone under different chiralities
and dampings. |β| < 1 (|β| > 1) in (a) and (b) favors the
localization at the right and left edges, respectively, while
|β| ≈ 1 in (c) and (d) indicates the absence of the skin effect.

Sensitive detection of microwaves.—The wires can be
excited and detected by the local metal stripline with
comparable width to w that is assumed to support an
uniform electric current in the cross section [18]. A thin
stripline on top of the le-th wire generate a magnetic
field hyŷ of frequency ωd that locally excite the beneath
wire. The interaction between the field and wire Kittel
mode Ĥ ′int = ~(glee

−iωdtβ̂†le + H.c.) is parameterized by

gle = −µ0

√
M̃sγ/(2~)hydwm̃

K
le,y

. At the steady-state,

the excited amplitude of the magnetization in every wire
follows 〈Ψ̂〉 =

∑
ζ gleφ

†
ζ,le

ψζ/(ωd − γζ). To be realistic,
we take into account of the disorder modelled by the ran-
dom shift δω ∈ [−0.01ωK, 0.01ωK] to the Kittel frequency
of every wire. The skin effect turns out to be robust to
this disorder. Only launching of the opposite edge can
efficiently excite the localized modes at the edge, i.e. non-
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local and non-reciprocal excitation. On the other hand,
the mode amplitudes are giantly enhanced by the skin
effect as in Fig. 3, leading to the expectation of sensi-
tive microwave detection. Figure 5 is the numerical sub-
stantiation of the above expectation: a small microwave
field 10 µT of frequency ωd = 60 GHz leads to a devi-

ation of the magnetization 2µ0

√
2M̃sγ~nlm̃l,y = 0.13 T

of CoFeB wire with α̃G = 0.002 at the steady state, i.e.
a precession cone angle of ∼ 4.7◦, nl being the excited
magnon number in the l-th wire. The results converge
when averaging up to 104 samples with random disorder.
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FIG. 5. Non-local excitation of magnons by weak microwaves.
The excited magnons accumulate at the right edge when the
stripline locally excites the le-th wire.

Discussion.—To conclude, we predict the non-
Hermitian skin effect of chirally coupled magnetic wires
that are mediated by the spin waves of significant damp-
ing, which overcomes the strong interference brought by
the propagation of the traveling waves. This leads to
functionalities such as non-local spin-wave excitation and
giantly sensitive detection of microwaves, and makes it
easier to achieve nonlinear regime of magnons with a
small power. The generalization of our scenario to chi-
ral photonics [1, 40], plasmonics [41–43], and acoustics
[44, 45] may promote the performace of sensors for de-
tection of small signals.
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210903 (2021).


	Giant Microwave Sensitivity of Magnetic Array by Long-Range Chiral Interaction Driven Skin Effect
	Abstract
	 Acknowledgments
	 References


