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Being motivated by the recent prediction of high-Q modes in subwavelength dielectric resonators

inspired by bound states in the continuum (BIC), we study the second-harmonic generation from isolated

subwavelength AlGaAs nanoantennas. We reveal that nonlinear effects at the nanoscale can be enhanced

dramatically provided the resonator parameters are tuned to the BIC regime. We predict a record-high

conversion efficiency for nanoscale resonators that exceeds by 2 orders of magnitude the conversion

efficiency observed at the magnetic dipole Mie resonance, thus opening the way for highly efficient

nonlinear metasurfaces and metadevices.
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Metaoptics governed by Mie-resonant nanoparticles has
emerged recently as a new direction in nanophotonics [1],
and it is expected to complement different functionalities of
plasmonic structures in a range of potential applications [2].
All-dielectric nanoresonators have many advantages,
including low losses and low heat dissipation, that can
make them efficient building blocks for novel photonic
metadevices. Importantly, the coexistence of strong electric
and magnetic Mie-type resonances can result in construc-
tive or destructive interferences with unusual beam shap-
ing, or lead to resonant enhancement of magnetic fields in
dielectric nanoparticles that can bring many novel effects in
the nonlinear regime [1].
Low-order Mie resonances are known to exhibit rela-

tively low values of quality factors (Q factors) [2].
Nevertheless, recently it was revealed [3] that subwave-
length nanoscale resonators can support localized states
with high Q factors provided their parameters are closely
matched to the bound states in the continuum (BIC) [4]
formed via destructive interference of two similar leaky
modes [5,6]. A true BIC is a mathematical abstraction since
its realization demands infinite size of the structure or zero
or infinite permittivity [7,8]. Nevertheless, high-index
dielectric nanoparticles can exhibit high-Q resonances
via a BIC-inspired mechanism associated with the so-
called supercavity modes [9].
The important questions are if those large Q factors can

enhance nonlinear effects at the nanoscale [10,11] and how
large this enhancement can be. Nonlinear optics at the
nanoscale is governed by strong field confinement and
resonances [10], and is not hampered by phase matching
[12]. The field localization in dielectric nanoparticles is
expected to occur near electric and magnetic Mie reso-
nances that can be largely tuned in frequency by their
geometric parameters [1].

In this Letter, we study second-harmonic generation
(SHG) from isolated subwavelength nanoantennas, as
presented schematically in Fig. 1. We predict a giant
enhancement of nonlinear effects provided the resonator
parameters are tuned to the BIC regime. The predicted
record-high conversion efficiency exceeds by 2 orders of
magnitude the largest conversion efficiency at the nano-
scale demonstrated so far, opening up the door for many
important applications of nonlinear and quantum nano-
photonics.
Before presenting our main results, we notice that it is

customary to define the SHG efficiency as γSH ¼ PSH=P
2
FF,

where PSH is the total radiated power at second harmonic
(SH) and PFF is the pump power incident on the resonator
at the fundamental frequency (FF). As defined by this
relation, SHG conversion efficiencies in plasmonic nano-
antennas up to 5 × 10−10 W−1 have been demonstrated
[13–15]. An important improvement was recently possible
for dielectric nanoantennas where γSH ∼ 10−6 W−1 was
demonstrated [16–19] near multipolar resonances.
However, the proposed definition of SHG efficiency

does not take into account that only a percentage of the
pump power is actually coupled to the cavity mode. To take
this issue into account, we define an intrinsic conversion

efficiency ρSH independent of the shape of the pump beam,

ρSH ¼
γSH

η2
¼

PSH

ðηImAÞ
2
; ð1Þ

where Im is the pump power density impinging on the
resonator, and A is the geometrical cross section of the
resonator. The term η is the coupling coefficient between
the pump beam and the resonator mode at the pump
frequency. For resonator modes with Q factors of more
than 10, their electromagnetic field is indistinguishable to

PHYSICAL REVIEW LETTERS 121, 033903 (2018)

0031-9007=18=121(3)=033903(5) 033903-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.121.033903&domain=pdf&date_stamp=2018-07-19
https://doi.org/10.1103/PhysRevLett.121.033903
https://doi.org/10.1103/PhysRevLett.121.033903
https://doi.org/10.1103/PhysRevLett.121.033903
https://doi.org/10.1103/PhysRevLett.121.033903


the profile of modes of the closed cavity since the radiation
losses can be treated as a weak perturbation. Therefore,
η can be defined as the spatial overlap integral between the
electric fields of the pump beam, Ep, and the resonator
mode, Ec, at the upper resonator surface A:

η ¼
j
R

A E
�
pEcdSj

2

ð
R

A jEpj
2dSÞð

R

A jEcj
2dSÞ

: ð2Þ

Thus, the enhancement of extrinsic SHG conversion
efficiency γSH can be achieved via increase of efficiency of
the coupling between the pump beam and nanoresonator
mode and, independently, by enlarging the nanodisk Q

factor. On the other hand, when considering structures
supporting optical resonances at both SH and pump
frequencies, spectral and spatial mode overlap play an
important role [16]. While spectral overlap can be
improved by tuning pump and SH frequencies to coincide
with some of the nanodisk eigenfrequencies, spatial overlap
involves the mode matching of pump and induced SH
polarization fields.
We start our study from the eigenmode analysis. We

apply the resonant-state expansion (RSE) method [20] for
the AlGaAs resonator with a fixed permittivity ε ¼ 10.73,
which corresponds to material dispersion at pump wave-
length λ ¼ 1550 nm (see Supplemental Material [21] for
details). We choose the z direction as the disk axis and
numerate modes by radial index, azimuthal index, n, and
parity p ¼ 0, 1 with respect to up-down reflection sym-
metry. Importantly, for different values of p and n the RSE
analysis is performed independently and eigenmodes (res-
onant states) with n ¼ 0 are rigorously divided into TE
(E ¼ Eeφ) and TM (H ¼ Heφ) types [28]. The spectrum
of the resonant states of AlGaAs nanodisk with respect to
disk aspect ratio r=h for even (p ¼ 0) modes with n ¼ 0

(TE polarization) and n ¼ 1 is shown in Fig. 2(a) with blue
and pink lines, respectively. The RSE method is truncated
by M ¼ 16, N ¼ 452 for n ¼ 0 modes and by M ¼ 16,
N ¼ 896 for n ¼ 1 modes. Here N is the number of basis
modes with frequencies ωi lying inside a circle of radius
jωiR=cj ≤ M, where R is the radius of a sphere enclosing
the nanodisk.

FIG. 1. Artistic view of the second-harmonic field generated
from a subwavelength dielectric nanoparticle pumped by an
azimuthally polarized beam at the BIC conditions.

1

1
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FIG. 2. Eigenmode spectra and electric field patterns for the AlGaAs nanodisk resonator. (a) Eigenfrequencies vs aspect ratio r=h
for even (p ¼ 0) modes with n ¼ 0 and n ¼ 1 shown with (blue and pink) lines, respectively; and linewidths are proportional to
the Q factors of the modes. (b),(d) Electric field amplitude and (c),(e) directivity pattern of the MD and BIC-inspired modes,
respectively.
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As follows from Fig. 2(a), the spectrum evolution with
respect to aspect ratio reveals a number of avoided
resonance crossings describing strong mode coupling with
the formation of high-Q states [3], which are the hallmark
of non-Hermitian systems with both internal and external
mode couplings [29]. Here, we focus on two resonant states
of the nanodisk, marked as A and B in Fig. 2(a). The
resonant state A with p ¼ 0, n ¼ 1 represents a conven-
tional magnetic dipole (MD) mode with magnetic moment
oriented transversely to the z direction. The resonant state
B, with TE polarization and p ¼ 0, n ¼ 0, is a high-Q
supercavity mode with Q ¼ 110 associated with the BIC
conditions. The electric field and directivity pattern of the
MD and BIC modes are shown in Figs. 2(b)–2(e), respec-
tively. The electric field of the BIC mode is uniform with
respect to the azimuthal direction which allows us to
achieve good mode matching with an azimuthally polarized
pump and, according to Eq. (2), to increase the coupling
efficiency η of the pump into the nanodisk compared to a
linearly polarized pump [30].
To investigate the SHG response of the AlGaAs nano-

resonator, we use three-dimensional electromagnetic sim-
ulations implemented with the finite-element method in
COMSOL. The nanodisk is suspended in a homogenous
background with refractive index 1. The dispersion of the
AlGaAs permittivity is fitted from measured values [31],
with losses taken into account. The nonlinear optical
response from the material is estimated in the undepleted
pump approximation. Thus, we use two subsequent sim-
ulations: as the first step, the linear optical response of the
nanodisk excited at FF is evaluated, while, at the second
step, we reproduce SHG by excitation of the nanodisk with
the nonlinear currents induced by the FF beam. The
induced second-order nonlinear polarizabilities, P

ð2ωÞ
i ,

are deduced from the electric fields in the resonator
obtained in the first simulation step (at FF) using the
χð2Þ tensor related to a material with the zincblende
crystalline structure,

P
ð2ωÞ
i ¼ ε0χ

ð2Þ
ijkE

ðωÞ
j E

ðωÞ
k ; i ≠ j ≠ k; ð3Þ

where i, j, and k stand for the x, y, or z axes. For AlGaAs,

we use χ
ð2Þ
ijk ¼ 100 pm=V [32]. Subsequently, we explore

two different scenarios. First, we use a focused linearly
polarized Gaussian beam with a 60° angle of incidence with
respect to the disk base. Second, observing the magnetic
nature of the BIC resonance, we use a focused azimuthally
polarized beam [30] to enhance selectively optical coupling
from the pump beam. The estimated ρSH for all the
analyzed scenarios are listed in Table I. As can be seen,
the BIC-driven intrinsic SHG conversion efficiency

achieves values as high as 2 × 10−2 W−1, regardless of
the pump beam polarization. As expected, η is higher for
the azimuthally polarized pump than for the linearly
polarized one due to the symmetry of the electric field

of the supercavity mode shown in Fig. 2(d). This means
that for the same incident power on the nanodisk cross
section, using an azimuthally polarized beam results in an
increase of about a factor of 100 in the generated SH
power PSH.
As a reference, we compare the enhancement of the

BIC-driven SH nonlinear response to that achieved by
using the MD resonance at FF, for which many examples
in the literature report a very high efficiency (see, e.g.,
Refs. [33,34]). Since the observed nonlinear phenomena
are volumetric effects, for a fair comparison we kept the
disk volume constant. The results from the numeric SHG
experiments using the MD mode as FF are summarized in
the last row of Table I. As can be seen, the estimated SH
conversion efficiency is of the same order of magnitude
compared to previous works, see, e.g., Ref. [16], but is
smaller by a factor of 100 than that achieved by using the
BIC mode at FF. Such an enhancement can be ascribed to
the increase of the Q factor of the mode at FF, that is
shown in the last column of Table I. As expected for
second-order nonlinear phenomena, their intensities scale
approximately with the factor ðQ=VÞ2, where we use the
nanoscale definition of the mode volume V [35]. In our
case, since the resonator volume is constant while the
mode Q factor increases by a factor of 10 from MD to
BIC regime, a rough estimate would indeed suggests that
a 100-fold improvement of the second-order nonlinear
interaction should be expected, as found in our numerical
simulations.
To understand the SHG enhancement driven by the

BIC-inspired supercavity mode, we analyze the value of
ρSH as a function of the nanodisk aspect ratio by tuning
the FF mode on and off the BIC condition. These
calculations are performed at a fixed pump wavelength
to move exactly along the dispersion line for the mode
that is calculated and shown in Fig. 2(a). The results
depicted in Fig. 3 (with red solid curve) show that ρSH
reaches its highest value in the region corresponding to
the BIC mode condition. The dependence of ρSH on the
nanodisk aspect ratio is, from one side, due to the scaling
of the Q factor at FF and, from the other side, due to the
resonant response at the SH frequency. Indeed, the insets

TABLE I. Enhancement of the SH response using different

combinations of modes at the fundamental frequency and optical
excitations. The columns from left to right report the mode
description at the FF, the polarization of the electric filed in the
pump beam at the FF, intrinsic SH conversion efficiency ρSH
defined in Eq. (1), the coupling coefficient η, the wavelength
corresponding to the FF, and the resonance Q factor.

FF mode Polarization ρSH×104 ðW−1Þ η λFF (μm) Q factor

BIC Azimuthal 210 0.77 1.55 110
BIC Linear 270 0.06 1.55 110
MD Linear 1.8 0.84 2.98 10
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in Fig. 3 show that the field profile of the SH response
evolves with respect to r=h.
To illustrate further this phenomenon, we analyze the

coupling between the induced SH polarization and nano-
disk eigenmodes applying the RSE at the SH frequency.
The electric field of the BIC mode has only one nonzero
component E

ðωÞ
φ , which does not depend on the azimuthal

angle exhibiting even symmetry with respect to up-down
reflection, thus Eiðr;ϕ; zÞ ¼ −Eiðr;ϕþ π; zÞ with i ¼ x,
y. From Eq. (3) and the BIC mode symmetry, it follows that
only resonant states of the nanodisk with the indices p ¼ 0

and n ¼ 2 are excited at the SH frequency.
Figure 4 shows the evolution of the nanodisk eigenmode

spectrum with respect to the aspect ratio for modes with
p ¼ 0, n ¼ 0 (TE) and p ¼ 0, n ¼ 2 calculated by means
of the RSE approach. As n Fig. 2, we perform all
calculations for the pump wavelength of 1550 nm. The
range of aspect ratios for which the calculated SHG
conversion efficiency is higher than the half-maximum
of all calculated values (see Fig. 3) is shown by a gray
shadow in Fig. 4. Perfect spectral matching between the
modes occurs when two classes of curves overlap. Figure 4
shows that there is only one resonant state at SH frequen-
cies that can be excited by the pump in the vicinity of the
supercavity mode.

Thus, we apply the temporal coupled mode theory (see
Supplemental Material [21]) to estimate the SHG efficiency
as a function of the pump frequency ω

ρ̃SH ¼ C

�

γSH

ð2ω − ωSHÞ
2 þ γ2SH

��

γFF

ðω − ωFFÞ
2 þ γ2FF

�

2

; ð4Þ

where C is a normalization constant, ωFF, γFF, ωSH, and γSH
are the FF and SH resonant frequencies and decay rates,
respectively. The calculation of ρ̃SH for resonant conditions
ω ¼ ωFF is superimposed onto the simulation results in Fig. 3,
where we observe a good agreement between the two results.
In addition, we also notice that the intensity-dependent

nonlinearity can change the position of the BIC resonances
[36,37], and thus provides an efficient tuning of the high-Q
states.
In conclusion, we have presented a new strategy to

increase substantially nonlinear response at the nanoscale
by employing the BIC concept. We have predicted that the
SHG conversion efficiency in AlGaAs nanoantennas can be
increased by at least 2 orders of magnitude compared to
earlier results, due to the mode structure engineering.
The value of γSH is comparable to state-of-the-art on-chip
scale whispering gallery mode resonators with a small
(16–25 μm2) device footprint [38,39]. These results show
the great potential of Mie-resonant semiconductor nano-
structures for nonlinear nanophotonics, and they constitute
a significant step towards the development of highly
efficient frequency conversion metadevices.
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FIG. 3. SHG conversion efficiency ρSH as a function of the
nanoparticle aspect ratio r=h calculated by nonlinear simulations
in COMSOL (red solid line) and analytically from the model
[Eq. (4)] (blue dashed line). Gray area represents the full-width at
half-maximum band of the calculated SHG conversion efficiency.
Lower insets: Intensity maps at the SH field in a longitudinal
nanodisk cross section for the aspect ratios of 0.675 (1), 0.71 (2),
and 0.79 (3).

FIG. 4. Eigenfrequencies dependence on disk aspect ratio r=h
for the FFmodeswith the indicesp ¼ 0,n ¼ 0 (TE) andSHmodes
withp ¼ 0,n ¼ 2 are shownwith blue and cyan lines, respectively.
The supercavitymode ismarkedwithB as in Fig. 2(a). Dot sizes are
proportional to the mode Q factor. Pump and SH frequencies are
shown in lower and upper horizontal scale, respectively.
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