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Transport measurements have been a powerful tool for discovering electronic phenomena in
graphene. We report nonlocal measurements performed in the Hall bar geometry with voltage
probes far away from the classical path of charge flow. We observed a large nonlocal response
near the Dirac point in fields as low as 0.1 tesla, which persisted up to room temperature. The
nonlocality is consistent with the long-range flavor currents induced by the lifting of spin/valley
degeneracy. The effect is expected to contribute strongly to all magnetotransport phenomena
near the neutrality point.

G
raphene continues to attract intense in-

terest, especially as an electronic system

in which charge carriers are Dirac-like

particles with linear dispersion and zero rest

mass. Transport measurements in graphene have

unveiled a number of unusual phenomena, in-

cluding two new types of the quantumHall effect

(QHE), minimum metallic conductivity, bipolar

superconductivity, and Klein scattering (1–4). In

a number of experiments, unusual behavior was

found at low temperatures (T) and high magnetic

fields (B) near the so-called Dirac or neutrality

point (NP), where charge carrier density n tends

to zero (5–9). However, the NP is also hardest to

access experimentally because of charge inhomo-

geneity (electron-hole puddles) and limited car-

rier mobilities (m). Furthermore, the fundamental

neutral degrees of freedom in graphene, such as

spin and valley, evade detection by the standard

electrical measurement techniques, even in the

best-quality samples (here the valley degree of

freedom refers to the inequivalence of the pair of

conical valence/conduction bands in theBrillouin

zone, which touch at Dirac points).

In this work, we performed nonlocal mea-

surements, previously used to probe the dynam-

ics of population imbalance for edge modes in

quantum Hall systems (10, 11) as well as spin

diffusion (12) and magnetization dynamics (13).

The advantage of nonlocal measurements is that

they allow one to filter out the ohmic contribu-

tion resulting from charge flow and, in doing

so, detect more subtle effects that otherwise can

remain unnoticed (10–14). The measurements

were carried out by using more than 20 devices

of two different types. Type I devices were made

in the conventional way, with graphene placed

on top of an oxidized Si wafer (1–7), hereafter

referred to as GSiO. Type II devices contained

thin crystals of hexagonal boron nitride placed

between graphene and SiO2 (15) (referred to as

GBN). All the devices were made in the Hall

bar geometry by following the microfabrication

procedures described previously (1, 6, 15–17).

The GSiO devices had mobility m of ~10,000

cm2/Vs, whereas GBN devices showed much

higher m, between 50,000 and 150,000 cm2/Vs

for carrier concentrations n ~ 1011 cm−2 (17).

Typical charge inhomogeneity n0 estimated from

the rounding of the conductivity minimum was

~1010 and 1011 cm−2 for GBN andGSiO devices,

respectively. All of our samples exhibited a qual-

itatively similar nonlocal response; however,

its absolute value was 10 to 100 times larger in

GBN samples. Unless stated explicitly, the re-

sults described below refer equally to both de-

vice types.

Figure 1A shows a representative GSiO de-

vice, used to describe different measurement ge-

ometries. In the standard Hall bar geometry, so

that current I14 flows between contacts 1 and 4

and voltage V23 is measured between contacts 2

and 3, the longitudinal resistivity rxx [calculated

as (w/L) × R23,14, where L and w are the length

and width of the Hall bar, and R23,14 = V23/I14]

shows the standard QHE behavior for monolayer

graphene, with wide regions of zero rxx accom-

panied bywell-defined plateaus in Hall resistivity

rxy (Fig. 1B and fig. S1).

In the following, we focus on the nonlocal

resistance, RNL. The measured signal (e.g., R35,26
in Fig. 1C) cannot be understood in terms of the

classical picture of charge flow. Indeed, a fraction

of applied current I26, which flows sideways and

reaches the remote region between contacts 3 and

5, is exponentially small in the separationL.Using

the van der Pauw formalism (18), it is straight-

forward to show that the expected Ohm's law

contribution to RNL behaves as ≈ rxx exp(–pL/w)

for both zero and nonzero B (17). For our de-

vices, L ranged from 3 to 15 mm and w between

1 and 2 mm. For a typical L/w = 5, this translates

into minute RNL <10−3 ohm. In agreement with

this estimate, RNL(B = 0) was indistinguishable

from zero at our maximum resolution (Fig. 1C).

The situation changes radically in finite B:

RNL remains zero at zeros of rxx, but between the

QHE zeros it can reach values of ~1 kilohm, even

in the conventional GSiO devices, and exhibits

the same overall oscillating pattern as rxx (Fig.

1C). Although the pattern always remained the

same, the amplitude of the nonlocal response

varied significantly for different devices. In par-

ticular, RNL depended on an exact contact con-

figuration (that is, R35,26 ≠ R34,26), yet with the

Onsager relation R35,26(B) ≠R26,35(B) = R35,26(–B)

satisfied (fig. S3). RNL was found to become

smaller with increasing L and in the presence of
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Fig. 1. Local and nonlocal geometries. (A) Electronmicrograph (false color) of a GSiO device. The width
w = 1 mm and length L of the Hall bar are indicated. (B) Longitudinal resistivity rxx as a function of carrier
density n in a perpendicular B = 12 T. (C) In the nonlocal geometry, no signal can be detected in zero B
(the red curve is downshifted for clarity and magnified). The magnetic field gives rise to large RNL shown
for standard-quality devices (GSiO type). To ensure that there was no contribution from inductive coupling
and thermopower, we used both dc and low-frequency ac measurements with typical driving currents I of
1 mA. RNL was confirmed to be independent of I by varying it over two orders of magnitude.
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extra leads between current and voltage contacts

(fig. S3). The strong sample and contact de-

pendence did not allow us to quantify the spatial

scale involved in the nonlocality, but it can be

estimated as exceeding L (that is, ~10 mm) in B >

5 Tand T < 100 K. To emphasize the importance

of nonlocal transport near the NP, in (17) we

describe the standard Hall measurements in two

configurations, R35,42 and R35,46, where the same

voltage probes were used and the only difference

was the swap of one of the current leads. In a

classical conductor, this should cause no effect

whatsoever, but in graphene, nonlocal transport

leads to profound differences between the two

supposedly equivalent measurements (fig. S1).

To elucidate the origin of the unexpected

nonlocality at the NP, we studied its T and B de-

pendence. The peaks in RNL at filling factors n =

4 and 8 completely disappear above 70 K, simul-

taneously with the disappearance of the zeros in

rxx. Therefore, the nonlocality at n = 4 and 8 can

be attributed to the standard QHE edge-state

transport (10, 11). In contrast, the nonlocal signal

at the NP (n = 0) is found to bemuchmore robust

(Fig. 2), extending well beyond the QHE regime,

into the regime where even Shubnikov–de Haas

oscillations are completely absent. At 300 K, the

nonlocality remains quite profound, with RNL ~1

kilohm at several tesla and a remnant signal ob-

servable in B << 1 T. This behavior implies that

the nonlocality at the NP occurs via a mechanism

that is different from the QHE edge-state trans-

port (10, 11, 17).

Figure 2C reveals two temperature regimes.

At high T, RNL decreases slowly with increasing

T, whereas below ~30 K, one can see a rapid

increase in RNL. The latter correlates with an

increase in rxx for GBN devices and can be

attributed to the onset of an energy gap that opens

at n = 0 at low T (5, 7, 9, 15). By using the

Corbino geometry, we found that the gap did not

exceed 20 K at 12 T for GSiO (17). Similar

values were reported by other groups (7, 19). For

certain gapped states, the nonlocality can arise

because of countercirculating edge states (6). To

test this possibility, we carried out nonlocal mea-

surements on devices patterned to have a channel

widening that increased devices’ edge lengthmore

than 10-fold, while L between the current and

voltage contacts remained the same (17). No sig-

nificant difference in RNL was observed in such

devices as compared to those with no widening.

This and other observations described in (17)

provide evidence against edge transport and sug-

gest a bulk transport mechanism even in the low-

T gapped state. This conclusion is also consistent

with the insulating behavior found in previous

magnetotransport studies at the NP (5, 7, 9, 15).

The observed sharp increase in RNL at low T (Fig.

2C) may indicate that the dominant nonlocality

mechanism changes as the system goes into the

gapped state.

Below we discuss the high-T regime, where

the gap opening at the NP is irrelevant, because

no nonlocal signal could be detected even at n = 4

and 8, despite cyclotron gaps being large (~500 K).

The nonlocality observed at high T and low B

calls for a quasiclassical explanation that does not

involve Landau quantization. At the same time,

one has to find a mechanism that naturally ex-

tends into the low-T regime, where the observed

nonlocality becomes increasingly more profound.

One possible explanation is the flavor Hall effect

(FHE), a bulk mechanism in which nonlocality is

mediated by neutral excitations, such as spin and

valley flavors, and which works in both quasi-

classical and QHE regimes, providing a natural

explanation for our experimental findings (17).

The basic physics of the FHE is illustrated in

Fig. 3, which for simplicity refers to the case of

spin. The Zeeman splitting shifts the Dirac cones

for opposite spin projections relative to each

other. At the NP, the spin splitting produces a

finite concentration of electrons with spin-up (↑)

and holes with spin-down (↓) (Fig. 3A). When

electric current is applied, the Lorentz force creates

opposite spin-up and spin-down currents, leading

to a spatial spin imbalance at zero net Hall voltage

at the NP (Fig. 3B). The phenomenology is sim-

ilar to the spin Hall effect (SHE) resulting from

spin-orbit interaction (20–22), yet our SHE effect

relies on the Zeeman splitting induced by B and

occurs in the absence of spin-orbit interaction. In

graphene, the SHE can generate long-range spin

currents, due to slow spin relaxation (2, 23), and

produce a nonlocal voltage at a remote location

via a reverse SHE, as illustrated in Fig. 3B.

Figure 3C plots the modeled SHE behavior

for RNL in GSiO, which captures the main fea-

tures of the experimental data, most important-

ly the peak at the NP in RNL(n). The model also

predicts maximum value RNL ~ h/4e2, which

corresponds to a cutoff due to Landau level broad-

ening (17). Such values are indeed observed in

GBN devices (Fig. 2C). The T and B depen-

dences predicted from the simple model are in

qualitative agreement with the experiment. The

agreement can be further improved by taking

into account valley splitting that can give rise to

neutral valley currents and additional nonlocal-

ity. In particular, the onset of the valley splitting

due to interaction effects (19) may be respon-

sible for the observed increase in RNL below

30 K. Although our measurements did not probe

flavor currents directly, the indirect evidence

is overwhelming. The nonlocal phenomena

are very rare and, given that we have ruled out

A B

C D

Fig. 2. Nonlocal transport in graphene. (A) RNL for the GSiO device in Fig. 1 at different T. In high B, the
nonlocality at n = 4 persists up to liquid nitrogen T. The nonlocal signal at the NP is even more robust with
increasing T. (B) Room-T RNL for a GBN device with m ≈ 140,000 cm2/Vs, and with nonlocal voltage
contacts separated from the current path by L = 5 mm. The inset magnifies RNL in small B. Even at 0.1 T,
RNL remains substantial (~10 ohm). GSiO devices exhibit a qualitatively similar behavior but with room-T
values of RNL~100 times smaller (17). (C andD) RNL at the NP as a function of T for several values of B and
as a function of B for several values of T, respectively. The data are for the same GBN device as in (B). The
solid curves in (C) are guides to the eye.
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edge-state transport mechanisms, we believe that

the spin/valley Hall effect is the only remaining

explanation for our findings.

The profound nonlocality described here is an

essential attribute of electron transport in graphene.

The nonlocality is consistent with neutral cur-

rents generated by the SHE at high T and, pos-

sibly, by the valley Hall effect at liquid-helium T.

Nonlocal transport, being directly sensitive to

neutral degrees of freedom, provides valuable in-

formation that is inaccessible by conventional

electrical measurements.
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Teleportation of Nonclassical
Wave Packets of Light
Noriyuki Lee,1 Hugo Benichi,1 Yuishi Takeno,1 Shuntaro Takeda,1 James Webb,2

Elanor Huntington,2 Akira Furusawa1*

We report on the experimental quantum teleportation of strongly nonclassical wave packets of
light. To perform this full quantum operation while preserving and retrieving the fragile
nonclassicality of the input state, we have developed a broadband, zero-dispersion teleportation
apparatus that works in conjunction with time-resolved state preparation equipment. Our approach
brings within experimental reach a whole new set of hybrid protocols involving discrete- and
continuous-variable techniques in quantum information processing for optical sciences.

I
n the early development of quantum infor-

mation processing (QIP), a communication

protocol called quantum teleportation was

discovered (1) that involves the transportation of

an unknown arbitrary quantum state |y〉 bymeans

of entanglement and classical information. Ex-

perimental realizations of quantum teleportation

(2, 3) and more advanced related operations (4)

in the continuous-variable regime have been

achieved by linear optics methods, although only

for Gaussian states so far. However, at least third-

order nonlinear operations are necessary for build-

ing a universal quantum computer (5)—something

that Gaussian operations andGaussian states alone

cannot achieve. Photon subtraction techniques

based on discrete-variable technology can pro-

vide useful nonlinearities and are used to gen-

erate Schrödinger’s-cat states and other optical

non-Gaussian states (6). Schrödinger’s-cat states

are of particular interest in this context, as they

have been shown to be a useful resource for fault-

tolerant QIP (7). It is therefore necessary to ex-

tend the continuous-variable technology to the

technology used in the world of non-Gaussian

states.

We have combined these two sets of tech-

nologies, and herewe demonstrate suchGaussian

operations on nonclassical non-Gaussian states

by achieving experimental quantum teleportation

of Schrödinger’s-cat states of light. Using the

photon subtraction protocol, we generate quan-

tum states closely approximating Schrödinger’s-cat

states in a manner similar to (8–11). To accom-

modate the required time-resolving photon de-

tection techniques and handle the wave-packet

nature of these optical Schrödinger’s-cat states,

we have developed a hybrid teleporter built with

continuous-wave light yet able to directly operate

in the time domain. For this purpose we con-

structed a time-gated source of Einstein-Podolsky-

Rosen (EPR) correlations as well as a classical

channel with zero phase dispersion (12). We were

able to bring all the experimental parameters up to

the quantum regime, and we performed successful

quantum teleportation in the sense that both our

input and output states are strongly nonclassical.

A superposition of the quasi-classical coher-

ent state ja〉 is one of the consensus definitions of

a Schrödinger’s-cat state jcat〉, typically written

A B C

Fig. 3. SHE in graphene and nonlocal transport mediated by spin diffusion. (A) Zeeman splitting at
charge neutrality produces two pockets filled with electrons and holes having opposite spin. (B) In the
presence of the Lorentz force, I gives rise to transverse spin currents I↑ and I↓. Because the force has
opposite signs for electrons and holes, the net charge current is zero, whereas the net spin current is
nonzero. The resulting imbalance in the up/down spin distribution can reach remote regions and generate
a voltage drop V. (C) RNL predicted in our model for the QHE regime (main panel) and the quasiclassical
regime (inset). The best-fit parameters n0 = 4 × 109 cm−2 and Landau level broadening G = 200 K are
typical for GBN and GSiO devices, respectively. RNL grows with decreasing n0 andG (17), which is consistent
with much larger RNL measured in our GBN devices.
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 1

SUPPORTING ONLINE MATERIAL 

Giant Nonlocality near the Dirac Point in Graphene  

by D. A. Abanin et al. 

 

#1. Influence of the nonlocality on local measurements  

Figure S1 shows two sets of Hall measurements by using the same voltage contacts (3 and 5) and 

changing only one of the current contacts (contacts 2 and 6 are swapped in the measurements shown 

in panels a and b). At first glance, Hall resistivity Rxy looks more or less the same but further 

analysis shows that the traces differ by as much as 500 Ohms. Indeed, panel c plots the difference 

between Rxy shown in a and b. The dip around +12V can be explained by the nonlocal edge-state 

transport [S1,S2]. The measurements are expected to be electron-hole symmetric but a similar dip on 

the hole side is smeared by charge inhomogeneity.  

 
 

Figure S1. Nonlocality in local transport. a,b – two sets of Hall measurements under exactly the 

same conditions but with swapping one of the current contacts. c – The difference between the two 

measurements ΔRxy follows the behavior of nonlocal resistance R35,26. The presented data are for 

GSiO with μ ≈7,000 cm
2
/Vs. For high-μ GBN, the difference typically reaches several kΩ.    

 

#2. Graphene-on-BN devices 

Graphene devices with μ ~10,000 cm
2
/Vs are now widely available and, to emphasize that the 

observed nonlocality is a commonplace phenomenon, much of the data presented in the main text 

were taken for GSiO. Furthermore, devices with million-range mobility can be obtained by 

suspending graphene. However, it has proven extremely difficult to make suspended 4-terminal 

devices, which are required for nonlocal measurements (see, for example, refs. [S3,S4]). Most 

recently [S5], it was demonstrated that atomically flat hexagonal boron-nitride (hBN) can be used as 
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a quality inert substrate, which allowed devices with μ ≈60,000 cm
2
/Vs, that is, three times higher 

than usually achievable for GSiO. 

 

Figure S2. Left – Hall bar made from graphene deposited on top of hBN [S5,S6]. hBN is ≈30 nm 

thick and is residing on top of a Si wafer (90 nm of SiO2). The image shows the device before the 

final step of removing a PMMA mask used for oxygen plasma etching. Right – Zero-B 

characteristics of one of GBN devices with μ ~50,000 cm
2
/Vs; T = 60 K. 

 

In this work, we also used GBN devices, which allowed us to elucidate the scale of the observed 

nonlocality and better understand the physics underpinning this phenomenon. Our exfoliation and 

identification procedures for hBN are described in Ref. [S6]. Following the same extra steps in 

preparation procedures as described in Ref. [S5], we have succeeded in making GBN devices with μ 

up to ≈150,000 cm
2
/Vs. This refers to carrier concentrations n between 10

10
 to 10

11
cm

-2
 (most of our 

GBN devices exhibited μ in the range from 50,000 to 100,000 cm
2
/Vs). At higher n, μ gradually 

decreased which can be described by a short-range resistivity term ρS of ~100Ω [S7], which varied 

for different devices and with T. Otherwise, the long-range mobility μL [S7] remained constant up to 

n ~ a few 10
12 

cm
-2

. Our GBN devices had little extrinsic doping (10
10

 to 10
11

cm
-2

) and exhibited 

very high homogeneity such that, at low T, the Dirac point was smeared on a scale of only n0 

≈10
10

cm
-2

.  

 

#3. Dependence of nonlocal resistance on contact configuration 

We have found that the nonlocality is strongly dependent on the exact contact configuration and 

usually changes for the opposite directions of B. Fig. S3 shows examples of RNL for several contact 

configurations. Generally, RNL becomes smaller as the distance between voltage and current probes L 
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increases and in the presence of extra leads between them (Fig. S3a). This data, however, is not 

sufficient to quantify the relaxation length l involved in the nonlocal transport. Indeed, Fig. S3b 

shows nonlocal resistance measurements for the same sample and the same L but with swapping 

current and voltage probes. One can see that RNL changes by more than a factor of 10 (red and black 

curves). Still, the Onsager relation holds as it should: R35,26(B) = R26,35(-B) (see red and blue curves). 

 

 

Figure S3. Contact and sample dependence of the nonlocality. a – RNL measured for a GBN sample 

schematically shown in the inset. The curves are color coded: the current is applied through the top 

pair of contacts, whereas the voltage probe configurations are shown in the color corresponding to 

the black, red and blue curves. b – Nonlocal signal strongly varies from sample to sample. This was 

seen most clearly if we used the same contacts but swapped the current and voltage leads (numbers 

2, 3, 5 and 6 refer to Fig. S1a). The signal can practically disappear for some geometries (black).  

 

#4. Temperature and field dependence of the nonlocality in GSiO 

Figures 2B-D of the main text plot the nonlocality in high-μ GBN where the amplitude of RNL 

reaches a value of ~1kΩ at room T. It is instructive to show that this behavior is generic and does not 

qualitatively change in the standard GSiO devices, neither in the quantum Hall effect (QHE) regime 

(Fig. 1 and 2A) nor in the quasiclassical regime. Fig. S4a is analogous to Fig. 2B of the main text. 

Both show essentially the same behavior but the RNL peak in GSiO is ~100 times smaller and twice 

wider than in GBN. The field dependence at high T is monotonic for both GBN and GSiO (cf. Figs. 

2D and S4b).  
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The qualitative difference between GBN and GSiO devices, which we have found, is their T 

dependences (cf. Figs. 2C and S4c). Below 30K, GSiO exhibits a sharp rise in the nonlocal signal 

and, at intermediate T, RNL remains relatively constant. This behavior in GSiO is similar to the one 

observed in GBN and can again be attributed to the opening of a valley or many-body spin gap at 

low T. However, at higher T (>100K in Fig. S4c), RNL in GSiO exhibits a rapid decay that is absent 

for GBN. We have found that the decay can be well fitted by a sum of two contributions, one is 

independent of T and the other is thermally activated, ∝exp(-Δ/T). The solid line in Fig. S4c is the 

best fit by a functional form RNL ∝1/(σ0 + σT⋅exp(-Δ/T)) where σ0 an σT could describe parallel 

channels of flavor relaxation. The fit in Fig. S4c yields an activation gap Δ ≈1,000K at 12T.  

 

 

Figure S4. Nonlocal transport in standard GSiO devices. Qualitatively, plots a and b resemble those 

for the GBN device shown in Figs. 2B and 2D of the main text, respectively. Note the scale of RNL 

which is now 100 times smaller. Nevertheless, the nonlocality is still easily detectable in B>1T at 

room T. c – T dependence of RNL shows a much quicker decay of the nonlocality in GSiO as 

compared to GBN. This is attributed to an extra channel for spin flipping, which becomes dominant 

at elevated T in GSiO. This GSiO device had L ≈5μm and w ≈1μm. 

 

The B dependence of Δ has been studied for 5 different devices. Figure S5 plots the inferred Δ in 

various B. One can see excellent reproducibility of the gap despite the absolute value of RNL varied 

strongly between the devices. Heuristically, we can describe the found dependence as Δ = 

vF·(2ehB)1/2 – Γ (solid curve in Fig. S5) where the first term corresponds to the cyclotron gap 

between zero and first Landau levels (vF is the Fermi velocity in graphene; e and h are the electron 

charge and the reduced Planck constant) and Γ is the broadening of LLs. Typical Γ found in our 
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devices from the activation dependence between LLs are ~500K [S8], in agreement with the fit in 

Fig. S5, which yields Γ ≈ 400±100K. This behavior can indicate the presence of an extra spin-flip 

process, which is responsible for the decay of RNL in GSiO and involves inter-LL scattering. 

 
Figure S5. The activation gap Δ inferred from T dependence of nonlocal transport in GSiO at the NP 

in different magnetic fields.  

 

#5. Absence of large spin/valley gaps at the NP 

Magnetic field lifts the spin and/or valley degeneracy. Previous measurements [S3,S9] have shown 

that the flavor gaps δ are reasonably small and comparable in value with the Zeeman energy (≈15K 

at 12T). However, transport phenomena in graphene can exhibit strong sample variations. 

Accordingly, we have also checked for the flavor gap in our samples. This was done by using the 

Corbino geometry. This geometry is necessary because spin splitting can lead to the dissipative 

quantum Hall effect with an insulating bulk and two counter-circulating edge states [S10,S11]. In the 

standard Hall bar geometry, this edge state transport electrically shots the bulk and does not allow to 

probe the spin gap as discussed in ref. [S10,S11]. Figure S6 shows an example of our Corbino 

devices and a typical T dependence of their 2-probe resistance in quantizing B. The T dependence 

rules out any significant spin gap at the NP, which could otherwise explain the observed nonlocality 

by edge-state transport. The T dependence at ν =2 allows us to find the LL broadening Γ ~500K and 

to estimate the flavor gap at zero LL as δ ≤20K. The former agrees with the values reported in ref. 

[S8] whereas the latter value is in agreement with the orthodox Zeeman splitting as well as 

measurements reported in refs. [S3,S9,S12]. 
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Figure S6. Corbino measurements. a – Optical micrograph (using a green filter) of a Corbino device 

with three concentric electrodes (e1, e2 and e3) deposited on top of a graphene monolayer (GSiO). 

The electric leads are marked L1, L2 and L3. The scale is given by the 5μm diameter of the inner 

electrode e3. Leads L2 and L3 are electrically isolated from both graphene and the other electrodes 

by a layer of an electron-beam resist. b – Example of our Corbino measurements of longitudinal 

conductivity σxx at different T. The magnetic field induces an insulating state at ν = 2 and 6 and leads 

to pronounced peaks in the 2-probe resistance between the Corbino electrodes. The gaps are 

illustrated schematically in c. Only a small rise in ρxx (=1/σxx at the NP) with decreasing T could be 

seen near the NP, which rules out a large flavor gap.  

 

#6. Nonlocal transport in the bulk or along edges?  

A perfect zigzag edge in graphene presents a one-dimensional conductance channel with resistivity 

of ~h/e2. It is also predicted that a random edge can conduct electricity in a manner similar to zigzag 

[S13]. To asses the possibility that the observed nonlocality could be somehow mediated by an 

anomalously high conductivity of graphene edges, we have studied devices with widenings of the 

channel between current and voltage contacts. One of such devices is shown in Fig. S7. The 

micrograph shows a graphene mesa with several pairs of Hall contacts separated by approximately 

the same distance L ~5μm. The conducting channel between the pairs could be either a straight 

ribbon or contain “bellies”, that is, wider graphene regions in the middle. The bellies serve to 

increase the length of the edge between current and voltage probes in the nonlocal geometry. If the 
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edges would be involved in the observed nonlocality, we should expect a strong suppression of RNL 

in the presence of the bellies. On the other hand, nonlocal currents mediated by the bulk are expected 

to be influenced much less by such bellies. We did not observe any significant difference in RNL for 

devices with and without bellies. This seems to rule out nonlocal transport mediated by graphene 

edges.  

 

Figure S7. Micrograph of a GSiO device made to probe the influence of graphene edges on nonlocal 

transport. The slightly darker areas are a graphene mesa. Bright areas are gold contacts. 

Configurations R12,34 and R56,78 provide the nonlocal measurements discussed in the main text. In the 

case of R34,56  the current and voltage contacts are separated by the same distance L as for R12,34 but 

the channel contains a widening that increases the edge length. Very long edges are involved in the 

case of R78,910. 

 

To further rule out a contribution of edge transport, we have performed a number of additional 

experiments. In one of them, we exposed a high-μ GBN device to T above 300°C. This turned out to 

be detrimental for its electronic quality, reducing μ down to ~5,000 cm
2
/Vs, presumably due to 

reaction of graphene with remnant air. The reduction in μ always resulted in strong suppression of 

the nonlocality (Fig. S8a). This behavior can be attributed to extra scatterers introduced in the 

graphene bulk, which reduces both μ and spin relaxation length. In another experiment, we 

fabricated side gates next to boundaries of a graphene Hall bar. These gates were made by etching 

narrow channels (~0.1 μm) within the same graphene crystal as shown in Fig. S8b. The central part 

of the crystal served as a multiterminal Hall bar device, whereas the periphery areas had independent 

contacts and could be used as side gates. Electrostatics modelling shows that the additional gates 

induced extra doping mostly near the edges with lesser influence in the bulk. Figure S8c shows RNL 

as a function of concentration n (induced by the back gate) for two fixed side-gate voltages Vsg. The 

neutrality point could be shifted significantly by Vsg (indicating a strip of extra doping near the edge) 
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but we have found no notable difference in the strength of the nonlocality, which again is consistent 

with a bulk mechanism. 

 

Figure S8. Bulk vs edge. a – Decrease in graphene’s electronic quality always results in weaker 

nonlocal signals. After μ was reduced by a factor of 30, we found a dramatic decrease in RNL (~100 

times for the same distance between current and voltage contacts). b – Optical micrograph of a GSiO 

device with extra side gates. The light blue area is graphene under a layer of the resist used as an etch 

mask (it was removed later). c – RNL = R12,34 where the current and voltage probes are marked on the 

micrograph in (b). Side-gate voltage was applied to contacts marked as ‘sg’. Except for the shift of 

the NP, the peak in RNL showed weak dependence on Vsg.  

 

#7. Ohmic contribution to the nonlocal signal  

In the main text, we have used the fact the ohmic contribution to the measured nonlocal signal 

becomes exponentially small when voltage contacts are positioned far away from the region of the 

classical current flow. In the strip geometry, this is describes by 

                                             )/exp(
4

 NL wLR xx πρ
π

−≈ ,       L >>w,                  (S1) 

where L is the distance between current and voltage probes, and w is the strip width. The exponential 

dependence in this expression follows from the van der Pauw formula [S14], 

1)/exp()/exp( 26,3532,56 =−+− xxxx RR ρπρπ . 

It is instructive, however, to derive formula (S1) directly. In the derivation, we assume that the strip 

is situated at -w/2 < y < w/2, the source and drain contacts are positioned at x =0, and the 

conductivity tensor is given by (σxx , σxy). The electric potential satisfies the Laplace equation, 

0=Δφ , as follows from the continuity equation 0)( =jdiv
r

, supplemented by the relations 
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,ˆEj
rr

σ=   )(φgradE −=
r

, 

where E
r

is the electric field. The boundary conditions are given by )()2/(
0

xIwyj y δ=±=  where 

the delta-function term models source and drain. Expressing current density in terms of potential, we 

obtain 

).(|
02/ xIwyyxxxxy δφσφσ =∂−∂ ±=  

Solving the Laplace equation with the above boundary conditions, we find that the voltage drop V a 

distance L away from the source and drain is given by  
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Evaluating the integral, we obtain  

⎥
⎦
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π

π
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ρ
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π
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which in the limit L >> w gives formula (S1). For typical experimental parameters L/w =5 and ρxx 

=10 kΩ, we find RNL ∼10
-3Ω, that is three orders of magnitude below the smallest nonlocal signal 

reported in our work.  

 

#8. Nonlocal resistance due to the flavor Hall effect 

Here we derive the relation between the nonlocal resistance RNL and the flavor-Hall coefficient ρFH 

which was used in the main text. We solve the magnetotransport problem for two flavor species, with 

slow relaxation between them. We introduce electrochemical potentials for each flavor specie  

,/
)()()( ↓↑↓↑↓↑ += Dnφϕ  where φ and D↑(↓) denote the electric potential and the density of states 

(DOS) for the two flavors. The equations for the current density are given by  

                                               ),(ˆ)( rrj
rrr

↑
↑

↑ ∇−= ϕσ  ),(ˆ)( rrj
rrr

↓
↓

↓ ∇−= ϕσ                         (S2) 

                                  )),()(()( rnrnrj
rrrrr

↓↑↑ −−=∇ γ )),()(()( rnrnrj
rrrrr

↑↓↓ −−=∇ γ          (S3) 

where γ  is the rate of the flavor relaxation. The above equations should be supplemented by the 

electro-neutrality condition  

                                                                ).()()( 0 rnrnrn
rrr

=−= ↓↑                                         (S4) 
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Solving equations (S2,S3,S4) in the strip geometry under the assumption that the flavor Hall effect is 

weak, 1)( <<↓↑
xxFHσρ , we obtain the formula for the nonlocal resistance,  

                                                         
l

L

e
l

w
R

−

↑↓

↑↓

⋅
+

⋅
=

xxxx

xxxx
2

FH
 NL

σσ
σσ

4

ρ
                                (S5) 

where xxσ↓↑ are the longitudinal conductivities for carriers with up and down flavors. The flavor 

relaxation length l is related to the parameter γ  as follows  

                                                         
↓↑

↓↑
↑↓

↑↓
−

+

⋅
⋅

+

⋅
=

DD

DD

σσ
σσ

2
xxxx

xxxx2 γl . 

The solution of Eqs.(S2,S3,S4) was obtained by a method similar to that presented in ref. [S15].  

For an estimate of RNL near the Dirac point, we take xxxx σσ ↑↓ ≈  equal one half of the minimum 

conductivity, xxxx σσ ↑↓ ≈ ~2e
2/h. For these values, Eq. (S5) reduces to the formula given in the main 

text.  

 

#9. Flavor Hall effect in different regimes 

Here we give a simple, but general formula for the flavor Hall (FH) coefficient
↓↑ −= xyxyFH ρρρ , 

which can be used both in the QHE regime and the quasiclassical regime. We then apply it to 

estimate maximum value of FHρ , and also to model the density dependence of the nonlocal 

resistance.  

 

The FH coefficient can be expressed in terms of the flavor splitting δ and the derivative of the Hall 

resistivity with respect to chemical potential ε as follows, 

                                                              δ
ε

ρ
ρ

∂

∂
= xy

FH .                                                       (S6) 

For modeling the density dependence, it is convenient to rewrite this formula in terms of the density 

of states D, 

                                                            δ
ρ

ρ D
n

xy

FH ∂

∂
= .                                                 (S7) 

 

The QHE regime – First, we consider the QHE regime, which corresponds to the case of well-

developed Landau levels. We first estimate FH coefficient at the Dirac point. Assuming that zero LL 
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is broadened with the width Γ [S12], the derivative of the Hall resistivity with respect to ε can be 

estimated as follows, 
Γ

≈
∂

∂
2

e

hxy

ε

ρ
, which is then plugged into Eq. (S6), yielding

Γ
≈

δρ
2

e

h
FH . 

Focusing on the case of spin and assuming typical Γ ≈400K and Zeeman gap Bg Bμδ = ≈ 15K at B 

=12T, we estimate for the flavor Hall resistivity as ρFH ≈ 0.04 h/e
2
 ∼1 kΩ. This is the value quoted in 

the main text. For narrower LLs in high-μ graphene, ρFH can reach ∼ h/e
2
, in agreement with our 

measurements using GBN devices.  

 

The FH coefficient away from the Dirac point can also be estimated using Eq. (S7). The value of ρFH 

is maximum at n~0, where the derivative of the Hall resistivity is largest.  

 

Now we provide the details of our modeling for the FH coefficient and the nonlocal resistance as a 

function of carrier density n, which we used to produce Fig. 3C of the main text. We focus on the 

QHE regime, which is shown in Fig. 1B (B =12T; T =10K). The best agreement between the 

experiment and theory is reached for the value of flavor splitting δ ≈50K (Γ was assumed to be 400K 

as discussed above).  

 

The nonlocal resistance is related to transport coefficients, DOS and splitting δ  via Eqs.(S5,S7). We 

model the density dependence of transport coefficients using an approach described in Ref. [S16] 

(Gaussian broadening of LLs, and the semi-circle relation for the components of the conductivity 

tensor). In addition, we assume that the DOS is constant (smeared) in the vicinity of the Dirac point. 

To fit the data shown in Fig. 1B, the LL broadening parameter was chosen to be 6.1=λ  (in notations 

of Ref. [S16]) and 2.0/ ≈BnDδ  where nB is the density of states for an individual LL. This translates 

into the values δ ≈50K and Γ=400Κ quoted above for GSiO, which were used to produce Fig. 3C.  

 

Quasiclassical regime – Although the flavor Hall effect and nonlocal response are strongest in the 

QHE regime, our experiments at room T and small B clearly show that the effect persists into the 

quasiclassical regime. Therefore, it is instructive to consider the limit of weak magnetic fields, where 

temperature or disorder broadening significantly exceeds the LL separation, thus preventing the 

formation of LLs. To describe this regime, we employ a simple phenomenological model for 

transport coefficients and the DOS, assuming that all these quantities are disorder-broadened on the 
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scale n0. We have found that the model yields density dependence of the transport coefficients which 

is in qualitative agreement with our experimental observations (the inset in Fig. 3C of the main text). 

We model )(nxxσ  using the following empirical formula  

                                                           
2

00 )/(1)( nnnxx += σσ   where 
h

e
2

0 4=σ .              (S8) 

This yields the linear n dependence at high carrier densities 0|| nn >>  and mimics the minimum 

conductivity of ~4e
2/h at 0|| nn << , which are normally observed experimentally. The quantity n0 

characterizes the smearing of the NP, which is usually taken as the measure of density 

inhomogeneity. Also, we model the Hall resistivity in such a way that at high densities 0|| nn >>  it 

reduces to the quasiclassical result neBxy /−=ρ  and the singularity at the NP is smeared as 

                                                                 2
0

2
nn

n

e

B
xy +

−=ρ .                                          (S9) 

The modeled behavior of the Hall resistivity is consistent with our experimental observations. 

Furthermore, we assume the following form for the DOS  

                                                                ,
2

)( 22

22
ξε

π
ε +=

Fv
D

h                                     (S10) 

where 
2

2

0
2 Fv

n
πξ = so that the DOS broadening is also set by the density scale n0.  

Using the formulas (S5,S7,S8,S9,S10) we obtain RNL in the quasiclassical regime depicted in the 

inset of Fig. 3C. The dominant feature in the modeled RNL is again the pronounced peak due the 

diverging FHρ  at the NP. In these simulations, we have assumed n0 ≈
211102 −⋅ cm , which corresponds 

to ξ ≈200K, and δ ≈130K. The latter is by a factor of 8 larger than the Zeeman splitting and chosen 

to match the values of the enhanced valley splitting reported in ref. [S9]. Note that in Fig. 3C there 

are small “wings” at high n, not observed experimentally. Their strength, however, is strongly 

model-dependent.  
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