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Abstract. We present a model for the equilibrium of solid planetary cores embedded in a gaseous nebula. From this model we

are able to extract an idealized roadmap of all hydrostatic states of the isothermal protoplanets. The complete classification of

the isothermal protoplanetary equilibria should improve the understanding of the general problem of giant planet formation,

within the framework of the nucleated instability hypothesis. We approximate the protoplanet as a spherically symmetric,

isothermal, self-gravitating classical ideal gas envelope in equilibrium, around a rigid body of given mass and density, with the

gaseous envelope required to fill the Hill-sphere. Starting only with a core of given mass and an envelope gas density at the core

surface, the equilibria are calculated without prescribing the total protoplanetary mass or nebula density. In this way, a variety

of hydrostatic core-envelope equilibria has been obtained. Two types of envelope equilibria can be distinguished: uniform

equilibrium, were the density of the envelope gas drops approximately an order of magnitude as the radial distance increases

to the outer boundary, and compact equilibrium, having a small but very dense gas layer wrapped around the core and very

low, exponentially decreasing gas density further out. The effect of the envelope mass on the planetary gravitational potential

further discriminates the models into the self-gravitating and the non-self gravitating ones. The static critical core masses of the

protoplanets for the typical orbits of 1, 5.2, and 30 AU, around a parent star of 1 solar mass (M⊙) are found to be 0.1524, 0.0948,

and 0.0335 Earth masses (M⊕), respectively, for standard nebula conditions (Kusaka et al. 1970). These values are much lower

than currently admitted ones primarily because our model is isothermal and the envelope is in thermal equilibrium with the

nebula. Our solutions show a wide range of possible envelopes. For a given core, multiple solutions (at least two) are found to

fit into the same nebula. Some of those solutions posses equal envelope mass. This variety is a consequence of the envelope’s

self-gravity. We extend the concept of the static critical core mass to the local and global critical core mass. Above the global

critical mass, only compact solutions exist. We conclude that the “global static critical core mass” marks the meeting point of

all four qualitatively different envelope regions.
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1. Introduction

With the discovery of the extra-solar gas giants, the general

problem of planet formation has considerably grown in com-

plexity over the last decade. However, a global theoretical

overview of the properties of giant planets, irrespective of the

parent protoplanetary disc or the total mass of the giant planet,

is still missing.

In the nucleated instability hypothesis, envelopes of giant

planets are thought to be formed as a consequence of accretion

of solid bodies forming their cores. To determine the envelope

mass corresponding to a given core, static protoplanetary mod-

els have been constructed (e.g. Perri & Cameron 1974; Mizuno

1980; Stevenson 1982).

If the envelope is modelled including detailed energy trans-

fer and if the outer part of the envelope is radiative, and for stan-

dard assumptions about nebula conditions, it has been found

that there is an upper limit for the masses of static envelopes

and therefore for the total mass of a proto giant planet. This

upper limit in core mass – the critical mass – was found to be

insensitive to nebula conditions, but to depend weakly on dust

opacities (Mizuno 1980) and on the rate at which the core (solid

body) is accreted (Stevenson 1982).

Even the largest static critical masses are typically more

than a factor of ten smaller than Jupiter’s mass (Mizuno 1980;

Stevenson 1982; Wuchterl 1991b; Ikoma et al. 2001). The non-

dependence of the critical mass on nebula conditions disap-

pears when the outermost parts of the protoplanetary envelopes

become convective, which happens for nebula properties which

are well within of proposed solar nebula conditions (Wuchterl

1993). Envelope masses of such protoplanets range between 6

and 48 Earth masses (M⊕) but hydrostatic models alone are

unable to reproduce a Jupiter-mass protoplanet. Therefore
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dynamical and/or quasi-hydrostatical effects should play an im-

portant role in the formation of gas giants.

There is a number of incompletely studied processes (e.g.

the formation, evolution, and stability of the protoplanetary

disks, the dust growth, the planetesimal formation, etc.) that

are relevant for the general problem of planet formation. Their

complexity makes a piecewise approach necessary in stud-

ies of planet formation. An alternative approach is to study

the final outcome, i.e. the possible and probable end-states

of the process. In that context, we present an idealized road-

map of all hydrostatic states, in order to provide insight when

analyzing the complex behavior of hydrodynamic and quasi-

hydrostatic models with detailed microphysics. In addition, this

work aims to clarify the concept of the critical core mass nec-

essary to permanently attract gas of the protoplanetary nebula

to a terrestrial-planet-like heavy element core.

2. Model

2.1. Motivation

Within nucleated instability theory, the formation of giant plan-

ets includes many possible scenarios for protoplanetary cores

and their respective envelopes. These range from small plan-

etoids embedded in dilute protoplanetary nebulae to present-

day-Jovian-like cores of several M⊕ squeezed by some Mbars

of metallic H2-He mixtures (Guillot 1999). To date, many in-

vestigations have been made into the evolution of protoplan-

ets, both hydrostatically (e.g. Bodenheimer et al. 2000; Ikoma

2001; see Wuchterl et al. 2000, for review) and hydrodynami-

cally (e.g. Wuchterl 1991a,b, 1993). In these studies, “the evo-

lution” of particular planets is followed, but not much is known

about the evolution of all possible protoplanets. Therefore, it is

somewhat difficult to bring the detailed solutions of previous

investigations within a global perspective.

We follow the thermodynamical approach that was used

by Stahl et al. (1995) to investigate the coreless equilibria of

constant-mass isothermal gas spheres, and the nature of the

Jeans instability. We also expand on the work of Sasaki 1989,

who studied isothermal protoplanets in the minimum mass so-

lar nebula (MMSN). In our model the total mass of the proto-

planet and the density of nebula cloud, in which the protoplanet

is embedded, are not prescribed. In leaving these as output vari-

ables, and starting only with the (heavy-element) core mass and

the density of the envelope gas at the core’s surface, we aim

for a complete classification of all hydrostatic equilibria. This

classification should contribute to clarifying whether multiple

planetary equilibria exist for given nebula conditions and how

protoplanetary models relate to gas giants, both inside and out-

side the solar system.

2.2. Model assumptions

We approximate the protoplanet as a spherically symmetric,

isothermal, self-gravitating classical ideal gas envelope in equi-

librium around a core of given mass. This gaseous envelope

Table 1. Symbols.

Symbol† Meaning

a [AU] orbital distance

G = 6.67259 × 10−11 gravitational constant

µ = 2.3 × 10−3 mean molecular weight

Mcore predefined core mass

Menv envelope mass

Mtot total mass

M(r) total mass interior to radius r

M⊙ = 1.989 × 1030 solar mass

M⊕ = 5.976 × 1024 Earth mass

rcore core radius

rHill Hill sphere radius

ℜ = 8.31441 molar gas constant

̺core = 5500 predefined core density

̺csg envelope gas density at core surface

̺env envelope gas density

T (a) nebula gas temperature

† SI units used unless otherwise specified.

Table 2. Manifolds.

Orb. param. (a,T ) (1, 225) (5.2, 123) (30, 51.1)

MMMSN
core,crit

/[M⊕] 0.1524 0.0948 0.0335

Mmax
env /[M⊕] 21 96 380

The critical core mass increases for smaller orbital distances because

of (in order of importance): the higher gas temperature (cf. Sects. 3.8.1

and 3.10), the smaller Hill sphere (cf. Sect. 3.8.2), and the higher den-

sities of the reference nebulae (taken from the minimum mass solar

nebula models of Kusaka 1970; and Hayashi 1985).

is that required to fill the gravitational sphere of influence,

approximated by the Hill-sphere:

rHill = a 3

√

Mplanet/3M⋆, (1)

where a is the orbital distance from a parent star. With mean

molecular weight of µ = 2.3 × 10−3 kg mol−1, protoplanetary

envelopes, as well as the nebula, are roughly approximated by

a hydrogen-helium mixture. The protoplanet’s heavy-element-

core is represented by a rigid sphere of uniform density of

̺core = 5500 kg m−3.

The nebula temperature profile is taken according to

Kusaka et al. (1970), and Hayashi et al. (1985), cf. Table 2.

The nebula density structure is not a priori determined, but, for

critical core mass determination, nebula densities agree with

those from Kusaka et al. (1970) for a = 1 and 30 AU, and from

Hayashi (1985) for a = 5.2 AU, cf. Table 2. It has been shown

that the critical core mass values have only a weak dependence

on the nebula density (cf. Sect. 3.9), therefore the choice of the

nebula density is not critical.
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2.3. Model equations

The envelope is set in isothermal hydrostatic equilibrium, with

spherical symmetry, and as such is described by:

dM(r)

dr
= 4πr2̺(r), (2)

the equation of hydrostatic equilibrium:

dP(r)

dr
= −

GM(r)

r2
̺(r), (3)

and the equation of state for an ideal gas:

P(r) =
ℜT

µ
̺(r). (4)

M(r) is defined as the total mass (core plus envelope) contained

within the radius r:

M(r) = Mcore +

∫ r

rcore

4πr′2̺(r′) dr′, (5)

where r is the radial distance measured from the core center

and ̺ is the envelope gas density at radial distance r.

2.4. Boundary conditions

The total mass of the protoplanet is defined as:

Mtot = Mcore + Menv = M(rout) (6)

with

M(rcore) = Mcore. (7)

The inner and outer radial boundaries are:

rin = rcore =
3

√

Mcore

4
3
π̺core

and rout = rHill. (8)

An additional boundary condition at the core surface is:

̺env(rcore) = ̺csg. (9)

This model, together with the specified assumptions and

boundary conditions, is sufficient to completely determine a

single model-protoplanet. The total mass and nebula density

at rHill (gas density at protoplanet’s outer boundary) are results

of the calculation.

2.5. Solution procedure

The total protoplanetary mass is obtained by integrating out-

ward from rcore to rHill(Mtot), starting with r0
Hill
= rHill(Mcore)

and iterating rHill(Mcore + Menv).

Integration is performed from the core surface to the Hill

radius, using the Maple 6 software (e.g. Garvan 2001), with

the Fehlberg fourth-fifth order Runge-Kutta method.

Fig. 1. Envelope mass solution manifold. Environmental parameters

for this manifold are set to a = 5.2 AU, and T = 123 K. Each

point on the surface gives the mass of the protoplanet’s envelope

for a given Mcore and gas density at the core surface, ̺csg. Models

with different initial parameters generally connect to different nebu-

lae. Several different regions are easily discernible: I – flat slope with

gradient of 1, for the region [–1, 2] in log Mcore and [–12, 6] in log ̺csg;

II – flat slope with gradient of 0.5, roughly encompassing [4–6, 8]

in log ̺csg, and all log Mcore; III – “base of the island”, [–8, –1] in

log Mcore and [–12, –6] in log ̺csg; IV – “island”, [–8, –1] in log Mcore

and [–6, 4–8] in log ̺csg (cf. Fig. 2).

3. Results

3.1. Solution manifold

In order to cover as many hydrostatic solutions as possible, the

system of Eqs. (2)–(4) is solved for a wide range of parame-

ters Mcore and ̺csg. The set of all solutions for this range consti-

tutes the solution manifold. Figure 1 shows the solution mani-

fold for a protoplanet whose orbital distance corresponds to the

position of proto-Jupiter according to the Kyoto-model of solar

system formation (Hayashi et al. 1985). The manifolds with or-

bital parameters (a, T ) of proto-Neptune and proto-Earth have

similar morphologies. It should be reiterated that the solution

set contains all qualitatively different protoplanetary models at

a particular orbital distance; not just for a particular nebula, but

for any nebula, from a dense gravitationally-just-stable cloud

to a near-vacuum space.

3.2. Manifold regions

Several distinct regions exist in the parameter space of the so-

lution manifold (Fig. 2), and they can be examined from two

complementary perspectives. One way is to use the gas den-

sity at the core surface, ̺csg, as an independent variable (e.g.
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Fig. 2. Manifold regions: I – compact non-self-gravitating envelopes,

II – compact self-gravitating envelopes, III – uniform non-self-

gravitating envelopes, IV – uniform self-gravitating envelopes. The

border of the region IV somewhat depends on the choice of the sur-

rounding nebula (cf. Fig. 12); we use here a value from the Hayashi

(1985) minimum mass solar nebula model.

Fig. 3), and the other is to use the nebula gas density, ̺out (e.g.

Fig. 4). While ̺out is more physically intuitive, ̺csg maps out

region IV of Fig. 2 more clearly, and is more efficient in terms

of representing the entire manifold.

Figure 2 divides the solution manifold into four distinct re-

gions, depending on whether the solution is compact or uni-

form and self-gravitating or not. Figures 3 and 4 point to the

existence of the four possible regimes for a planet;

1. “mature telluric planet” (region I): envelope mass is a lin-

ear function of ̺out, and ̺csg;

2. “mature giant planet” (region II): envelope mass weakly

drops with ̺out (Menv ∝ ̺
−0.005
out ).

Menv ∝ ̺
0.5
csg is weaker than for the “nebula” regime.

“Nebula” densities (̺out) are so low that they may well be

considered a vacuum;

3. “nebula”(region III): envelope mass is a linear function of

̺out and ̺csg;

4. “protoplanet” (region IV): envelope mass is a non-trivial

function of ̺out or ̺csg.

3.3. Self-gravity effect

The key effect, which is responsible for the manifold morphol-

ogy as observed in Fig. 1, can be described as self-gravity of

the protoplanet’s envelope. Keeping in mind the hydrostatics

of the model, and the fact that the surrounding nebula is not

prescribed, one can see that self-gravity reduces the envelope

mass for a given core surface pressure, i.e. the envelope mass

would be larger if there were no self-gravitating effect (Fig. 3).

The envelope’s radial gas density profile is shaped through

the interplay of inward gravitational force and outward gas

Fig. 3. Demonstration of the self-gravitating effect for sub- and super-

critical cores: comparison of cuts through two manifolds, with- (M =

M(r) in Eq. (3)) and without- (M = Mcore) the envelope’s gravitat-

ing effect, each for two core masses. Cuts are for a = 30 AU and

T = 51.1 K. Circles and squares represent the envelope mass of the

subcritical core, calculated for M = M(r) and M = Mcore in Eq. (3),

respectively. White and black triangles have the same meaning but for

the supercritical core. Labels without arrows correspond to manifold

regions from Fig. 2, while labels with arrows mark interfaces between

regions. D corresponds to the “divergent wall” which surrounds re-

gion IV (cf. Fig. 1). Self-gravitating envelopes with M = M(r) in

Eq. (3) have a larger envelope mass than the corresponding envelopes

with M = Mcore in Eq. (3) (cf. Fig. 6).

Fig. 4. Envelope mass as a function of the nebula density ̺out. Labels

are the same as in Fig. 3. Lines connect states with increasing ̺csg.

Note the strong dependence of ̺out on the envelope mass, and a non-

trivial behavior of the Menv(̺out) for region IV (enlargement in Fig. 5).

pressure. If the envelope mass is small compared to the core

mass, the gravitational force can be approximated as arising

from the core’s gravitational potential only. Once the envelope

mass is comparable to (or greater than) the core mass,

they both contribute to the gravitational potential, making its
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Fig. 5. Enlargement of the boxed region of Fig. 4, isothermal curl reg-

ularized with the finite-density core; “–1.25”: black squares represent

protoplanets with first subcritical Mcore line on the mesh of Fig. 1 and

the arrow points at the black square with the highest Menv, DS : two

protoplanetary states with the largest envelope mass in the manifold,

but with typically very different ̺csg (cf. Sect. 3.9.2); in and out curves

are the consequence of the core. The smaller the core, the closer the in

and out curves are. The figure corresponds to a V − U plane for the

protoplanets (see Sect. 3.5 for further discussion).

gradient steeper and, in effect, reducing the envelope mass. As

a consequence, the self-gravitating envelope connects to a neb-

ula different from the one which is in balance with the envelope

in the absence of the self-gravitating effect. Further discussion

of the role of self-gravity can be found in Sect. 3.5.

3.4. Two types of envelope equilibria

The solution manifold (Fig. 2) contains two basic types of

envelope equilibria (Fig. 6):

1. uniform, or quasi-homogenous envelope: the density of

the envelope gas drops weakly with increasing radial dis-

tance, keeping the mass distribution more or less uniform

throughout the envelope; ∂Menv/∂rout > 0;

2. condensed, or quasi-compact envelope: typically small, but

very dense gas layer is wrapped around the core, at larger

radii the gas density is very low; ∂Menv/∂rout ≈ 0.

This is reminiscent of a similar equilibrium, found by Stahl

et al. (1995), for constant mass coreless “Van der Waals” gas

spheres.

If an envelope’s mass is much smaller than the core mass,

the radial profile of the gas density is simply an exponential

function, well approximated by:

P(r) = P0 exp

(

−
µ

ℜT
GM(r)

(

1

rcore

−
1

r

))

· (10)

If (M(r) − Mcore) ≪ Mcore, then Eq. (10) reduces to the baro-

metric formula.

Fig. 6. Uniform, compact and self-gravitating profiles. The uniform

self- gravitating profile resembles the non-self-gravitating one until

the envelope mass becomes comparable to the core mass. Then the

density profile changes to ̺env(r) ∝ r−2.

3.5. Differences: isothermal coreless gas spheres

vs. isothermal protoplanets

The curl in Figs. 4 and 5 is reminiscent of a similar fea-

ture found for the isothermal coreless ideal-gas spheres (e.g.

Schwarzschild 1957, Sect. 13) represented in the U − V plane.

It follows from the definition of U and V that:

U =
r

M(r)

dM(r)

dr
=

4πr3̺

M(r)
= 3

̺

M(r)/( 4
3
πr3)

(11)

V = −
r

P

dP

dr
=
̺

P

GM(r)

r
=

3

2

GM(r)/r
3
2
P/̺

(12)

and from the fact that the mean density of the total object for

our model is always the same, as implicitly defined through

Eq. (1).

Unlike a singular isothermal sphere with an infinite pres-

sure at the center, our protoplanetary model has a solid core of

uniform (and finite) density at its center. This will result in the

departure from the potential of the coreless isothermal sphere:

instead of having a ̺(r) ∝ r−2 structure, the envelope gas close

to the core surface will obey the form of the barometric law (cf.

Eq. (10)).

If the mean envelope density at lower stratifications is com-

parable to core density, an “effective” core will shorten the

characteristic length-scale of the potential, making the expo-

nential profile of the barometric-law-like profile even steeper.

For the appropriate effective core, the outer stratifications will

exactly match the outer stratifications of the solution which

has the gas density at the core surface much smaller than the

core density (cf. Fig. 14). These profiles will connect to the

same nebula density, but will have a slightly different enve-

lope mass, because of the difference in the profile of the in-

ner stratification. Therefore, the curl of Fig. 5 will have two

branches: “in” (the solution with a non-self-gravitating inner

stratification) and “out” (the solution with an effective core).
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The smaller the core mass, the sooner will the profile con-

nect to the “r−2” structure; i.e. the smaller the difference in the

envelope mass between the pairs of solutions, the closer the

“in” and “out” branches in Fig. 5 will be.

The fall-off of the gas density with increasing radius in the

self-gravitating part of the envelope can be approximated by

̺env(r) ∼ r−2 (cf. Fig. 6, self-gravitating profile), as expected

in the theory of stellar structure for a self-gravitating isother-

mal sphere of ideal gas (e.g. Shu 1992, Sect. 18). Small devi-

ations from r−2 are due to the finite amount of mass needed

for the envelope to become self-gravitating, which produces a

slight imbalance between the self-gravity and the amount of

mass M(r). No similar effect is observed for coreless, isother-

mal gas spheres (cf. Stahl et al. 1995).

Depending on the fraction of the self-gravitating part of the

envelope and of the core mass, this wavelike deviation can ex-

tend to the outer boundary, or can be attenuated deep within the

envelope.

3.6. Estimating the applicability of the ideal gas

We made two major assumptions while constructing our

model – that the gas is ideal, and that the heat is instantaneously

radiated away, i.e. the gas is isothermal. In Sect. 3.7 we exam-

ine the isothermal assumption, and we deal with the ideal gas

in this section.

In order to keep the protoplanet in an equilibrium with the

surrounding nebula, we have set the envelope gas temperature

equal to the nebula temperature for the appropriate orbital dis-

tance. Therefore, we compare different equations of state at

the envelope temperature. In addition to an ideal gas, we take

the Saumon-Chabrier-van Horn (1995) EOS, the Carnahan-

Starling (1969) EOS, as well as a completely degenerate elec-

tron gas.

Figure 7 shows that for gas densities up to about 40 kg m−3

ideal gas, Saumon-Chabrier-van Horn, and Carnahan-Starling

EOS agree to better than one percent. For higher densities

the Saumon-Chabrier EOS shows additional non-ideal effects,

while the Carnahan-Starling EOS exhibits a similar behavior

for densities larger than 200 kg m−3. We can also see that the

electron degeneracy does not contribute to the pressure at least

till the point where the Saumon-Chabrier EOS departs from

ideal-gas behavior.

However, in general we see that the ideal gas is an excel-

lent approximation for our model for the better part of the enve-

lope gas density range. Certainly, there are also models where

densities are high enough for significant non-ideal effects, but

typically for the protoplanets in our model those high density

envelope regions are restricted to areas close to the core, while

the rest of the envelope will be well approximated by an ideal

gas. We can see in Fig. 8 that if we use e.g. the Carnahan-

Starling EOS, the numerical details will be changed, but the

qualitative picture will remain the same. This is also true for

the Saumon-Chabrier EOS, which is work in preparation by C.

Broeg. The ideal isothermal gas will not be a good approxima-

tion for the compact envelopes which are typically associated

with giant planets in the late stages of their evolution. Using
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our model, we can show that a protoplanet will have a compact

envelope under certain conditions. What we cannot do with this

model is obtain a quantitatively correct picture of such a com-

pact envelope.

Additionally, Fig. 14 shows why the choice of EOS is not

critical for the qualitative picture: Although the non-ideal ef-

fects might change the density stratifications of the compact

inner parts, each solution which is not self-gravitating in its in-

ner (barometric-law like) part, will have a counterpart solution

with an effective core. Properties of the effective core will be

dictated by the EOS, but its effect on the scale-height will re-

main the same.
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3.7. Estimating the applicability of the isothermal

assumption

In the previous section we showed that an ideal gas is a good

approximation for most of the parameter range we use. The

validity of the isothermal assumption is examined below.

By analogy with the pressure scale-height, a temperature

scale-height of a radiative stratification can be defined as:

HT =
HP

∇rad

= −
∂r

∂ ln T
(13)

where

HP = −
∂r

∂ ln P
=

P

̺

r2

GM(r)
(14)

for an ideal gas and hydrostatic equilibrium, and

∇rad = −
∂ ln T

∂ ln P

∣

∣

∣

∣

∣

rad

=
3 κ L P

4 π a c G M(r) T 4
, (15)

where a is the radiation constant, κ is the gas opacity taken to be

0.1 m2 kg−1, c is the speed of light, and L is the core luminosity

due to the planetesimal accretion rate of 10−6 M⊕ yr−1.

The temperature scale-height corresponds to the length-

scale of a radiative giant-protoplanet over which the envelope

temperature drops by a factor of 1/e. The specific tempera-

ture scale-height HT (r)/rHill evaluates the ratio of the thermal

length-scale to the radial extent of the entire protoplanetary

envelope, at a position r. Evaluated at r = rHill, HT (rHill) is

the global estimate of the thermal scale-height of the proto-

planet. Figure 9 shows that the isothermal assumption is valid

for large portions of the manifold regions III and IV (cf. Fig. 2),

where HT (rHill)/rHill has values much larger than unity. These

envelopes have a specific thermal scale-height above unity

for at least the outer 90% of the envelope. Therefore, even

though the small innermost envelope region is probably non-

isothermal, the protoplanet should be well represented by the

isothermal gas.

Close to the giant-protoplanet’s critical core mass (e.g.

log Mcore = −1.25 in Fig. 4), HT/rHill is expected to be of or-

der unity and the isothermal assumption breaks down. Compact

solutions (regions I and II from Fig. 2, and high ̺csg solu-

tions in Fig. 9) have very large HT/rHill, indicating that nearly-

vacuum space around the compact envelope is nearly isother-

mal. Detachment from a protoplanetary nebula could represent

either hydrodynamically active protoplanets, or the collapsed

gas giants with cleared protoplanetary nebula (i.e. mature gi-

ant planets). In both cases objects are expected to be deep in

the non-isothermal regime. The radial profiles of the compact

objects will change if a detailed energy transport is included,

but they will nevertheless remain compact. A comparison of

Jupiter’s radius with that of our model planet (of equivalent

mass and Tenv of 5000 K, estimated to be representative of

Jupiter’s average temperature from Guillot 1999) shows that,

with rcompact = 6.63 × 107 m, our model falls short by less

than 10% of reproducing the radius of the real gas giant.

In the context of Jupiter’s potentially rapid formation (or-

der of 106 years), it could be argued that the core accretion rate

should be even higher. However, HT /rHill is proportional to the

Fig. 9. Specific temperature scale-height as a function of the density at

the core surface, for different subcritical core masses. Protoplanetary

models with cores of –8 (black circles), –5 (stars), and –3 (crosses) in

logarithmic M⊕ units have HT (rHill)/rHill much larger than unity. This

justifies the isothermal assumption for the manifold regions III and IV.

inverse of Ṁcore, and even if it is set to 10−5 M⊕ yr−1, the va-

lidity of the isothermal assumption is still appropriate for the

regions III and IV of Fig. 2. Indeed, such high core accretion

rates are applicable for cores comparable to M⊕ (i.e. cores at

late stages of a giant protoplanet’s evolution), and are surely

an overestimation for the younger cores (e.g. for the cores of

10−3 M⊕), making the case for the isothermal regime even more

solid. However, because of the simplicity of our model, the re-

sults are only qualitative, while quantitatively correct values

would only be accessible through a more elaborate model.

HT /rHill shows that close to the critical core mass there are

non-isothermal effects.

But the basic isothermal picture is valid for most of (the

quasi-homogenous part of) the manifold. It even appears that

the possible transition from homogenous to compact state can

be initiated within the isothermal regime.

3.8. Manifolds and environment

Manifold solutions are dependent on four environmental pa-

rameters: the gas temperature T of the protoplanet (and of

the surrounding nebula), the orbital distance a from the parent

star, the mean molecular weight µ, and the mass of the par-

ent star M⋆. These parameters influence the balance of the two

forces that determine the radial density structure – the outward

force arising from the gas pressure, and the inward force of

gravity; T and µ are connected with pressure through Eq. (4),

while a and M⋆ determine the Hill-sphere, i.e. the volume of

the envelope mass.

Because of the simplicity of the model, the impact of T

and µ on the solutions will be discussed together, as will the

influence of a and M⋆. In reality, these parameters will have

very different impact.



1190 B. Pečnik and G. Wuchterl: Giant planet formation

Fig. 10. Envelope mass solutions as a function of gas density at the

core surface, for gas temperatures of 100, 500, 1000, 5000, and

10 000 K. A change of T has no influence on the envelope mass of

the non-self-gravitating regions, while the same change of T will pro-

duce a significant effect for protoplanets in self-gravitating regions.

Unless otherwise specified, the reference parameters

throughout the current section are: log(Mcore/M⊕) = −5, a =

5.2 AU, Tenv = 123 K, and µ = 2.3 10−3 kg mol−1.

3.8.1. Temperature and mean molecular weight

Although this model is isothermal, the choice of gas tem-

perature influences the solution manifold quantitatively. From

Eq. (4) it is clear that pressure relates linearly to tempera-

ture. Since the pressure force counterbalances the gravitational

force, protoplanets with hotter envelopes require more gravity

(and thus more mass) for a hydrostatic solution. The value of

the critical core mass is a good example of the quantitative in-

fluence of the temperature. For example, the critical core mass

for a 123 K protoplanet in Jupiter’s orbit is 0.0948 M⊕, while

the critical core mass value for a 5000 K case is 24.5 M⊕.

Figure 10 shows that, for subcritical cores and low gas den-

sities at the core surface (region III in Fig. 2), the gas tem-

perature has virtually no impact on the envelope mass. Since

the envelope mass is small compared to the core mass, the en-

velope parameters (e.g. Tenv) have no influence on the hydro-

static force balance via gravity feedback. On the contrary, for

envelopes in which self-gravity shapes the radial structure (re-

gions IV and II in Fig. 2), the envelope mass is significantly

affected by different Tenv.

The scaling law which relates manifolds of various temper-

atures is discussed in Sect. 3.10.

As previously mentioned, this simple model does not in-

corporate an energy transport equation, nor does it take into

account the gas and dust opacities. Therefore, a change in µ

cannot be distinguished from the corresponding change in T ,

and will not be further discussed.

Fig. 11. Envelope mass solutions as a function of gas density at the

core surface, for orbital distances of 0.05, 0.1, 1, 5.2, and 30 AU.

Enlargement: the transition from uniform to compact envelope solu-

tions is more abrupt for protoplanets at large orbital radii. This is a

consequence of the larger Hill-sphere of outer protoplanets.

3.8.2. Orbital distance and star class

Orbital distance, together with the masses of the protoplanet

and the parent star determine the protoplanet’s gravitational

sphere of influence, the so called Hill-sphere. Since the avail-

able volume for the protoplanet’s envelope scales with the cube

of the orbital distance (see Eq. (1)), the strength of the enve-

lope’s self-gravitating effect depends critically on the distance

from the core to the parent star (see Fig. 11). Therefore, for the

inner protoplanets to have (at least partly) self-gravitating en-

velopes, the gas density at the core surface must be larger than

for the corresponding outer protoplanets.

For solutions with compact envelopes (right side of Fig. 11

and enlargement) the orbital distance has no impact on the en-

velope mass, since the radii of the compact inner part are typi-

cally several orders of magnitude smaller than their respective

Hill-spheres.

The transition from a uniform self-gravitating to a compact

envelope is characterized by a considerable drop in the gas den-

sity for the outer envelope stratifications. In addition, proto-

planets close to the parent star have relatively small Hill-radii

and most of the envelope mass can be found in the proximity

of the core. Therefore, the transition from uniform to compact

envelope for protoplanets close to the parent star is less abrupt

than for more distant protoplanets, as can be seen in the en-

largement of Fig. 11.

Varying the mass of the parent star is equivalent to changing

the orbital distance of the protoplanet, provided that the gas

temperature stays the same. It follows from Eq. (1) that δa−3 =

δM⋆, e.g. changing the orbital distance of the protoplanet from

5.2 AU to 1 AU is equivalent to changing the mass of the parent

star from M⋆ = 0.21 M⊙ to M⋆ = 30 M⊙. It remains to be seen

whether this equivalence will hold for a more complex model,
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Fig. 12. Solution branches – isobars for ̺env(rHill) = ̺out – for (a =

5.2 AU and T = 123 K) manifold: the standard solar nebula solution

branch is represented by the innermost solid line; an enhanced nebula

with ̺out = 10−6 kg m−3 (dashed lines) has multiple solution branches;

each solution branch has its own maximum core mass, and hence local

critical mass.

because the nebula properties will likely change in accordance

with the known mass-luminosity relation as M⋆ is varied.

3.9. Static critical core mass

There are several definitions of the critical core mass currently

in use. The critical core mass concept has been introduced by

various investigators (e.g. Perri & Cameron 1974; Mizuno et al.

1978; Mizuno 1980; Bodenheimer & Pollack 1986; Wuchterl

1991a). As a starting point, we choose here a definition sug-

gested by Wuchterl (1991a), for “static critical core mass”: No

more static core-envelope models with increasing core mass

exist at the critical mass.

This definition is valid along a (time) sequence of proto-

planetary models with increasing Mcore. It is only along such a

sequence, in the context of the static models, that a time evo-

lution with growing cores can proceed. Essentially, the static

critical core mass is the largest core mass for a static proto-

planet that can be embedded in a given nebula, characterized

by a nebula gas density, a temperature, and a distance from a

parent star.

For the (a = 5.2 AU and T = 123 K) manifold this means

that, among the solutions with ̺env(rHill) = 1.4 × 10−8 kg m−3

(defined for the minimum mass solar nebula, e.g. Hayashi et al.

1985), the solution with the largest core mass determines the

static critical mass (Fig. 12, the innermost solid line). This

gives a static critical core mass of MMMSN
core,crit

= 0.0948 M⊕.

Figure 12 shows that the value for the critical core mass ex-

hibits a generally weak dependence on the density of the sur-

rounding nebula, so the choice of ̺MMSN
out from different neb-

ula models is not critical. For the very dense nebulae (around

10−6 kg m−3) and depending on the choice of the solution

branch (cf. Sect. 3.9.1), the values for the local critical core

masses can span several orders of magnitude even for the same

nebula.

The critical core masses for different manifolds are pre-

sented in Table 2, and are found to depend on the parameters

that affect the hydrostatic balance (cf. Sect. 3.8).

By comparing Figs. 1 and 2 it follows that the natural

choice for the global static critical core mass, one which is

valid for the whole manifold, should be the core of the proto-

planet which is at the interface of all four manifold regions (cf.

Fig. 2). The model at the interface has a minimum in the en-

velope mass, for a manifold cut along the constant ̺csg value.

The interface is also an inflection point for a manifold cut at a

constant Mcore. The conditions for the global static critical core

mass thus are:

∂Menv

∂Mcore

= 0
∂2Menv

∂M2
core

> 0

∂Menv

∂̺csg

= 0
∂2Menv

∂̺2
csg

= 0.

(16)

Since the numerical values for the global critical core masses

are very close to the values of the critical core masses from the

definition suggested by Wuchterl (1991a), we do not present

the global numerical values separately.

The values obtained for critical core masses in this model

agree well with those of Sasaki (1989), who used a similar set

of assumptions. However, such isothermal values are signifi-

cantly smaller than today’s commonly accepted critical mass

values, obtained with the inclusion of detailed energy trans-

fer, which are typically between 7 and 15 M⊕. The reasons

for this are two-fold. Firstly, we use the equation of state for

an ideal gas. Secondly, the temperature of the isothermal gas

is taken from nebula models, hence the nebula temperature is

the temperature of the entire protoplanet. This is certainly a

lower limit for a realistic temperature of the interior of the pro-

toplanet. Larger critical core mass values are obtained if the

gas temperature is in the range of the temperatures for the in-

terior of gas giants modelled with detailed energy transfer (cf.

Sect. 3.8.1). Clearly, the correct determination of the critical

core mass requires temperature structure, but the emphasis in

this work was not on quantitative details, but rather on global

qualitative features.

3.9.1. Local critical core mass

From Figs. 12 and 13 one can see that, for each subcritical core

immersed in a nebula, there are at least two permitted solu-

tions. However, if one considers only the time-sequence of hy-

drostatic models with a growing core, it is clear that solutions

with higher density at the core surface cannot be reached.

The situation is more complicated if the protoplanet is em-

bedded in a denser protoplanetary nebula. Our model clearly

predicts multiple solutions for certain sets of parameters

(Fig. 13). Instead of one solution branch for a given nebula

(with two solutions for each core, as for a minimum-mass so-

lar nebula), several solution branches are possible, again each

with two solutions for a specific core (Fig. 12, dashed solution
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Fig. 13. For nebula density enhanced relative to a minimum-mass so-

lar nebula, even more than two hydrostatic equilibria could exist; M:

protoplanetary solutions with log Mcore/[MEarth] = −2 that fit into

̺out = 10−6 kg m−3 nebula; DS : double solutions, a special case of

multiple solutions, cf. Figs. 5 and 15; S : protoplanetary solutions

with the same core, whose envelope fits into the minimum-mass solar

nebula.
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Fig. 14. Density profiles for the solutions which fit into the same

(10−6 kg m−3) nebula. These solutions are labelled with M in Fig. 13.

branches for ̺out = 10−6 kg m−3). Multiple solution-branches

are enabled by envelope self-gravity (cf. Fig. 14) and are due to

tidal restrictions imposed by the parent star via rHill (cf. Fig. 3,

region IV).

Each solution branch has one critical core mass, beyond

which there is no static solution, for a sequence of hydrostatic

models with increasing core mass. For the minimum mass solar

nebula this means one critical core mass, according to the def-

inition suggested by Wuchterl (1991a). For some denser nebu-

lae, however, the existence of several branches implies several

local critical core masses, where solutions beyond the critical

core mass of the branch are unavailable locally. After reaching

the local critical core mass, the planet could, in principle, con-

tinue evolving by ’jumping’ to another branch. One of us has

Fig. 15. Mass and density radial structure of the special case of multi-

ple solutions, where two protoplanets have the same core, almost the

same envelope mass, connect to the same nebula, but have different

radial structure. These solutions are labelled DS in Fig. 13.

observed similar behavior for certain sets of initial parameters

in hydrodynamical models. The local critical core mass satis-

fies the above definition but not Eq. (16) for the global critical

core mass.

3.9.2. Double maxima

A special case of multiple solutions can be seen in Figs. 5, 13,

and 15 as double peaks in the envelope mass. For every (sub-

critical) core, two special solutions, which fit into the same neb-

ula cloud (i.e. have the same ̺(rHill)) and have almost exactly

the same envelope mass (equal to one part in 104, or better), are

found to exist. Usually these two solutions have a very similar

stratification in the outer parts of the protoplanet’s envelope,

but deep inside the protoplanet their radial structure is quite

different (cf. Sect. 3.5).

Supercritical cores do not posses such a feature, because

the density profile always effectively goes to zero long before

the Hill radius is reached. Therefore there is no significant con-

tribution to the envelope mass in the outer stratifications, and

the envelope mass increases monotonically with the gas density

at the core surface (cf. Fig. 3).

Envelopes with lower gas density at the core surface, ̺low
csg ,

(Fig. 15) have a maximum possible mass (for the correspond-

ing manifold) because the envelope gas density at the core sur-

face is low enough to ensure uniformity for the major part of

the radial structure. Consequently, the envelope density does

not substantially decrease from the core-surface value. At the

same time, ̺csg is high enough to allow significant mass contri-

butions from the outer parts of the envelope, where the volume

(and therefore the mass, for a given density) per unit radius,

is the largest. Values for such maximum envelope masses are

tabulated in Table 2.

Envelopes with higher ̺
high
csg build up the self-gravitating ef-

fect (SG effect starts as soon as Menv ≈ Mcore) very close to

their core. Because of the very strong self-gravitating effect
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(Menv ≈ 3Mcore for the innermost regions), the radial density

fall-off close to the core (Fig. 15) is strong.

A new, effective core is formed from the dense envelope-

gas-layer wrapped tightly around the core. In this case, the en-

velope density distribution resembles one with the core (and

the radius) of this effective core. In stratifications where the en-

velope mass becomes comparable to the effective core, another

self-gravitating effect changes the radial envelope density dis-

tribution to ̺env ∝ r−2.

For a particular choice of ̺
high
csg , the envelope density profile

in the outer stratifications matches that of ̺low
csg , thus making the

mass of both envelopes almost equal.

3.10. Temperature-mass invariance

It has been noted that, if mass and distance are measured in a

system of appropriate units (i.e. mass in units of core mass, and

distance in units of core radii), solution manifolds with differ-

ent temperatures are almost identical, except for a shifting on a

core-mass-axis, according to the relation:

T1

T2

=

(

M1

M2

)2/3

(17)

that can be derived for homologous envelopes satisfying

̺1(r1/rcore,1) = ̺2(r2/rcore,2), for any pair of r1 and r2 such that

r1/rcore,1 = r2/rcore,2. In other words, the radial profile of a cer-

tain protoplanet with core mass M1 and temperature T1 will be

the same as the radial profile of another protoplanet with core

mass M2 and temperature T2, if Eq. (17) is obeyed, and if the

mass is measured in units of core mass and the length in units

of core radius.

This is true for all manifold regions, sub- and super-

critical, self-gravitating or not. Note that in Fig. 10 the

non-self-gravitating region was not affected by a change in

envelope temperature, but relation (17) does hold even for non-

self-gravitating envelopes, since it connects envelopes with dif-

ferent temperatures and core masses. Figure 10 was plotted for

different temperatures, but constant core mass.

4. Discussion and conclusions

In an effort to obtain a global overview of hydrostatic proto-

planetary equilibria, we have chosen a simple physical model

so as to be able to clearly understand the interaction of compet-

ing processes.

Our use of relatively simple physics has several conse-

quences; because the ideal gas equation of state is used, gas

particles are “soft”, and can be compressed as much as is

needed, in effect overestimating the importance of gravity rela-

tive to gas pressure, when large envelope-gas-pressure is ap-

plied. A comparison of the ideal gas EOS to the numerical

Saumon-Chabrier EOS shows disagreement for the log T =

2.1 isotherm and densities above ̺ = 40 kg m−3. This would

indicate that the non-ideal EOS is needed for high-density ef-

fective cores.

It has been noted that manifold properties are insensitive to

variation of orbital distance a or mass of the parent star M⋆, as

long as a M−3
⋆ = const holds (cf. Sect. 3.8.2). Also, solutions

whose envelope temperature and core mass obey relation (17)

are found to be the same, if appropriate units for mass (i.e.

core mass) and length (i.e. core radius) are used. This indicates

the existence of analytic solutions for some envelope regimes,

through certain dimensionless scaling variables. Such a treat-

ment is, however, out of the scope of the present paper.

An envelope gas temperature is equal to the nebula T

throughout the protoplanet, and that certainly underestimates

the thermal pressure and hence reduces the values for the crit-

ical core mass. However, from Eq. (17), one can show that for

a more realistic estimate of the envelope temperature represen-

tative for the young planets (5000 K) critical core mass values

are overestimated (∼24.5 M⊕), because of envelope isothermal-

ity/lack of an energy transport equation and use of ideal-gas

EOS, when compared to canonical critical core mass values

from protoplanetary models with detailed microphysics.

Both the local and the global critical core masses signal

the end of the availability of the hydrostatic solutions. In the

case of the local critical core mass, non-availability holds for

a small region of the parameter space around the local critical

core mass, while for the global critical core mass this is true

for every core larger than the critical core mass. The significant

difference between the two types of critical core mass is that,

at the global critical core mass (and above), the non-isothermal

effects are crucial in shaping the structure of the protoplane-

tary envelopes, and are present throughout the parameter space.

These non-isothermal effects are important for determining the

details of the dynamical disk-planet interaction.

The critical core mass values obtained in this model are al-

most two orders of magnitude smaller than the canonical crit-

ical core masses which incorporate detailed energy transfer.

Thus, if subcritical or just-critical regimes of a dynamical disk-

planet interaction are to be investigated through a model that is

locally isothermal, the planet mass should be set appropriately.

Most of the present locally-isothermal disk-planet models (e.g.

Kley 1999; D’Angelo et al. 2002, 2003; Nelson & Papaloizou

2004) operate with planets which should be deep in the super-

critical regime.

A solution set from our model encompasses solutions that

are reminiscent of the planets in the various stages of evolution

(from small rocks embedded in the dilute nebula to the ma-

ture planets as we know them), and of various configurations

(the telluric planets of region I in Fig. 2, and the gas giants

of region II). The “nebula” and “mature planet” regimes are

the physically intuitive beginning and end phase of planetary

evolution. However, the “protoplanet” regime presents us with

an interesting region in parameter space, where planets could

make the transition from “infancy” to “maturity”. Depending

on the detailed structure and the dynamics of the surrounding

nebula, it is easy to conceive a standard scenario of planet for-

mation. That is, the accretion of nebula gas onto a supercritical

protoplanet. Other scenarios could be imagined as well, e.g. a

massive protoplanet could release a major part of its envelope

to reach the appropriate equilibrium, or it could dramatically

condense its otherwise mostly gaseous envelope. Amounts of
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dust in the environment will doubtless play a very important

role in the process.

In conclusion, several important features of the solution set

have to be mentioned:

1. Two basic types of envelope equilibria are found for proto-

planets:

• uniform; the density of the envelope gas drops

weakly from the core to the outer boundary;

• compact; a dense gas layer forming an effective core,

and a very low, exponentially decreasing, gas density fur-

ther out.

Both types can be self-gravitating or non-self-gravitating,

dividing the solution manifold into four distinct regions.

2. As a consequence of the envelope’s self-gravitating effect,

a wide range of possible envelope solutions exists.

3. We have developed a new concept for the global static crit-

ical core mass, which marks the contact point of all four

qualitatively different types of protoplanets. This concept

is based on a qualitative change of the envelope properties

while considering a complete set of available solutions (a

solution manifold), as opposed to the critical core mass def-

initions which are valid only for a solution subset fitting a

particular nebula.

4. For every subcritical core there are at least two envelope

solutions possible (a self-gravitating one and a non-self-

gravitating one) for a given nebula, and for a certain nebula

parameters the number of the possible envelope solutions

can be even larger. Such nebulae also have multiple (local)

critical core masses.

5. The global static critical core mass value is shown to de-

crease with increasing orbital distance a, mainly because of

the decrease in the temperature of the surrounding nebula.
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