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Small amplitude vibrations of spherical nuclei are considered in microscopic (RPA) 

and fluid-dynamical description. Assuming the concentration of transition strength into one 

collective state, the microscopic result can be brought into close analogy to constrained fluid

dynamical motion. The decisive difference occurs in the contribution of the microscopic 

kinetic energy to the collective potential energy. It is shown that extension of fluid dyna

mics to include dynamical distortions of the local Fermi surface is sufficient to reproduce 

the microscopic results. Numerical examples are given for L=O and L=2 isoscalar modes 

for a Skyrme-type nucleon-nucleon force. 

§ I. Introduction 

Giant resonances can be regarded as "doorways"!) for inelastic scattering of 

photons, electrons and hadrons on nuclei. In that sense they do not necessarily 

represent stationary eigenstates of the nuclear many-body system, but rather are 

defined through the transition operators ML by which they are excited from the 

ground state. It seems, however, that at least for the low L multipoles the 

transition strength tends to be concentrated in one single or very few eigenstates. 

This can in fact be understood in microscopic models where collective eigenstates 

are obtained from correlated particle-hole pairs, usually in the framework of the 

Random Phase Approximation (RPA) .2> To obtain an estimate of the resonance 

energy, however, it is not necessary to construct the model eigenstates explicitly 

because in case of "doorway dominance" it can be approximated by energy-weighted 

sum rules, once the form of the transition operator and the microscopic Hamiltonian 

are specified. 

As is well known, the RP A equations are formally identical with the linear

ized, small-amplitude, Time-Dependent Hartree-Fock equations,3> and their eigen

states can be viewed as collisionless modes propagated through the time-dependent 

mean field (the classical analogue being the Vlassov equation). In an infinite 

system, the collisionless mode is namely the zero sound. This mechanism is very 

different from the way modes are propagated in ordinary fluid dynamics where the 
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1214 H. Sagawa and G. Fiolzwarth 

ayerage free path for the interacting particles is supposed to be very small in 
comparison with the waYelength of the mode, so that local equilibrium can be 
established and the modes are propagated directly through the tvvo-body collisions. 
These modes correspond to the first sounds. The basic feature underlying New
tonian fluid-dynamics is therefore the locally isotropic momentum distribution, lead
ing to an isotropic pressure within the fluid. 

Such an assumption, although probably justified for calculating static properties 
of closed-shell nuclei, 41 seems, however, highly questionable for the discussion of 
dynamical phenomena at lower energies in view of the long mean free path of 
nucleons in nuclei which does not allow for local relaxation. This ought to hold 
also for the giant resonances. On the other hand, it has been obsen·ed5l that in 
some cases "macroscopic" estimates for the resonance frequencies agree quite well 
with RPA results. It has also been obserYed61 that the single-particle density 
deri1·ed from one single pure many-body state obeys fluid-dynamical equations if the 
phase factor of that state is a local single-particle operator, an assumption which 
does not necessarily imply locally isotropic momentum distribution. 

It is the intention of the following note to make the connection between these 
different mechanisms more transparent by formulating them in close analogy to 
each other. The results for the resonance frequencies will, of course, not be new, 
and therefore the numerical part will be quite brief. In § 2 we use sum rules 
to cast the RPA-equations into a form which closely resembles the fluid-dynamical 
expression for the energy of a constrained motion imposed on the fluid through the 
excitation mechanism (§ 3). The isoscalar monopole mode is considered more close
ly in § 4 as an example of how the fluid-dynamical eigenmodes are related to the 
imposed "breathing" mode: As in the microscopic case the connection is through 
an energy-weighted sum rule. In § 5 we derive the explicit expressions for the 
frequencies of the isoscalar L = 0 and L = 2 resonances and show that only through 
distortion of the local Fermi surface the fluid-dynamical result can be brought into 
agreement with the microscopic expression. 

For the interaction between the nucleons we shall consider an effecti,-e zero
range force of the Skyrme type7l which for spin-saturated nuclei leads to d local 
potential energy density 

v = ~t 0 (2p+ 2 - ~ ( x 0 + ~) P- 2) + ~ (3t 1 +5t2) P-1- 7: + + ~ (t2-tl) P-'-2 4 2 \ 2 16 16 

+ ~ (St2- 9tl) P-1-~P+ + ~ (3t1 + t2) P-~P- + ~ t3 (p+ 3- P+P- 2), (1) 64 64 16 

1vhere 

are the local total density and neutron excess and (h2/2m) 7: ~ are the corresponding 
kinetic energy densities. 
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Giant Resonances: A_ Comparison between TDHF 1215 

§ 2. Sum rules and RP A 

We define isoscalar and isovector transition densities by the expresswns 

(OLo+ (r) leu)= :E ((mlo(r~-r) li)Xm +(ilo(r~-r) lm)Ytm), 
mi 

(OLo_ (r) leu)= :E ((mk3o (r1 -r) li)X;m +(ilr3o (r~-r) lm)Yim). (2) 
mi 

Here p 1_ (r) is the operator for the local isoscalar density 2.:~~ 1 o (r9 - r) ·with ground 

state expectation value P+ (r); p _ (r) is the isovector density :E~~~ r 3 (v) o (r,- r) with 

expectation value P- (r); IO) and leu) are the RPA ground- and excited (collective) 

states, and I m) and I i) are self-consistent single-particle and hole states. Denoting 

matrix elements of the single-particle density matrix by caS> I.e., 

p (r, r') = :E (rla)ca~(tS'Ir'), 
a;p 

we have 

ap± (r) = { (ilo(r1 -r) I m) 

acmi (ilrso(r~-r) lm) 

and therefore 

(3) 

The particle-hole and hole-particle amplitudes Xim and Yim are determined together 

with the collective frequency O) through the RPA-equations 

(Pteu- Cik) xk = :E ((iZIVIkj)Xjl +(ijiVIkZ) yjl)' (4a) 
jl 

( -ilw-c;k) Yu, = :E ((iZIVIkj)*Yjl +(ij[ Vlld)*Xjl), (4b) 
jl 

where the interaction matrix elements are defined as second derivati\·es of the total 

potential energy 

. . 82 fvdr 
(tJIV[kZ)=---. 

ackiaclj 
(5) 

Although the functional v o£ Eq. (1) depends not only on the densities p, and iJ

but also on the kinetic energy densities r + and r _, the latter ones can generally 

be considered themselves functionals of the densities P+ and P- and we can formally 

write 

(6) 

or explicitly 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/5

9
/4

/1
2
1
3
/1

8
8
1
4
2
7
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



1216 H. Sagawa and G. Holzwarth 

S 1 ( ap+ ap_ ap+ ap_) c- ) - -t3P-- -- +- -- - +'-terms, 
8 ocki oc jl ac jl acki 

(7) 

where the -:-terms contain functional derivatives of r ± with respect to P=· A similar 
expression holds for <ijiVIH). Multiplying the RPA-equations (4a) and (4b) by 
Xit and Yit, respectively; inserting the matrix elements (6) and the definitions 
(3), we obtain after summation: 

/tu)=~8ik(IXiki 2 +1Yikl 2 )+ s~i}~ I<OIP+Ico)l 2dr+ S~_§_ 2 ~- I<OIP-I(J))I 2dr 
ik op+op+ op_op_ 

+ s 02 ~ -(<OIP+Iw)<(J)IP-IO)+<Oip_I(J))<(J)IP+IO))dr, (8) 
op+op_ 

vvhere the functional derivatives again are a formal notion which can include 
deri,-ati\-es acting on the transition densities. On the left-hand side we have made 
use of the normalization condition 

~ ([X;k! 2 -IYikl 2) =1. 
ik 

The first term on the right-hand side of Eq. (8) can be rewritten (making use of 

Eqs. (3) """(6)): 

(9) 

Therefore, by defining a mean particle-hole energy s through 

s2 = ~ s;k CIXikl'- I Yikl') (10) 
ik 

or by assummg the cik to be degenerate (the effect of Z· s splitting is not so impor
tant to the mean excitation energy of the giant resonance), we finally obtain the 
RPA-relation between the transition densities and the collective frequency: 

/i2cu 2 = c2 + 2/iw { J ;;/5"!!_-1 <Oif5+ I u)) l2dr + J ~-q -I <Oif5-1 10) l'dr 
op+op+ op_op_ 

+ J) 2 ~- C<OftLiu))<colf5+IO)+<OI lco)<culf5-IO))drlf· (11) 
op+op_ 
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Giant Resonances: A Comparison between TDHF 1217 

Of course, the symmetry between positive and negative frequencies is only seem

ingly violated by this relation. For a very collective state lw) the mean particle

hole energy c will be practically independent of w (in case of degenerate c;k it 

is trivially (I)-independent). We will see in the following that in case of doorway 

dominance the second term on the right-hand side is also explicitly w-independent. 

Therefore the relation (11) seems appropriate for the discussion of giant reso

nances, in cases where the sum rules are exhausted by the doorway state and 

thereby the transition densities are determined by the transition operators ]l,tfL. 

In the following discussion, we consider only the transition operators in the long 

wave limit. These operators are sufficient for studies of the excitation mechanisms 

of giant resonances. Following a suggestion of Deal and Fallieros,8l we first con

sider states which exhaust the sum rules for isoscalar transition operators 

A 

ML='E ML(v), (12a) 
lo'=l 

(13) 

If one of the states In), which we shall denote by lwL), exhausts the sum, then we 

have for that state 

(14) 

The transition matrix element is determined through exhaustion of the sum 

:E hwn<OIML I n)<n IML IO) 
n 

which then leads to 

(16a) 

This equation shows that the second term on the right-hand side of Eq. (11) 1s 

£()-independent and we finally obtain 

wL 2 = (c/h) 2 + (mA<PML·YML))- 1 {S iJ
2
v (Y· (p+PML)) 2dr 

iJp+iJp+ 

+ siJ iJ 2 ~ (P·(p_YML)) 2dr+2 siJ iJ 2 ~ (P·(p+YML))(Y·(p_YML))dr}. 

P- P- P+ P-
(17a) 

In 1V = Z nuclei P- is approximately zero. In that case, therefore, the last two 

terms in Eq. (17a) drop out. A similar equation is derived by the direct calculation 

Df two-body matrix elements in Ref. 19). For states lwL <T~ll) which exhaust the sum 
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1218 H. Sagawa and G. Holzwarth 

rules for isovector operators 

A 

ML <T~v = ~ !"3 (v) JYIL (v), (12b) 
JJ=l 

we can proceed in a similar way for that part of the ·potential energy which 
commutes with ML <T~v. Then we obtain 

hwL <r~v l<Oip± (r) lwL <r~vw = h2 (P' · (p" (r) P' ML) Y/2m J P+ (P' ML) 2dr, 

and the RPA-frequency is given by 

(wL (T~l)) 2 = (e/h) 2 + (mA<P' ji,;J L., M L>) -l { s~- (P'. (p_P' M L)) 2dr 
iJp+iJp+ 

(16b) 

+ S iJ
2
v (P' · (p+P' M L)) 2dr + 2 S iJ

2
v (P' · (p+P' M L)) (P' · (p_P' l'vf L)) dr}. iJp_(Jp_ iJp+iJp_ 

(17b) 

For isovector operators ML<T~v and P- the velocity-dependent parts of the Skyrme 
force, however, contribute to the sums (13) and (15). This means that on the 
right-hand side of Eq. (16b) the total density P+ then has to be replaced by 

(18) 

§ 3. Fluid dynamics 

In the preceding section we have discussed the RPA-relation between frequency 
and transition densities in case of sum rule exhaustion. As outlined in § 1, the 
underlying dynamics is that of a collisionless mode propagation through the mean 
field. Let us now consider the fluid-dynamical Hamilton function for irrotational 
flow of a two-fluid system. If protons cannot be transformed into neutrons or vice 
versa, we have 

The isoscalar (isovector) mass densities mp+, (mp_) and the velocity potentials 
¢+ = H ¢P + ¢n), (¢_ = H¢n- rpp)) are the canonically conjugate coordinates. The 
potential part f udr is a functional of the local densities P+, P- and their derivatives 
and represents the total energy of the many-body system in the static case, i.e., 

Judr=<H>= Jr+dr+ Jvdr, (20) 

where the potential energy density v is given by the expression (1). It will later 
on be decisive how to express the kinetic energy densities r ± as functionals of 
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Giant Resonances: A Comparison between TDHF 1219 

P+, p_ and its derivatives. For the moment, however, it will be sufficient to 

assume as in the preceding section that there exist functionals r± =r± (P+, P-) 

without specifying their explicit form. Hamilton's equations then lead to 

(21a) 

0 1 au 
¢_ = (P¢+. P¢_) + _ ---- , 

m op_ 
(21b) 

the equations of continuity and Bernoulli's equations, respectively. For small oscil

lations around the equilibrium densities 

P± (r, t) = P± (r) + op= (r, t), (22) 

the linearized equations of motion are 

(23a) 

where again the functional derivatives are a formal notion which generally will 

contain derivatives acting on the density changes OP±· 

In case of the Giant Resonances we are not really interested in the eigenmodes 

of the system of Eqs. (23), but rather in a constrained motion of the fluid, 

imposed on the system through the excitation mechanism. Bertsch91 has pointed out 

the connection between the transition operators Nh and the velocity potential ¢. 

Thus, by imposing a constraint on the motion by choosing 

for isoscalar modes 

for isovector modes 

rP+ (r, t) = Cx (t) J11L (r), 

rp_ (r, t) =0, 

¢+ (r, t) ~o, 

rp_(r, t) =a(t)NJL(r), 

the density changes are determined through Eq. (23a) 

for isoscalar modes 

for isovector modes 

op±(r, t) =a(t)op±(r) =a(t)P· (pJc(r)PNJL), 

op±(r, t) =a(t)op±(r) =a(t)P· (p+(r)P}.1L), 

(24a) 

(24b) 

(25a) 

(25b) 

with a (t) as a time-dependent small amplitude. The frequency of this constrained 

motion is then determined by the form of the Hamilton function (19). Namely, 

inserting the expressions (24) and (25) into Eq. (19) we obtain 

${=~a(t) 2 s(P.L11L"PML)p+dr+ s u(p+,P-)dr 
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1220 H. Sagawa and G. Holzwarth 

where vYe haYe made use of the fact that the static densities P+ and P- satisfy 
(oujop,)p+=O and (oujop_)p_ 0. The expression (26) is time-independent for 

harmonic motion 1n a with the frequency for the isoscalar mode (25a) given by 

(2/a) 

and for the isovector mode (25b) 

Clearly, with respect to the inertia parameters BL and the contributions of the 

j;otential energy fvdr to the force constants CL these results are identical to 

relations (17) which originated from the RPA. For the contributions of the kinetic 

energy J 'f, dr to the force constants CL, however, there is a decisiye difference. 

\Vhile in the RPA they appear through the self-consistent particle-hole energies 8 in 

the form 

the fluid dynamical result contains them through terms of the form 

h2 s o2r 
-- ~ + (P' · (pP' l'vf L)) 'dr . 
2m op 2 

The latter quantity 1s evidently determined by the functional form of r+ (p_, p_) 
~which in turn depends on our assumptions about the local momentum distribution. 

§ 4. The breathing mode 

It is instructive to consider the case of a monopole mode in more detail. 

For the sake of simplicity we shall do this for a system consisting of only one 

kind of particles with density Po (r) in the ground state. We define the "breathing 

mode" through its velocity potential ¢o = ar'/2 which leads to the density change 

(28) 
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Giant Resonances: A Comparison between TDHF 1221 

and with Eq. (25a) to the frequency 

(1) 0
2 = f('~ 2 ~) (3p0 +r_Q_p0)

2
r 2dr/mA<r2)=Co/Bo. 

Op Po Or 
(29) 

As is well known, Eq. (28) is identical with the first-order term in an expansion of 

the W erntz-Uberall (WU) model!Ol 

p(r1 t) = (1+a(t)) 2Po((1+a(t))r) =Po+op(r, t) 

=Po+ar· (Po,~ 2 ) +a2r· (r(Po~ 2 )) + .... 

If the static density Po (r) satisfies the "equilibrium" condition 

( ~ fudr) = (~u) =lc, 
Op · Po Op Po 

(30) 

then also the vVO model leads to the frequency (29). If, however, the equilibrium 

condition is fulfilled only with respect to a change of a, I.e., 

(__Q_fudr) =(Sou ]_E_dr) =0, 
Oa a=O Op fJa a=O 

(31) 

then the WU model leads to a quite different result for the force constant C0 : 

( 8
2 f ) f(o 2u) ( fJ ) 2 f(ou) ( 02 ) Co= ---· 2 udr = - 2 -P dr+ - - 2P dr. 

Oa a=O Op Po Oa Op Po Oa 
(32) 

(The inertia parameter B 0 is, of course, unchanged because !]{ is quadratic in ¢ 
and therefore the first order is sufficient to determine B 0.) A good example 1s 

provided by a functional u which contains only volume terms. Then the equilib

rium condition (30) cannot be satisfied for a density Po which vanishes outside 

a finite space region, and one can require only the "saturation" condition (31) to 

be fulfilled. In this case the functional derivatives 0 I op can be replaced by ordinary 

derivatives fJjfJp and we obtain from Eq. (32) 

Together with the condition (31) all the terms containing derivatives of Po cancel to 

glVe the final result 

In case of a square-well density 

Po= tcf) (R- r), 
3A 

IC= ----
47CR3' 

this reduces to 
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1222 H. Sagawa and G. Holzwarth 

(33) 

Here, evidently, only the first term in op0 (Eq. (28)) can contribute and we obtain 

the "nuclear matter" compressibility K. 

The square well also provides an example how the fluid-dynamical eigenfre

quenCies are related to the breathing mode: In this case the eigenmodes are gi\-en 

by 

op" (r, t) =a (t) "(c-) n+ 1j 0 (knr) e (R- r) - _B_;;o (R- r)), (34) 
n27r: 

with the wave numbers kn determined by the boundary condition 

71 = 1, 2, 3, .... (35) 

The corresponding velocity potential is 

The continuity equation then is satisfied everywhere, and from Bernoulli's equation 

for r<R*J we obtain the eigenfrequencies 

(}),.2= " (8_~t~-_) k,.2. 
m ()p2 ~< 

The breathing mode from Eq~ (28) 

opo =a (t)" (3e (R-r) -Ro (R -r)) 

can be expanded 111 terms of the eigenmodes (34) 

OPo (r, t) = 6 2::: OPn (r, t) 
n=l 

and for the "transition strength" S,. = If r 2op"dr I one obtains 

sn =an". 24nR5 I (nn) 4 
' 

where a,.= lh/213~())~ and the mass parameter Bn is obtained as mJc(2R5/n 47r3 ). 

This then leads to a "sum rule" relating the breathing-mode frequency o>0 (33) to 

the hydrodynamical eigenfrequencies o>n: 

00 00 

Wo2 =2::: Wn3 1Snl 2/2::: WniSnl". (36) 
n=l n=l 

It is just this averaging of the eigenfrequencies co,; with the "strength function" 

wn1Snl 2oc1jn4 which replaces the square-well redius R occuring in the boundary con

dition (35) by the mean square radius occuring in Eq. (33): 

*l For free motion the gradient of the pressure at the surface (r=R) must vanish. There

fore the surface cannot contribute to the time derivative of the current and it is sufficient to satisfy 

Bernoulli's equation inside the square well. 
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Giant Resonances: A Comparison between TDHF 1223 

Clearly, in fluid dynamics the sum rule (36) is not exhausted by one state, and 

the frequency of the (constrained) breathing mode W0 lies slightly above the lowest 

"normal sound" mode W1 (w0 = 1.23w1), which also sometimes is used for comparison 

with microscopic results.w 

§ 5. Explicit expressions for the resonance energies 

Let us now introduce a definite form for the kinetic energy density func

tionals12> 

r±=CTF(Pn513 ±P/13) +CsT(JF'Pn)
2 

± (J7pP) 2) + 1
3 (~Pn±~PP) (37) 

Pn PP 

with constants CTF and CsT, where TF refers to the volume kinetic energy in 

Thomas Fermi approximation, ST refers to a surface correction term for the kinetic 

energy. The assumption underlying the volume part of this form is a spherical 

local Fermi surface. The total static energy from Eq. (20) can then generally 

be written as 

s udr=(TF)+(ST)+ ~ (o")+(S)+(C), (38) 

where TF represents volume terms of the kinetic energy, ST the surface correction, 

(cr) volume terms of the potential energy of the form f P/Pdr, f p/ndr, f P/PPn"•dr, 

(S) surface terms of the form f(Ppp) 2dr, f(Ppn) 2dr, fJ'pp·Ppndr, f(Ppn) 2Pp/Pndr, 

f(J'pP) 2Pn/PPdr (the latter resulting from the p·r terms of v in Eq. (1)), and 

finally the direct Coulomb energy (C). The exchange part of the Coulomb energy 

in Slater approximation is of the ( cr) form with (} = 4/3. Variation of the energy 

functional (38) ·with respect to pP and Pn (or P+, p_) under subsidiary condition 

of fixed proton and neutron numbers Z and N leads to the coupled system of 

integra-differential equations13> 

au 
---=}, 0 p, 

PP 
or 

with Ap and An as Lagrange parameters. 

It is readily verified that the expressions 

and 

~ = __!_(A - A ) op_ 2 n p 
(39) 

(40a) 

(40b) 
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1224 H. Sagawa and G. Holzwarth 

can both be expressed again completely in terms of the expectation values contained 

in Eq. (38). Namely, we have 

+ 2(S) + 2(C) = ApZ + J,nN, ( 41a) 

I.= -3(TF)-(ST)-3 I; (a)-(S)-5(C) 

" 

These equations are satisfied by solutions of the system (39). Especially, we have 

3I1 + I2 = 0, i.e., 

2 ( (TF) + (ST)) + 3 {I; (6p -1) (6p) +I; (6n -1) (6n) 
rip f1n 

+I; (6p+ 6n -1) (6p6,,)} +5(S) +(C)= 0. 
Cfn(Jp 

This equation is, of course, just the usual "saturation" condition. 

For a given change opL =,. (pP ML) in the density p (we omit the indices 

+, for the moment) the force constants CL of Eqs. (27) are given as sums 

Qf the ground state expectation values (TF), (ST), (6), (S) and (C) in the case 

of the isoscalar monopole and quadrupole modes. 

In the isoscalar L = 0 case the simplest way to obtain this result is to consider 

density changes created through a parameter a such that 

where P= (r) are the static equilibrium densities satisfying Eqs. (39). Then we 

have 

Comparing Eq. ( 42) with the definitions of I 1 and I 2 m Eqs. ( 40) leads to 

C0 =4(TF) +4(ST) +9 I; (6-1) 2(6) + 25(S) +(C) (43) 

" 
and 

This expression agrees with the result of Zamick,14l derived from square well 

and harmonic oscillator determinants and with the sum-rule result of Martorell 

et al.15) It is legitimate to compare it to the sum m 3 of Ref. 15) because we have 

assumed that the sum is exhausted by the breating mode. 

In the isoscalar quadrupole (L = 2) case we have 
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Giant Resonances: 1l Comparison between TDJIF 1225 

for lvf =0' 
(44) 

1 for lvf =2. 

For spherically symmetric static densities p= (s) the force constant C, from Eq. 

(27a) can be re\vritten in the form 

C, = 1_ {[ 24 2:.: (o) + 28(S) + 28(ST) + 24(TF) + 36(C)J 
41, G 

[ S 0 u .2 ()2 ' s 0 u .2 o' J} -2 -.,.-7 --p+dr-r -.,.-7-p_dr . 
op+ or' op_ or' 

By virtue of Eqs. (39) the second term inside the curly bracket 1s equal to 

-24 UnN + ApZ), so we have 

The relation (41b) serves to eliminate all pure volume terms: 

C,= ~ {20 ((S) + (ST)) -4(C)}. 
47r 

Together with Eq. (23a) the L = 2 frequency then 1s gwen by 

(45) 

(46) 

Similar to the liquid-drop modeP6) this result contains only the surface contributions 

to the total energy (apart from the Coulomb term which agrees with the liquid 

drop result). The factor in front of the surface energy is in agreement with the 

n1icroscopic sun1-rule result vvhich is in the notation of Ref. 15) (vvithout Coulo1nb 
term) 

(47) 

Here (I' represents energy contributions from the quadratic momentum depend-

ence of the effective two-nucleon force, i.e., surface terms of the potential energy 

and volume terms originating in the p-:-terms of Eq. (1). But obviously, as a 

consequence of our assumption about the functional form of -r => both the volume 

terms of the kinetic energy (o = 5/3) and the volume part of the p:--terms (o = 8/3) 
contained in the result ( 47) are absent from our result ( 46), while surface terms 

are correctly reproduced. The volume terms, however, are decisive for the exper
imentally observed A - 13-dependence of cD 2 , as is also evident from the term contain

mg the single-particle energy c in Eq. (15). This failure can be directly traced to 

the assumption of a spherically symmetric local Fermi surface. 

In the TDHF propagation there is no mechanism (e.g., through two-body 
collisions) to restore the spherical symmetry of the Fermi surface once it is distort-
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1226 H. Sagawa and G. Holzwarth 

ed. In case of the L = 2 modes it is, however, easy to incorporate the distortion 

into a fluid-dynamical formalism (i.e., a formalism which does only consider den
sities, without going back to wave functions). In the L = 2 case the Fermi surface 
at point r is an ellipsoid in momentum space giving by 

where N(a2) is a normalization factor chosen to conserve the local density p (r). 

Then we have (up to 0 (a22)): 

16n PF3 (r) 4 s iPFCr.~.~) ( 3 •) p(r) =-~------=----- dSJP P 2dP=P(r) 1+-a2- N(a2)\ 
(2nh) 3 3 (2nh) 3 o 2n 

I.e., 

The volume part rTF of the kinetic energy density is now given by 

For the L = 2 oscillation around the spherical equilibrium density Po 

p(r) =Po(r) +a2op(r) =Po+azrPo's,,I(Y2M+ Yz'JW) 

the amplitude a 2 is the following functional of p (r): 

a2(p) = -~ sp(r)sM(Y2.w+YiM)dr. 
3A 

The second-order change of the volume part of the kinetic energy 

(TF) = Jf_ JrTFdr · (1 + ~ (a2 (p)) 2) 

2m 2n 

evaluated at p =Po is therefore given by 

(o2(TF)) Po =!f_( s ( 02 '~F) op2dr + JrTF(Po)dr. ~2(oa2) 2 ). 
2m Op Po 27r 

(49) 

(50) 

From Eq. (50) we have oa2=-2n/3A·fops,,I(Yz,,I+Yz'JW)dr=l which leads to 

(o2(TF)) = jf_ s (ozrTF) op2dr + 10 (TF) . 
Po 2m Op 2 Po 27r Po 

This result shows that inclusion of the distortion of the local Fermi sphere leads 

to an additional term of (20/ 4n) (TF) (and a corresponding volume term ((j 

= 8/3) originating from the pr part of Eq. (1)) in the fluid-dynamical result for 

the force constant C2 in Eq. ( 45). These are exactly the terms needed to obtain 

agreement with the microscopic result ( 47) for the frequency W2 : 

(w 2) 2 = 4 (<TF)+(ST)+ /(j='i) +(S)-(C)/5). (51) 
mA(r2) \ 3 
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Giant Resonances: A_ Cornparison between TDHF 1227 

§ 6. Numerical results 

For the Skyrme-force parameters given in Ref. 18) leading to an effective 

mass equal to the nucleon mass, m* = m, we compare for L = 0 and L = 2 isoscalar 

modes the numbers resulting from fluid-dynamical and microscopic methods. The 

force parameters are :181 t 0 = ~ 1089.0 MeV fm", t1 = 251.11 MeV fm 5
, t, = ~ 150.66 

MeV fm5, t 3 = 17270 MeV fm\ x 0 = 0.583. For the kinetic energy density (37) we 

use the constants 121 cTF = 3/5 (3rr') 21\ esT= 1/36. As discussed. in Ref. 13), the 

density distributions obtained from the integra-differential Eqs. (39) agree reason

ably well with Hartree-Fock calculations (vvhich vve take from Ref. 19)), although 

the small value of esT leads to a suppression of the exponential tail. As an example 

we present the density profiles for 208Pb in Fig. 1. Table I lists the different 

contributions in Eq. (38) to the total energy for solutions of Eqs. (39), the (j = 8/3 

and (j = 4/3 terms representing the volume part of pr and Coulomb exchange 

energy in Slater approximation, respectively. The total binding energies En are 

surprisingly close to experimental values En ( exp), while the last column gives 

the HF-results. 

Table II contains the frequencies nlih according to Eqs. (43) and (51) cal

culated \vith the expectation values of Table I. As discussed in the last section, 

the ratios of energy-weighted sums mj m 1 (in notation of Ref. 15)) are formally 

0.1 
fm- 3 ~---- ---
0.08 

0.04 

0.02 

2 3 4 5 9fm 10 

Fig. 1. The proton and neutron densities resulting from Eqs. (39) (full 

lines) and from Hartree-Fock calculations 191 (dashed lines) for the 

(m*=m) Skyrme force of Ref. 18) (for 208Pb). 

Table I. Ground-state expectation values for the different contributions to the total 

binding enery EB, calculated for solutions of Eqs. (39). Except for the mean square radius 

(fm') all numbers are given in units of MeV. The last two columns contain ex

perimental and Hartree F ock results (from Ref. 19)) for the binding energies. 

__ (TF>i,<sT) '1 (0"=2) ,<0"=3)1(0"=8/3)'<;=4/3): (S) 1 (C), (r') !-Xn:-xpl -EB i (~;p) (}ri) 
I --

"Ca ·. 672. 51. 29. 3 I -1782. 4 579. 6' 

"Zr 
1

1603. 3! 49. 3 : -4269 1.1446. 3! 

208Pb :3917. 11 97. 9 -10205 13551 I 

-7.9 I 87.1, 82.010.9512 _ 5 339.8 342.1 330.8 

-4.9 -15.6' 151.8 254.6117.89! 8.51 6.51 784.2 1 783.9 736.0 

0 

I . I . , , 

-40. 6 -31.8 . 268.21 823.130.36 5. 4 1 4. 9:1620 1636.51551.9 
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1228 II. Sagawa and G. Flolzwarth 

Table II. Resonance energies for L=O and L=2 modes. lzw values are calculated ac
cording to Eqs. (43) and (51). (m,jm,) '1' are formally identical expressions"' 
calculated with HF wave functions. These and the RP A results are taken from Ref. 
19). 

Monopole Quadrupole 
- -- - --------- ----

!JJo Wo·A 113 '(ma/m,) 112 RPA cu, cu,·A'I' , (mal m,) 'I' RPA ----------- ---------

'10Ca 30.6 104.7 28.4 26.5 17.1 58.5 16.0 16.3 
90Zr 25.0 111.9 23.9 22.9 13.4 60.2 13.1 15.0 2ospb 19.6 116.2 18.4 17.1 10.4 61.4 10.0 12.0 

identical Yvith Eqs. ( 43) and (51); their evaluation with HF w<we functions leads to 
the results given in the ms/m1 columns of Table II. The values listed under 
"RP A" are also taken from Ref. 19), making use of the mean single-particle 
energies c: (cf. Eqs. (15)) and including contributions from unbound states. De
tailed discussion of this method is given in Ref. 19). 

§ 7. Conclusion 

For simple cases of small amplitude vibrations m finite nuclei we have com
pared two very different dynamical descriptions: The microscopic TDHF (or equi
\'alentl::,· RPA) method and the macroscopic fluid-dynamical equations. By "mac
roscopic" we mean that the local density and velocity potential are the only 
cl)·namical quantities to occur in the formulation. A close connection between both 
formulations is established through the assumption that the transition strength 
for a given multipole operator il!IL is concentrated on one collective eigenstate of 
the nuclear system. This assumption leads to (microscopic) expressions for the 
resonsnce energies which closely resemble the frequency of a constrained fluid
dynamical motion where the velocity potential is restricted to the considered multi
pole field lviL. For the breathing mode of a square-well density we have shown 
that this frequency is connected to the free fluid-dynamical eigenmodes through a 
sum rule vv·hich, hcrwe\·er, is not exhausted by the breathing mode. 

The only and basic difference between the microscopic and macroscopic results 
occurs for the contributions of the kinetic energy of the static system to the 
restoring force for the vibration. l'v1icroscopically given by an average single-par
ticle energy, it is macroscopically determined through the second deri\'ative of the 
kinetic energy density with respect to the local density. Therefore the fluid
dynamical result is sensitively dependent on the functional form of the kinetic 
energy vvhich in turn is determined through the local momentum. distribution. 
vV e have shown that local isotropic momentum distribution is not sufficient to 
describe surface oscillations correctly, but that it is essential to allow dynamical 
distortions of the local Fermi surface. This leads to a simple example for a 
non-Newtonian fluid with a non-isotropic pressure term. The effect of this Fermi 
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Giant Resonances: il Com.parison bcti.occn TDIIF 1229 

surface distortion on the resonance frequency is drastic and the good agreement 

with experimentally observed L = 2 resonances 20J (f:zoJ2 = 63 ·A - 113 MeV) indicates 

that giant resonances are indeed propagated essentially through the mean field, 

without local equilibrium being established as in ordinary sound. With proper 

choice of the kinetic energy functional the fluid-dynamical formalism is, howeyer, 

sufficient to reproduce the microscopic results. 
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