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We propose a new approach to generate and detect spin currents in graphene, based on a large spin-Hall

response arising near the neutrality point in the presence of an external magnetic field. Spin currents result

from the imbalance of the Hall resistivity for the spin-up and spin-down carriers induced by the Zeeman

interaction, and do not involve a spin-orbit interaction. Large values of the spin-Hall response achievable

in moderate magnetic fields produced by on-chip sources, and up to room temperature, make the effect

viable for spintronics applications.
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The spin-Hall effect (SHE) is a transport phenomenon
resulting from the coupling of spin and charge currents: an
electrical current induces a transverse spin current and
vice versa [1,2]. The SHE offers tools for electrical ma-
nipulation of electron spins via current-induced spatial
segregation of carriers with opposite spin [3,4]. All
SHE mechanisms known to date rely on the spin-orbit
interaction. The two main varieties of SHE, intrinsic and
extrinsic, arise due to spin-orbit terms in the band
Hamiltonian [5] and spin-dependent scattering on impuri-
ties [1], respectively.

Single layer graphene has emerged recently as an attrac-
tive material for spintronics that features long spin diffu-
sion lengths [6], gate tunable spin transport [6,7], and
high-efficiency spin injection [8]. However, to realize the
full potential of graphene, several issues must be ad-
dressed. First, the measured spin lifetimes are orders of
magnitude shorter than theoretical predictions [6–11]
calling for identifying and controlling extrinsic mecha-
nisms of spin scattering [10–14]. Second, the low intrinsic
spin-orbit coupling values [9,15] render the conventional
SHE mechanisms ineffective, depriving graphene spin-
tronics of a crucial control knob for spin transport.

Here we outline a new approach to generate and probe
spin currents in graphene, based on a SHE response in the
presence of magnetic field that does not rely on spin-orbit
interaction. Spin currents are generated by the combined
effect of spin and orbital coupling to magnetic field. The
Zeeman splitting lifts spin degeneracy and imbalances the
Hall resistivities of different spin species (see Fig. 1 inset),
leading to a net transverse spin current in response to an
applied charge current. The resulting SHE response, called
below ZSHE for brevity, is an essentially classical effect
that offers a robust and efficient way to generate spin
currents. The ZSHE response is sharply enhanced near
the Dirac point (DP). Unlike the proposals relying on a
spin gap opened in the graphene bulk by spin-orbital or
Zeeman interactions [16,17], where temperatures are

constrained by the spin gap values, kBT < �, the ZSHE
mechanism can operate in a wide range of temperatures
and magnetic fields. This makes the effect viable for
spintronics applications, such as spin sources and spin
injection that do not rely on magnetic contacts.
The enhancement at the DP, which results from special

transport properties of the Dirac fermions, is illustrated in
Fig. 1. Transport is unipolar at high doping from the DP,
dominated by carriers of one type, with �xy following the

standard quasiclassical expression,

�xyðnÞ ¼ � B
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FIG. 1 (color online). Spin-Hall response induced by an exter-
nal magnetic field in graphene in the absence of spin-orbit
coupling. The SHE coefficient �SH, Eq. (3), peaks at the Dirac
point (DP). Spin currents at the DP originate from the imbalance
of the spin-up and spin-down Hall resistivities due to Zeeman
splitting EZ (inset, red and blue curves). Steep behavior of �xy

‘‘amplifies’’ the effect of Zeeman splitting, resulting in a large
spin-Hall response for j�j & ��. Large values �SH can be
reached already at moderate field strengths and high tempera-
tures, Eq. (14). Parameters used are B ¼ 1 T, disorder broad-
ening � ¼ 100 K, electron-hole drag coefficient � ¼ 2:3@.
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Transport near the DP is bipolar, which produces smearing
of the 1=n singularity in �xy by the effects of two-particle

scattering as well as disorder. This leads to a steep linear
dependence in �xyðnÞ at the DP (Fig. 1 inset), which is also

seen in experiment (Fig. 3). The large values of @�xy=@n,

despite the smallness of the Zeeman splitting, can yield
giant ZSHE response.

The conventional SHE is described by the spin-Hall
conductivity which relates transverse spin current and the
electric field [1,2]. To identify the relevant quantity for
ZSHE, we consider spin accumulation in the situation
when the two spin species are independent, each described
by its own conductivity tensor. For a strip carrying uniform
current [Fig. 2(a)], the transverse gradients of electrochem-
ical potential for each spin projection are

ry
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�þ n"

e�"

�
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xy
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xx

E; ry
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where E is the electric field x component and n"ð#Þ and �"ð#Þ
are the spin-up (spin-down) concentration and density of
states. Ignoring spin relaxation, we estimate spin density at
the edge ns ¼ n" � n# as
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with EZ the Zeeman splitting (for full treatment, see [18]).
Here we used the smallness of EZ compared to the DP
smearing �� (see Fig. 1) to express �SH as a derivative
with respect to �. We see that the quantity �SH plays a
role identical to the ratio of the spin-Hall and Ohmic

conductivities �SH ¼ 2	SH=	xx in the conventional SHE.
We will thus refer to �SH as the SHE coefficient.
For realistic parameter values, Eq. (3) yields large �SH at

the peak (see Fig. 1). For B ¼ 1 T, using disorder strength
estimated from mobility in graphene on a BN substrate,
� � 100 K [see Eq. (10)], we find �SH ¼ 0:1. This is more
than 2 orders of magnitude greater than the SHE values in
typical spintronics materials with spin-orbit SHE mecha-
nism. Say, we estimate �SH � 5� 10�4 from the spin and
charge resistance measured in an InGaAs system [4]. The
‘‘giant’’ values �SH are in fact to be expected, since the
ZSHE can be viewed as a classical counterpart of the SHE
at kBT < EZ discussed in Refs. [17,19] characterized by
quantized 	SH ¼ 2e2=h.
Large �SH values result in ‘‘giant’’ spin accumulation.

From Eq. (3), taking �SH ¼ 0:1 and the density of states at

disorder-broadened DP �"ð#Þ �
ffiffiffiffiffiffiffi
�n

p
=
@v0 (with density

inhomogeneity �n � 1010 cm�2 typical for graphene on
BN substrate [20]), and using E ¼ 1 V=�m (a maximum
field for which transport is Ohmic [21]), we estimate ns at
the edges of a 2 �m-wide graphene strip:

ns � 3� 109 cm�2; (4)

which is comparable to the DP width �n. Such large
densities can be easily detected by spin-dependent tunnel-
ing. The estimate (4) is also 4 orders of magnitude greater
than the spin accumulation per atomic layer observed in a
three-dimensional GaAs [4], ns � 5� 105 cm�2.
Another attractive feature of the ZSHE is that it can

enable local generation and detection of spin currents.
Permanent micromagnets can generate fields up to 1 T
concentrated to regions of size �0:5 �m [22] (fields up
to 1.4 T are achievable using widely available neodymium
boron magnets). State-of-the-art microelectromagnets used
in read/write heads of hard disk drives can generate a very
strong and spatially localized magnetic field, reaching
0.5 T in areas around 100 nm� 35 nm. In an H-shaped
device, pictured in Fig. 2(b), spin currents can be generated
on one end of a graphene strip and detected on the opposite
end. External B field can be used to induce spin precession
which will manifest itself in Hanle-type oscillations of the
voltage measured between probes 3 and 4. This setup can
serve as an all-electric probe of spin currents [20,23,24].
To model the dependence of �SH on B, T, and disorder,

we employ the quantum kinetic equation approach of
Refs. [25,26]. To describe transport near the DP, it is
crucial to account for the contributions of both electrons
and holes. For a spatially uniform system, we have

qeðhÞ
�
Eþ v

c
�B

�
@feðhÞðpÞ

@p
¼ St½feðpÞ; fhðpÞ�; (5)

where feðhÞðpÞ is the distribution function for electrons and
holes, and qe ¼ �qh ¼ e. The collision integral describes
two-particle collisions and scattering by disorder [25,26].
The approach based on Eq. (5) is valid in the quasiclassical
regime, when particle mean free paths are long compared

FIG. 2 (color online). (a) Schematic for spin accumulation in
the SHE regime. An electric current in a graphene strip drives
transverse spin current, resulting in spin density buildup across
the strip, Eq. (3). (b) Generation and detection of spin current in
the H geometry. Electric current passed through the region of
local magnetic field drives spin current along the strip. Voltage
generated via inverse SHE is detected using probes 3 and 4.
Hanle-type oscillation due to spin precession can be induced by
external magnetic field applied in plane.
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to wavelength. This is true when the collision rate is small
compared to typical particle energy, which requires weak
disorder � � kBT, where � is defined in Eq. (10), and
small fine-structure parameter � ¼ e2=@v0� � 1 (� is the
dielectric constant).

The kinetic equation (5) can be solved analytically in the
limit of small � [25,26]. Rather than pursuing this route,
we follow Ref. [27] to obtain transport coefficients from
the balance of the net momentum for different groups of
carriers, electrons, and holes, taken to be moving indepen-
dently. We use a simple ansatz

feðhÞðpÞ ¼ 1

eð"p�paeðhÞ��eðhÞÞ=kBT þ 1
; "p ¼ v0jpj; (6)

where the chemical potentials satisfy �e ¼ ��h, and the
quantities ae and ah are introduced to describe a current-
carrying state. This ansatz corresponds to a uniformmotion
of the electron and hole subsystems, such that the collision
integral for the e-e and h-h processes vanishes. Thus only
the e-h collisions contribute to momentum relaxation,
resulting in mutual drag between the e and h subsystems.

Equation (5) yields coupled equations for ensemble-
averaged velocities and momenta of different groups of
carriers (6):

qi

�
Eþ Vi

c
�B

�
¼ � Pi


disi

� �
X
i0
ni0 ðVi � Vi0 Þ; (7)

where i, i0 label the e and h subsystems with different
spins. The ensemble-averaged scattering times 
disi , the
carrier densities ni, and the electron-hole drag coefficient
� are specified below.

The quantities Vi, Pi are proportional to each other,
Pi ¼ miVi. An explicit expression for mi as a function of
T, � can be found by expanding the distribution functions
(6) to lowest nonvanishing order in aeðhÞ:

mi ¼ 1

v0

R
d2ppxraxfiðpÞR

d2pðpx=pÞraxfiðpÞ
¼ 1

v0

R
d2pp2

xgiðpÞR
d2pðp2

x=pÞgiðpÞ
;

(8)

where giðpÞ ¼ fiðpÞ½1� fiðpÞ�. The integrals over p,
evaluated numerically, give the effective mass as a function
of T and�. At charge neutrality, setting�eðhÞ ¼ 0, we find

mT ¼ 9�ð3Þ
2�ð2Þ kBT=v

2
0 � 3:29kBT=v

2
0.

The times 
disi and carrier densities ni in (7) are ex-
pressed through the distribution function (6) with ai ¼ 0:

1


disi

¼ 2

ni

Z d2p

ð2
Þ2
fiðpÞ


disi ð"pÞ
; ni¼2

Z d2p

ð2
Þ2fiðpÞ; (9)

where 
disð"Þ is the transport scattering time, Eq. (10), and
the factor of 2 accounts for valley degeneracy.

We pick the model for disorder scattering to account for
the experimentally observed linear dependence of conduc-
tivity versus doping, 	 ¼ ��jnj, where �� is the mobility
away from the DP. This is the case for Coulomb impurities

or strong pointlike defects, such as adatoms or vacancies
[13]. In both cases the scattering time has an approximately
linear dependence on particle energy,


disð"Þj"j*� ¼ @j"j=�2; � ¼ v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e@=��

q
; (10)

where the disorder strength parameter � is expressed
through mobility. The value �� ¼ 6� 104 cm2=Vs mea-
sured in graphene on BN [28] yields � � 120 K. Similar
values are obtained from the �xx-based DP width. Taking

�n � 1010 cm�2 [20], we find �� @v0

ffiffiffiffiffiffiffi
�n

p � 100 K.

To obtain �"ð#Þ
xy , we solve Eq. (7), accounting only for the

drag between electrons and holes of the same spin.
Including the drag between opposite spin species does
not change the overall behavior of the transport coefficients
and SHE [18]. Equation (7) can be conveniently analyzed
using complex-valued quantities Px þ iPy, Vx þ iVy,

giving complex resistivity ~� ¼ �"ð#Þ
xx þ i�"ð#Þ

xy . We find

~� ¼ 1

e2
memh ~�e ~�h þ �neme ~�e þ �nhmh ~�h

nemh ~�h þ nhme ~�e þ �ðne � nhÞ2
: (11)

Here ~�i ¼ 1

disi

� i�i, with �i ¼ qiB=mic the cyclotron

frequency.
As a consistency check, we consider the behavior

at charge neutrality. Setting ne ¼ nh, me ¼ mh, etc. gives
�xx, which is a sum of the Drude-Lorentz resistivity and the
electron-hole drag contribution analyzed in Refs. [25,26],

�"ð#Þ
xx ¼ mT

2nTe
2

ð1þ
2�2Þþ �

e2
; nT ¼ 


12

k2BT
2

@
2v2

0

; (12)

and �"ð#Þ
xy ¼ 0. Here nT is the density of thermally activated

electrons (holes) at the DP, having fixed spin projection.
Disorder scattering (first term) dominates at low tempera-

tures T & T� ¼ �
ffiffiffiffiffiffiffiffiffi
@=�

p
(at B ¼ 0), while electron-hole

drag (last term) dominates at T * T�.
The value� can be obtained by matching the last term in

Eq. (12), divided by 2 to account for spin, to the analytic
result �xx � 8:4@�2=e2 [25,26]. We evaluate � using the

effective dielectric constant � ¼ "0þ1
2 þ 


2
e2

@v0
� 6, which

accounts for intrinsic screening in the RPA approximation.
Taking "0 � 4 for BN substrate [28] yields � � 0:37,
giving � � 2:3@.
The dependence of transport coefficients on T, B, and

carrier density n, predicted from Eq. (11), can be directly
compared to experiment. Figure 3 shows �xyðnÞ measured

in graphene on BN, on samples similar to those described
in Ref. [20]. The modeled �xyðnÞ captures the main fea-

tures of the data: the 1=n dependence at large n and a steep
linear dependence near the DP. The linear region broadens
with temperature at T * �. The peak in �xxðnÞ features
similar thermal broadening [18]. The SHE coefficient,
found from Eq. (3), is plotted in Fig. 1.
We now explore the behavior of transport coefficients

near the DP, making estimates separately for T * T�
and T & T�. This can be conveniently done using an
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interpolation formula 
disi ð�; TÞ ¼ mið�; TÞv2
0@=�

2 which

links the ensemble-averaged scattering time (9) and the
effective mass (8) in the entire range of T and� of interest.

We find the slope of �xy at the DP by expanding Eq. (11)

in small n ¼ ne � nh [18]. The result can be described by a
single interpolation formula,

@�xy

@n

��������n¼0
¼ @

2v2
0

minðT2� ; 
T2=3Þ
B

nTec
; (13)

where only terms first order in B have been retained.
The SHE coefficient, Eq. (3), found by combining the

results (13) and (12), and using thermally broadened den-

sity of states at the DP @n=@� ¼ 2 ln2



kBT
@
2v2

0

[18], is

�SHjn¼0 ¼ �E2
0EZ

2�2kBT
; E0 ¼ v0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2@eB=c

p
; (14)

where E0 is the cyclotron energy. The functional form is
the same in both regimes, �SH / B2=T, with different
prefactors �T*T� ¼ 24 ln2=
2 and �T&T� ¼ 12 ln2=
2.

The 1=T growth of �SH saturates at kBT � �, reaching
maximum value �SH;max � 1

2�E
2
0EZ=�

3.

We expect suspended graphene [29,30] to feature an
even stronger SHE than graphene on BN. Using typical
mobility �� ¼ 2� 105 cm2=Vs [30], we estimate
�� 65 K, whereas the temperature dependence of the
conductivity at the DP [30] yields �� 10 K. For either
value of�, Eq. (14) predicts very large values �SH at the DP.

Based on these estimates, we expect strong SHE re-
sponse already at moderate fields B & 1 T. Besides spin
accumulation and locally tunable SHE response, which
was discussed above, SHE can also manifest itself in a
nonzero Hall voltage in response to spin-polarized currents
injected from magnetic contacts.

Since our SHE mechanism does not rely on the relativ-
istic dispersion of excitations, it can also be realized in

other zero-gap semiconductors (e.g., graphene bilayer) or
in half-metals, materials with spin-polarized conduction
band. It also applies, with suitable modifications, to the
valley degrees of freedom in graphene. It was predicted
that a (nonquantizing) magnetic field can produce a
Zeeman-like valley splitting [31]. This will imbalance the
Hall resistivities and result in a valley-Hall effect of a
magnitude similar to the SHE.
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FIG. 3 (color online). Measured �xyðnÞ for a high-mobility
graphene sample on BN substrate at T ¼ 250 K. The depen-
dence follows the quasiclassical formula (1) away from the DP,
and is linear with a steep slope near the DP. Inset: Results for
�xyðnÞ obtained from the two-carrier model, Eqs. (7) and (11),

for disorder strength � ¼ 180 K found by fitting the distance
between the maximum and the minimum in measured �xy for

B ¼ 1 T. Other parameters are � ¼ 2:3@, T ¼ 250 K.
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