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Abstract The internal properties of stars in the red-giant phase undergo significant
changes on relatively short timescales. Long near-uninterrupted high-precision pho-
tometric timeseries observations from dedicated space missions such as CoRoT and
Kepler have provided seismic inferences of the global and internal properties of a large
number of evolved stars, including red giants. These inferences are confronted with
predictions from theoretical models to improve our understanding of stellar structure
and evolution. Our knowledge and understanding of red giants have indeed increased
tremendously using these seismic inferences, and we anticipate that more informa-
tion is still hidden in the data. Unraveling this will further improve our understanding
of stellar evolution. This will also have significant impact on our knowledge of the
Milky Way Galaxy as well as on exo-planet host stars. The latter is important for our
understanding of the formation and structure of planetary systems.

Keywords Asteroseismology · Stars: oscillations (including pulsations) ·
Stars: evolution · Stars: red giants

1 Introduction

Stars are bodies formed by baryonic mass. They are an important source of electro-
magnetic radiation in the universe allowing for studies of many phenomena, from
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distant galaxies to the interstellar medium and extra-solar planets. However, due to
their opacity it is not trivial to study the internal structure of stars (Eddington 1926).
The only way to probe and study the internal stellar structure directly is through global
stellar oscillations. Many stars across the Hertzsprung–Russell (HR) diagram oscillate
(driven by different mechanisms), which allows for in-depth studies of stars and stellar
evolution.

1.1 History

Asteroseismology, the study of global properties of stars and their internal structure
through their global intrinsic oscillations, is already more than a century old. An
early remarkable result was obtained for Cepheids revealing the period–luminosity
relation (Leavitt and Pickering 1912), which played an important role in measuring
distances of galaxies and star clusters and ultimately the expansion of the universe.
Observations of pulsators which display large (photometric) variations have been
ongoing ever since. These stars include, among others, Cepheids, high amplitude
δ Scuti stars, RR Lyrae stars, white dwarfs and Miras. An early result for which
asteroseismic observations and stellar modelling were inconsistent was presented by
Petersen (1973) on double-mode Cepheids. He showed that stellar masses inferred
from the periods and period ratios were inconsistent with the location of the stars in
the HR diagram as predicted by stellar evolution models. This problem motivated a
revision of stellar opacity tables which led to very good agreement between the models
and the observations (e.g., Moskalik et al. 1992). Despite the long-term research on
such bright large amplitude oscillators there are still open questions concerning their
oscillations (e.g., Blazkho effect, Blažko 1907) and internal properties. For recent
reviews on classical oscillators, see, e.g., Balona (2010), Handler (2013) and Szabó
et al. (2015) and references therein.

Lower-amplitude oscillations were not detected for several more decades. In the
1960s, oscillations were first discovered in the Sun (Leighton et al. 1962). Subsequent
observations provided details of the solar interior and constraints for general stel-
lar modelling beyond that previously possible (Christensen-Dalsgaard et al. 1996;
Christensen-Dalsgaard 2002). Seismology was pivotal in the solar neutrino prob-
lem (Bahcall 1972; Trimble and Reines 1973) and confirmed that the solution lies
within particle physics (Elsworth et al. 1990a). Through sensitive neutrino detections,
McDonald et al. (2001) later showed that low-energy neutrinos do indeed change
flavour. The Nobel Prize 2015 for physics was awarded for this discovery. Unfortu-
nately, our understanding of the Sun remains incomplete. The ‘new solar abundances’
(Asplund 2005; Asplund et al. 2009) result in a solar structure that deviates much
further from that obtained from the oscillations (Bahcall et al. 2005; Guzik 2008;
Basu and Antia 2008, 2013) as compared with the ‘old solar abundances’ (Grevesse
and Noels 1993; Grevesse and Sauval 1998). Additionally, the 11-year solar activity
cycle discovered by Schwabe (1843) and visible in the solar oscillations (Elsworth
et al. 1990b; Howe et al. 2002; Hathaway 2015) is not fully understood. This includes
dynamo processes involving interaction between rotation and convection, restructur-
ing the magnetic field between the toroidal and poloidal components, in a manner that
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is yet to be resolved. This also gives rise to surface manifestations such as sunspots
when flux tubes break through the solar surface (e.g., Charbonneau 2014; Cameron
and Schüssler 2015). Additionally, the reasons for the long solar minimum between
cycle 23 and 24 are still subject of discussion (Basu et al. 2012; Basu 2013; Jiang
et al. 2015). Furthermore, oscillations sensitive to the activity suggest the presence of
a 2-year cycle in addition to the 11-year cycle (Broomhall et al. 2012) which is yet to
be understood.

The road to the detection of low-amplitude oscillations in stars other than the
Sun was paved by radial-velocity measurements—much like the variations used to
discover pulsations in the Sun. Ground-based spectroscopic surveys first identified
excess oscillation power in Arcturus (Smith et al. 1987) and Procyon (Brown et al.
1991) as well as the first evidence for individual modes in η Bootis (Kjeldsen et al.
1995, 2003), α Centauri A (Bouchy and Carrier 2001), ξ Hydrae (Frandsen et al.
2002) and μ Her (Bonanno et al. 2008). These seminal discoveries relied on single-
site spectroscopic programs and inspired longer multi-site spectroscopic campaigns
on nearby bright stars, such as α Cen A (Bedding et al. 2004; Butler et al. 2004)
and B (Carrier and Bourban 2003; Kjeldsen et al. 2005), β Hydrae (Bedding et al.
2007), ν Indi (Carrier et al. 2007), η Serpentis (De Ridder et al. 2006) and Procyon
(Hekker et al. 2008; Arentoft et al. 2008; Bedding et al. 2010b). Complementary
photometric multi-site campaigns were also pursued (Stello et al. 2006a, 2007) and
although both strategies revealed detailed oscillation patterns, they were yet unable to
fully constrain the internal structure of the stars (Miglio and Montalbán 2005; Huber
et al. 2011a).

Space-based instruments contributed to the progression of the field, with the star-
tracker of the WIRE (Wide field InfraRed Explorer) mission (Buzasi 2002; Stello et al.
2008) and the Hubble Space Telescope (Gilliland 2008) both detecting low-amplitude
oscillations in other stars. Soon after, the era of dedicated photometric space-based
missions heralded a revolution for asteroseismology. Observations with the MOST
mission (Microvariability and Oscillations of STars; Matthews et al. 2000) have con-
tributed significantly to the revolution of red-giant asteroseismology (Barban et al.
2007; Kallinger et al. 2008a, b) and our understanding of classical pulsators such as
δ Scuti stars (Casey et al. 2013), Slowly Pulsating B stars (SPB; Aerts et al. 2006;
Jerzykiewicz et al. 2013) and rapidly oscillating Ap stars (Huber et al. 2008; Gruber-
bauer et al. 2011), as well as other pulsators such as pre-main sequence stars (Zwintz
et al. 2013) and Wolf–Rayet stars (David-Uraz et al. 2012). CoRoT (Convection,
Rotation and planetary Transits; Baglin et al. 2006) and Kepler (Borucki et al. 2008)
have contributed greatly to the detection of pulsations in, and understanding of, many
different kinds of stars such as massive stars (Belkacem et al. 2009; Degroote et al.
2010; Kurtz et al. 2015), RR Lyrae stars (Kolenberg et al. 2010) and sub-dwarf B stars
(Østensen et al. 2014). Additionally, many break-through results have been reported on
low-amplitude oscillations in Sun-like stars, subgiants and red-giant stars [see recent
reviews by Chaplin and Miglio (2013), Hekker (2013), Mosser and Miglio (2016) and
references therein].
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Fig. 1 A 20-day long subset of a Kepler photometric timeseries (or light curve) of a red-giant star (KIC
9145955, top panel) and the Fourier power spectrum of the same star using a 1060-day long dataset (bottom

panel). Note that for the Fourier power spectrum only the frequency range in which oscillations occur is
shown here

1.2 Observations of stellar oscillations

Oscillations can be determined from timeseries data of either intensity variations or
radial-velocity (RV) variations. Intensity variations reflect the brightness variations
of a star induced by stellar oscillations. RV variations reveal the outward and inward
movement of the stellar surface due to stellar oscillations through a Doppler shift of
the spectrum. Part of a timeseries of intensity variations of a red-giant star observed
with the Kepler space telescope is shown in the top panel of Fig. 1.

There are significant differences between intensity and RV variation measurements
in the sense of their sensitivity to other intrinsic stellar features. For example, gran-
ulation (the visible effect of convection at a star’s surface) has higher amplitude in
intensity variations than in RV variations, relative to the oscillations. Additionally,
stars other than the Sun can be observed only in integrated light, causing cancellation
effects that differ between intensity and RV observations. Since solar-like oscillations
are mainly in the radial direction, RV observations with the projection onto the line of
sight have a reduced sensitivity to the oscillations near the limb, increasing the response
to modes of slightly higher degree and hence the diagnostic potential, compared with
intensity observations.

To extract oscillation frequencies the timeseries data are most commonly trans-
formed to frequency space by a Fourier transform. The resulting Fourier power
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spectrum reveals the oscillation frequencies as sharp peaks. An example of a Fourier
power spectrum of a red-giant star observed with the Kepler space telescope is shown
in the bottom panel of Fig. 1.

In this review we will discuss the internal structure and structure changes of sub-
giants and red giants including AGB stars in more detail (Sect. 2). These stars oscillate
with intrinsically damped oscillations stochastically excited by convection in the outer
layers of the stars, i.e., some of the convective energy is converted into energy of
eigenmodes of the star. Consequently, these oscillations allow for observational inves-
tigations of internal stellar structure. As such oscillations are present in the Sun, they
are referred to as solar-like oscillations. Solar-like oscillations are expected to be
present in all stars with turbulent outer layers. In Sect. 3 we discuss the diagnostics
that can be obtained from timeseries data and Fourier power spectra. An overview of
stellar pulsation theory is presented in Sect. 4. We highlight ground-breaking results
from the past years in Sect. 5. Finally, we discuss some promising prospects of aster-
oseismology and stellar structure of giants in Sect. 6.

2 Giant star evolution

Here we provide an overview of the internal structures of low- to intermediate-mass
stars (roughly 0.8–10 M⊙) in their respective evolutionary stages. We discuss the
low-mass stars and intermediate-mass stars separately. Low-mass stars are those stars
that ignite helium in the core under degenerate conditions. This occurs in stars with
masses between ∼0.48 M⊙ and ∼2 M⊙. The lower limit is defined by the lower
limit of the critical mass needed to ignite helium, while the upper limit depends on
the chemical composition of the stars. If mass loss is small enough, and time long
enough, all low-mass stars will go through the giant phases discussed below. At the
current age of the universe (∼14 Gyr) only stars with M > 0.8 M⊙ will have reached
these late stages of evolution, unless substantial mass transfer in a binary system
has taken place. Intermediate-mass stars are stars that do not develop a degenerate
core and have a more gentle onset of core-helium burning. These stars range in mass
between ∼2 M⊙ and 8–10 M⊙ depending on metallicity (Kippenhahn et al. 2012).
For stars with degenerate cores the helium-core mass at ignition is the same, while this
decreases for more massive stars without degenerate cores (see Fig. 2). To illustrate
the internal structure changes of low- and intermediate-mass stars we show the paths
of a 1 M⊙ and a 3 M⊙ model in the Herzsprung–Russel diagram (Fig. 3) and so-called
Kippenhahn diagrams of these models in Figs. 4 and 5.

The description provided here is aimed to provide an insight into the many internal
structure changes that a giant star undergoes. For a more complete picture and details
of stellar evolution we refer the reader to Kippenhahn et al. (2012).

2.1 Low-mass stars (M � 2 M⊙)

2.1.1 End of hydrogen core burning phase: end of main sequence

For stars with masses below 1–1.5 M⊙ (depending on chemical composition) hydrogen
(H) in the central regions fuse to helium via proton–proton (pp) chains under conditions
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Fig. 2 Helium core mass at ignition vs. stellar mass for stellar models of solar metallicity computed with
the MESA stellar evolution code (Paxton et al. 2011)

Fig. 3 Herzsprung–Russell diagram of a 1 M⊙ and a 3 M⊙ model. The insets show the “bump” of the
1 M⊙ model (see Sect. 2.1.2) and the helium core burning phase for the 3 M⊙ model (see Sect. 2.2.4). The
models are computed using the MESA stellar evolution code (Paxton et al. 2011) with solar metallicity. The
letters indicate different phases of evolution: A zero-age main-sequence; B′ core hydrogen mass fraction
≈ 0.05, B start of thick shell burning; C maximum extent of thick shell (in mass); D start of thin shell
burning; E maximum bump luminosity; F minimum bump luminosity; G tip of the red-giant branch; H end
of helium-core burning, and correspond to the letters indicated in Figs. 4 and 5

of radiative energy transport. Conversely, stars with masses above this range develop
a convective core on the main-sequence, with the CNO (Carbon–Nitrogen–Oxygen)
catalytic reactions predominately responsible for the conversion of H into 4He. CNO
burning takes place at higher temperatures (T ) than proton–proton interactions. Addi-
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Fig. 4 Kippenhahn diagram of a 1 M⊙ model shown in Fig. 3. Regions where convection takes place are
hatched. Regions where nuclear burning produces more than 10 erg g−1 s−1 are shown in grey for hydrogen
burning and in red in case of helium burning. The right panel shows a zoom of the late stages of evolution.
The letters at the top indicate different stages of evolution corresponding to the phases indicated in Fig. 3

Fig. 5 Kippenhahn diagram of a 3 M⊙ model as shown in Fig. 3. Regions where convection takes place are
hatched. Regions where nuclear burning produces more than 10 erg g−1 s−1 are shown in grey for hydrogen
burning and in red in case of helium burning. The central panel shows a zoom of the subgiant and red-giant
branch. The right panel shows a zoom of the late stages of evolution.The letters at the top indicate different
stages of evolution corresponding to the phases indicated in Fig. 3
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tionally, the energy production (ǫ) of CNO burning is more temperature-dependent
than that of proton–proton chains (ǫCNO ∼ T 17 vs. ǫpp ∼ T 4; Iliadis 2007). The
respective conditions in the core significantly impact the structure and evolution at
the end of the main sequence and, therefore, the two regimes, i.e., stars with radiative

cores and convective cores on the main sequence, are discussed separately.

Stars with radiative cores For stars with a radiative core the fusion of H to 4He is
predominantly enacted via the pp chains. The increase in the mean molecular weight
(μ) resulting from hydrogen fusion affects hydrostatic equilibrium. To sustain pressure
support to the overlying layers of the star the core must contract. This increases the
temperature in the inner parts of the star, leading to an increase in the efficacy of energy
transport and hence in the luminosity (∼0.7% increase in brightness every 100 Myr in
a 1 M⊙ star). This is matched by a corresponding increase in the energy generation.

The gradual depletion of H from the radiative core generates a smooth transition
to a chemically inhomogeneous structure with hydrogen burning in an extended shell
around a growing inert degenerate helium core. Complete depletion of hydrogen in
the centre marks the end of the main-sequence and the transition to the hydrogen shell
burning phase.

Stars with convective cores There is a physical limit to which energy can be trans-
ported by radiation. The Schwarzschild criterion (Schwarzschild 1906) states that if
the temperature gradient inside a star is too steep, convection will take over as the
primary means of energy transport. In addition to efficient energy transport, the asso-
ciated bulk mass motions of convection ensure that the composition of any convective
region is well mixed. In a more formal sense convection is activated once the radia-
tive temperature gradient exceeds the adiabatic temperature gradient (Schwarzschild
1906).

The Schwarzschild criterion defines the likely regimes in stellar interiors in which
convection will develop. The first regime is where there is a large energy flux, the
second where the stellar material is opaque to photons (such as in ionization regions
of abundant elements) and energy transfer by radiation is, therefore, inefficient. In
stars with M � 1.1 M⊙ the central conditions are sufficient for the activation of the
CNO cycle, reactions that are highly temperature dependent. A consequence for these
stars is that the burning region becomes ever more centrally concentrated, and the
large energy flux and steep temperature gradient drive a convective core.

An alternative to the Schwarzschild criterion is the condition derived by Ledoux
(1947) which, in addition to the temperature gradients, takes into account the spa-
tial variation of the mean molecular weight. In some stars, particularly those with
M � 2.25 M⊙, a composition gradient may develop outside the shrinking (Ledoux)
convective core. Application of the Schwarzschild criterion would render this region
convectively unstable; however, according to Ledoux, the presence of a molecular
weight gradient can have a stabilizing effect. The true behaviour of material in the
stellar interior under these circumstances remains unclear (Gabriel et al. 2014). How-
ever, in stellar evolution codes some form of slow (slow compared to convection)
mixing is applied in these regions in order to match various observational constraints
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(see, e.g., Lattanzio 1983; Langer et al. 1985). This slow mixing process can also be
referred to as semi-convection.

In stars below ∼ 2 M⊙ with a convective core, the core grows for most of the
main-sequence lifetime. This is caused by the increasing contribution to the energy
production from the highly temperature-sensitive CNO cycle, as oxygen is gradually
converted to nitrogen in parts of the cycle. A further extension of the mixed core can
be caused by material that approaches the boundary of stability with momentum and
overshoots into the radiative layer. This process, convective-core overshoot, extends the
burning region and brings in fresh H-rich fuel prolonging the main-sequence evolution.
As with a radiative core the decrease in hydrogen abundance with nuclear burning and
the resulting increase in μ cause an increase in luminosity. However, with a convective
core this depletion takes place uniformly in an extended region. When hydrogen is
nearly depleted in this region (Xcore ≈ 0.05, B′ in Fig. 3) the star contracts to maintain
the energy production. This contraction leads to an increase in effective temperature
(Teff ) and luminosity (L) until hydrogen is completely depleted in the centre (the
“hook” in the Hertzsprung–Russell diagram: B′-B in the 3M⊙ track in Fig. 3). At
this point the central burning and convection cease abruptly. This is the end of the
main-sequence phase.

2.1.2 Hydrogen shell burning phase: subgiants and red-giant branch stars

Subgiants Without the central nuclear reactions the star must find an alternative way
to generate energy to compensate for the energy loss from the core. The star turns to
another available source of energy in core contraction and the corresponding release of
gravitational potential energy. For stars with M � 1.1 M⊙ the central density is large
enough that electron degeneracy dominates and provides significant pressure support.
Therefore, low-mass stars can remain in thermal and hydrostatic equilibrium with a
degenerate, isothermal core as they smoothly transition to hydrogen-shell burning. As
a consequence the contraction phase and transition to giant is gradual and the timescale
much longer compared with the higher-mass counterparts (see Sect. 2.2.2). Shell burn-
ing is initially in the form of an extended burning region outside the core. Slowly, the
core mass increases as the ashes of hydrogen-shell burning are deposited on the He
core. As the core is degenerate this corresponds to a reduction in radius, accompa-
nied by an expansion of the envelope. The boundary where contraction changes to
expansion is located near the hydrogen-burning shell. This behaviour is typical of a
more general exchange in evolving stellar models between contraction and expansion
at shell-burning sources, referred to as the mirror principle.

The shell-burning region, dominated by the CNO cycle, is confined to increasingly
narrow mass. The envelope expands and cools while the star evolves from the main
sequence towards the Hayashi line. The Hayashi line is the locus in the Herzsprung
Russell diagram of fully convective stars, where a star cannot decrease its temperature
further (otherwise it cannot maintain hydrostatic equilibrium). Thus, upon approaching
the Hayashi line further increase of the radius causes an increase in luminosity. A large
convective region develops in the envelope due to the increased photospheric opacity
at lower temperatures (contribution from H− ions). The star is now on the red-giant
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branch, just on the hot side of the Hayashi line with a large convective envelope on
top of a small radiative core.

Red-giant branch stars On the red-giant branch, H-burning ashes are deposited on
the degenerate core as the shell burns and moves outwards. Due to the degenerate
conditions an increase in mass results in contraction and heating of the inert helium
core. This also heats the hydrogen-burning shell, which reacts to the higher temper-
atures by compressing the burning region and increasing the energy generation. The
density contrast becomes so large that the envelope and core are essentially decou-
pled. Therefore, the hydrogen burning in the shell is completely determined by the
properties of the helium core and not by the envelope. Hence, the luminosity of the
star is now related to the mass of the inert degenerate helium core and does no longer
depend on the total mass of the star. Therefore, stars with the same core mass, but a
spread in total mass, follow the same path in the Hertzsprung–Russell diagram.

First dredge-up The convective envelope penetrates deep into the star to the regions
where the chemical composition has been altered by nuclear processes that took place
during the main sequence. The processed material is then subsequently transported to
the surface. This is the first “dredge-up” phase, i.e., chemical elements from deeper
layers are dredged up towards the surface of the stars: for example, the 12C/13C ratios
are lowered. The convective region reaches a maximum depth in mass and recedes
because of the advance of the hydrogen-burning shell, leaving behind a chemical
(mean molecular weight) discontinuity.

Bump The hydrogen shell, in which burning takes place, moves gradually outwards
(in mass) while the helium-core mass steadily increases. In a simplified picture the
luminosity decreases when the hydrogen-burning shell reaches the chemical disconti-
nuity left behind by the deepest extent of the convective envelope due to the decrease
in the mean molecular weight at the chemical discontinuity, causing the luminosity
to decrease again following L ∝ μ7 M7

core (Refsdal and Weigert 1970). After this the
core mass keeps increasing at constant μ causing a resumption of the increase in the
luminosity.

In fact, the situation is more complex with the luminosity beginning to decrease
prior to the shell burning through the discontinuity. As discussed by Christensen-
Dalsgaard (2015) the reason is that the decrease in μ above the discontinuity starts
affecting the hydrostatic structure, and hence the temperature, within and above the
hydrogen-burning shell before it reaches the discontinuity. This causes the decrease in
the luminosity. This zig-zag in the evolution path is the so-called RGB-bump (see right
inset in Fig. 3). The bump is visible for stars up to about 2.2 M⊙ as an over-density
of stars in stellar clusters at the bump luminosity. For more massive stars helium-
core burning starts before the hydrogen-burning shell approaches the composition
discontinuity left behind by the first dredge-up. In these cases a bump-like structure
is not present on the red-giant branch.

High-luminosity red-giant branch stars The process on the RGB continues till the core
reaches a temperature of ∼108 K (at a core mass of ∼0.45 M⊙) at which helium is
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ignited in a thermal run-away process. This is the so-called helium flash. We note here
that additional mixing processes, such as thermohaline mixing (e.g., Eggleton et al.
2006, 2008; Charbonnel and Zahn 2007; Charbonnel and Lagarde 2010; Angelou
et al. 2011, 2012), are necessary to include in models of stars ascending the red-giant
branch to match the observed chemical compositions of these stars.

2.1.3 Onset of helium burning: He-flash

At a temperature of ∼108 K in the inert helium core, helium fusion can be ignited in
a triple-alpha process.1 In the highly degenerate core the pressure does not depend
on the temperature and hence there is no thermostatic control to expand and cool
the core. The onset of (unstable) burning in these degenerate conditions results in a
thermal runaway process creating for a very short time (of order a few hours!) an
enormous overproduction of nuclear energy. This energy is absorbed by the expansion
of non-degenerate layers outside the degenerate core and does not reach the stellar
surface.

The onset of helium fusion takes place at the location of maximum temperature.
The temperature is generally at its maximum in a concentric shell around the centre of
the degenerate core due to gravo-thermal energy and neutrino losses. Stellar models
predict that the first main helium flash is followed by a series of sub-flashes. Each
subsequent sub-flash is located closer to the centre such that eventually the degeneracy
in the centre is completely lifted and the star is back in equilibrium with helium
burning in a convective core. As neither the energy of the flash, nor the energy of the
subflashes reaches the stellar surface, the existence of sub-flashes in real stars is not
observationally confirmed, i.e., they could be artefacts of stellar models.

2.1.4 Helium core burning phase: red clump

The star has now two sources of energy generation: hydrogen burning in a shell
around the core producing helium, while in the core helium is consumed to produce
carbon and oxygen. Due to the expansion and accompanying decrease in density and
temperature of the hydrogen-burning shell after the helium flash it generates less energy
(this is, however, still the main source of energy generation in the star). Therefore,
the luminosity decreases while the core expands and the envelope contracts (mirror
principle, see Sect. 2.1.2). The star is back in equilibrium and settles in the red clump.

All stars that have gone through a helium flash have very similar core masses and
hence very similar luminosities on the horizontal branch. Therefore, all stars that go
through a He-flash end up at a very similar spot in the Herzsprung–Russell diagram,
with only some dependence on Teff owing to their total masses (with lower masses
being slightly hotter) and composition (stars with higher contents of heavier elements
are cooler).

1 Interestingly, Hoyle (1954) predicted that this could only occur if carbon possessed a resonant state, i.e.,
a state with a very particular energy, which we now know is true.
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Properties of the convective core The helium core burning stars have a central con-
vective core that becomes enriched in carbon and oxygen during helium burning. The
opacity in the temperature–density regime present in the core is dominated by free–free
transitions and increases with increasing carbon and oxygen abundance. This causes
an increase in the radiative temperature gradient in the core leading to a discontinu-
ity in the radiative temperature gradient at the boundary between the convective core
and the radiative envelope. In models with no mixing beyond the convective core the
nuclear burning gives rise to an increasing composition discontinuity at the edge of
the core. Convective overshoot and/or semiconvection increases the size of the core
and, depending on the implementation, may lead to a smooth composition profile or
further discontinuities in composition (see Constantino et al. 2015 for an overview of
these processes). As discussed in Sects. 4.2.4 and 4.2.5 the detailed properties of the
composition profile can have a strong effect on the behaviour of the oscillations of
the star. Towards the end of the central helium burning sudden mixing in the models
between the carbon-oxygen-rich core and the overlying helium-rich layers may occur
at the edge of the core. This leads to an abrupt increase in the helium content of the core
and a loop in the Herzsprung–Russell diagram. These are so-called breathing pulses.
The occurrence and appearance of these breathing pulses in stellar models depend on
the criterion used for convection and may only be an artefact of the way convection is
included in models and may not be present in real stars.

After some time helium is exhausted in the convective core and the star will undergo
some rapid evolution towards a shell-burning phase with burning taking place in a
helium shell and hydrogen shell surrounding the core. This phase of evolution is the
asymptotic giant branch (AGB).

2.1.5 Helium and hydrogen shell burning phase: asymptotic giant branch

In the low-mass regime, the asymptotic giant branch is characterized by an inert
carbon–oxygen core surrounded by two burning shells of which the helium shell is
thermally unstable. In this phase a star is again moving in the Herzsprung–Russell
diagram towards the Hayashi line and at the same time increasing its luminosity
and radius. In the early AGB (E-AGB) phase hydrogen is burning outwards and the
temperature in this shell drops. Consequently, the hydrogen-burning shell supplies
only a small fraction of the energy for some time. However, as the temperature in
the hydrogen shell increases again in between thermal pulses (see below) burning is
recovered and dominates the energy production.

Thermal pulses As the star ascends the asymptotic giant branch, the helium-burning
shell narrows while providing most of the energy to the stellar surface. Eventually
the helium-burning shell advances in mass towards the hydrogen-burning shell, and
their separation, the inter-shell region, becomes too narrow. This, along with the high-
temperature dependence of the helium-burning reactions, results in a thermal runaway
and the onset of the thermally pulsing (TP) AGB phase.

The thermally pulsing AGB phase is characterized by long periods of quies-
cent hydrogen-shell burning, followed by instabilities of the helium-burning shell
(Schwarzschild and Härm 1965; Weigert 1966). Each instability or ‘helium-shell
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flash’ grows in amplitude for the first 5–10 pulses before approaching a maximum
in helium luminosity. As per Iben (1981) we describe the TP-AGB cycle by four
distinct phases:

– On phase: the sudden deposition of energy from the shell flash drives an inter-shell
convection/burning zone cycling the products of the triple-alpha process into the
region below the hydrogen shell.

– Power down phase: although the carbon-oxygen core is highly electron degenerate
the shell-flash instability occurs in a non-degenerate region of the stellar interior.
The energy generated by the flash helps drive expansion of the star and thereby
extinguishing the hydrogen-burning shell. The flash is able to generate luminosities
of the order 107 or 108 solar luminosities. However, due to the expansion this
increase in luminosity is not manifested at the surface.

– Third dredge-up2: As the star expands and cools, convection is able to penetrate
beyond the hydrogen-burning shell into regions homogenised by the inter-shell
convection zone. Hence the products of He burning are mixed into the envelope
where they can be observed at the stellar surface.

– The inter-pulse phase: eventually the helium-burning luminosity drops below the
surface luminosity and the outer regions can once more contract. The hydrogen
shell can reignite where it provides most of the luminosity until once again the
interior conditions arise for a successive helium-shell instability. The inter-pulse
phase lasts for ≈104 years.

Third dredge-up Third dredge-up plays an important role in the chemical enrichment
of the galaxy. The significant amount of carbon produced in these stars and brought
to the stellar surface is in some cases able to raise the C/O abundance ratio to become
larger than unity. In addition TP-AGB stars have been identified as a site of the s-process
nucleosynthesis,3 which is responsible for the production of half of the elements
beyond iron. Through efficient mass-loss processes these elements are expelled into
the interstellar medium.

Post-thermally-pulsing AGB phase At some point, the envelope mass is insufficient
to allow TP to continue. When the envelope mass drops below about a few (∼5) per
cent of the total mass, the envelope contracts and shell burning extinguishes: the star
becomes a white dwarf. This is the post-AGB phase. The number of thermal pulses the
star experiences and the final white dwarf mass depend on the competition between
mass loss and core growth in the AGB phase. For extensive reviews of the AGB
stars we refer to Iben and Renzini (1983), Herwig (2005) and Karakas and Lattanzio
(2014).

2 Note that no second dredge-up takes place in low-mass stars. The second dredge-up for intermediate-mass
stars is described in Sect. 2.2.5.
3 Slow-neutron-capture-process: a nucleosynthesis process that occurs at relatively low neutron density
and intermediate temperature conditions.
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2.2 Intermediate-mass stars (M ∼ 2−10 M⊙)

2.2.1 End of hydrogen core burning phase: end of main sequence

Intermediate-mass stars have a convective core on the main sequence and show the
same behaviour as low-mass stars with a convective core as described in Sect. 2.1.1.

2.2.2 Hydrogen shell-burning phase: subgiants and red-giant branch stars

After a short resettling at the end of the main sequence, hydrogen-shell burning inten-
sifies in the region around the core. As for the low-mass star, this shell burning steepens
the hydrogen profile at the edge of the He-core leading to a narrowing of the burn-
ing shell when the lower hydrogen tail has been consumed. The core contraction and
envelope expansion below and above the shell burning layer, respectively, (mirror
principle) increase the radius of the star.

Hertzsprung gap In intermediate-mass stars the core is non-degenerate following cen-
tral hydrogen exhaustion. Schönberg and Chandrasekhar (1942) demonstrated that
there is a maximum relative core mass that an isothermal, non-degenerate core can
have whilst maintaining hydrostatic and thermal equilibrium and deriving all its energy
from a nuclear burning shell source. Without electron degeneracy to supply addi-
tional pressure support, contraction on a Kelvin–Helmholtz timescale will develop
when the core mass exceeds this Schönberg–Chandrasekhar limit, so that the star
can maintain equilibrium between the energy it generates in the interior and that
which it loses at the surface. Whether stars in the intermediate-mass range reach
the Schönberg–Chandrasekhar limit depends on their hydrogen-exhausted core mass.
This mass depends on the amount of overshoot the convective core experienced on the
main sequence. Upon reaching the Schönberg–Chandrasekhar limit, stars cross the
Hertzsprung–Russell diagram rapidly and move onto the red-giant branch. The fast
timescales involved in this phase of evolution leads to a dearth of intermediate-mass
stars observed in this region of the HR diagram: the so-called Hertzsprung gap.

At the bottom of the red-giant branch, intermediate-mass stars develop a deep outer
convective region to transport energy more efficiently and prevent the star from cooling
beyond the Hayashi line. This deepening of the convective envelope causes a change in
the surface chemical composition due to the first dredge-up (Sect. 2.1.2). At the same
time the core continues to contract and heat. When the core temperature has increased
to about 108 K, helium is ignited. We note that the bump (Sect. 2.1.2) is only present on
the red-giant branch for stars with masses roughly below 2.2 M⊙. More massive stars
ignite helium before the hydrogen-burning shell reaches the chemical discontinuity
left behind by the first dredge-up.

2.2.3 Onset of helium burning: non-degenerate ignition

In the non-degenerate regime, the luminosity at which helium ignites is a monoton-
ically increasing function of the core mass. Because the pressure and temperature
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are related, the thermostatic feedback allows intermediate mass stars to gently ignite
helium in their core.

2.2.4 Helium core burning phase: secondary clump

Stars in the secondary clump have two sources of burning. Firstly, helium burning
that produces carbon and oxygen is present in the core. Like the CNO reactions,
energy production via the triple-alpha process is highly temperature dependent. The
reactions are concentrated towards the centre and give rise to a convective core. Burning
proceeds quiescently with the core growing as a function of time. Secondly, hydrogen
burning is taking place in a shell around the core. The latter provides most of the total
energy output as a rather small release of nuclear energy is sufficient in the core to
compensate for the energy loss from the core and prevent the core from contracting.
As the core masses of these stars can be different when they ignite helium, these stars
do not “clump” as the red-clump stars. Instead they form the secondary clump at lower
luminosities and effective temperatures. Additionally these stars loop through the red-
giant region during central helium burning [see left inset in the HR diagram (Fig. 3),
where the stars leave the Hayashi line to become hotter and subsequently move back
towards the Hayashi line]. The temperature range that the loops cover increases with
increasing stellar mass. The cause of these loops lies in the chemical composition
profile in the central regions of stars that had a convective core on the main-sequence.

2.2.5 Helium and hydrogen shell burning phase: asymptotic giant branch

When helium burning terminates in the core the burning continues in two shells around
the inert carbon–oxygen core. For stars with masses of 4–8 M⊙ the hydrogen shell is
at best barely active. This allows the convective envelope to penetrate down reaching
layers through which the hydrogen shell has burned (similar as for low-mass stars on
the red-giant branch). This so-called second dredge-up brings processed material that
is generated by helium and hydrogen burning such as carbon, oxygen, nitrogen and
helium to the surface. For all stars that do not ignite carbon in their core, the AGB
proceeds in roughly the same fashion as for low-mass stars (see also Sect. 2.1.5).
They experience episodic thermal pulses and efficient mass loss until they lose most
of their envelope and become a white dwarf. However, their s-process nucleosythesis
will differ greatly depending on stellar mass.

2.3 Why do stars become giants?

The description written above represents our current understanding of stellar evolution
based on stellar models and observations. However, the reason why stars become red
giants is actually not understood. The mirror phenomenon mentioned before seems
to play an essential role in stars to become a red giant. However, it is not understood
what physical mechanism(s) drive the mirror nor what other physical mechanisms are
essential in a star to become a giant.
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A number of studies have investigated the question ‘Why do stars become giants?’
proposing reasons related to central gravitational field (Hoppner and Weigert 1973;
Weiss 1983), the effective equation of state (Eggleton and Cannon 1991; Eggleton
et al. 1998), gravothermal instability in the core (Iben 1993), thermal instabilities in the
stellar envelope (Renzini et al. 1992) and mean molecular weight gradient (Stancliffe
et al. 2009). Some of these studies have been met with fierce opposition whilst others
have devised conditions that were later shown to be necessary but not sufficient in all
stars. Currently, it is clear that a strong gravitational field and a mean molecular weight
gradient play an important role (Stancliffe et al. 2009) in stars for them to become
a giant. For an extensive overview regarding the literature addressing ‘Why do stars
become giants?’ we refer the reader to Sugimoto and Fujimoto (2000), while Faulkner
(2005) provided a detailed analytical investigation inspired by the scientific legacy of
Fred Hoyle.

2.4 Rotation

In the description of the internal structure of stars provided here, rotation has not
been taken into account. However, it is plausible that all stars rotate as the clouds
of gas and dust that they are formed from contain angular momentum. For slowly
rotating stars it is generally assumed that second-order effects can be neglected and
that the hydrostatic structure of the star is not affected. For low-mass stars on the main
sequence and more evolved stars this will generally be the case. Intermediate-mass
stars on and shortly after the main sequence may, however, be faster rotators before
they slow down under the influence of magnetic braking. The rotation can have a strong
impact on the thermal structure and radiative transfer, possibly inducing meridional
flows and instabilities affecting mixing processes. Additionally, the shape of the star
may become aspherical. Work on including rotation in stellar structure models has
been performed by for example Palacios et al. (2006), Eggenberger et al. (2010),
Eggenberger et al. (2012), based on earlier work by Zahn (1992). A critical issue
is the treatment of the evolution of the internal angular velocity, including transport
of angular momentum, which currently fails to reproduce the seismically inferred
internal rotation (see Sect. 5.5). One of the main conclusions for red-giant stars so far
is that rotationally induced mixing and meridional circulation do not provide enough
mixing of chemicals to explain the abundance anomalies observed around the bump
luminosity of globular clusters (see also Sect. 6). For a detailed analysis of the evolution
of rotating stars, see Maeder (2009).

3 Seismic diagnostics

Seismic diagnostics are by definition obtained from a signal that varies over time. In the
context of oscillating stars, timeseries data (see top panel of Fig. 1) are most often taken
from photometric fluxes or radial velocities (see Sect. 1). Some stellar parameters can
be directly determined from the timeseries data. However, most seismic diagnostics
are obtained from a Fourier transform (Figs. 1, 6, 7) of the timeseries data.
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Important characteristics of the timeseries data are the total length or timespan of
the data (T ) and the typical time sampling (δt). These translate in Fourier space in the
frequency resolution δν = 1/T , and the highest frequency at which one can reliably
obtain results, i.e., the Nyquist frequency νNyq = 1/(2δt). The Nyquist frequency is a
hard limit for evenly sampled timeseries. However, astrophysical datasets are usually
not exactly evenly sampled, which allows for measurements with higher frequencies,
so-called super-Nyquist determinations (Murphy et al. 2013). It was shown by Eyer and
Bartholdi (1999) that in cases of serious oversampling or undersampling the Nyquist
frequency can be derived as νNyq = 1/(2p) with p being the greatest common divisor
of all differences between consecutive observation times. In practise a realistic estimate
of νNyq in the case of unevenly sampled data is to use the inverse of twice the median
of all time differences between two consecutive measurements in the entire timeseries
(Aerts et al. 2010).

The power in Fourier transforms is commonly normalized using Parseval’s the-

orem. This theorem states that the integral of the square of a function is equal
to the integral of the square of its transform, i.e., the total power in the Fourier
transform is equal to the total of the squared flux variations (for intensity) in the
timeseries. Alternatively, Fourier transforms can be normalized using ‘peak-scaling’

in which the Fourier transform is normalized to recover the full sine-amplitude of
an injected signal. The power can either be computed per bin, i.e., the frequency
resolution, or per frequency unit. In the latter case it is the power density that is
shown which has the advantage that its value does not depend on the frequency
resolution.

The fact that integration times of the observations are not infinitely short causes
apodization ηa . This affects the power at all frequencies with the largest impact close
to the Nyquist frequency. The apodization can be accounted for by multiplying the
power by η2

a , where η2
a is defined as4:

η2
a = sinc2

[

π/2

(

ν

νNyq

)]

. (1)

Gaps in the timeseries data impact on features in the power spectrum. This window

function, i.e., the pattern of observations and gaps, causes alias frequencies (or side-
lobes) to occur at n(1/Tgap), with n an integer and Tgap the typical time between gaps
(for instance, one day for ground-based single-site observations).

When the data quality between the observations varies significantly, such as can
happen with ground-based spectroscopic (multi-site) campaigns, one can opt to com-
pute a weighted Fourier transform. This weighting can be performed to optimize the
noise level, but also to optimize the window function and reduce the sidelobes caused
by gaps (Arentoft et al. 2009).

For a crash course on data analysis in asteroseismology including the statistics and
uncertainties of timeseries data we refer the reader to Appourchaux (2014).

4 sinc(x) ≡ 1 for x = 0 and sinc(x) ≡ sin(x)/x otherwise.
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3.1 Variance and typical timescale in timeseries data

For stars with a convective outer layer, such as low-mass dwarfs, subgiants and red
giants, the variations in the flux are dominated by granulation and oscillations. As
both granulation, i.e., visible pattern of convection, and oscillations depend on surface
gravity it has been possible to calibrate relations between the variance in the flux and
surface gravity (Hekker et al. 2012; Bastien et al. 2013) as well as between the typical
timescales present in the timeseries data and surface gravity (Kallinger et al. 2016).

3.2 Background signal in Fourier spectrum

For stars with a convective outer layer a frequency-dependent background signal is
present in the Fourier spectrum. This background consists of stellar intrinsic phenom-
ena including activity features, such as spots and flares that are observable features
of magnetic fields, rotation and granulation. In addition to the intrinsic stellar back-
ground signal an observed power spectrum also includes white noise and instrumental
effects. These instrumental effects may include, for instance, degrading of CCDs, but
also incidental cosmic ray hits or telescope jitter.

All these features together form a background on top of which the oscillation modes
are visible as relatively narrow peaks. This background can be fitted with the following
function (e.g., Harvey 1985; Kallinger et al. 2014):

P(ν) = P ′
n + ηa(ν)2

∑

i

a2
i /bi

1 + (ν/bi )ci
, (2)

where P ′
n is the white noise; ai , ci and bi are for the i-th background component the

rms amplitude, exponent, and the frequency at which the power of the component is
equal to half its value at zero frequency (the characteristic frequency), respectively.
The factor η2

a is the apodization defined in Eq. (1). The exponent ci provides a measure
of the temporal correlation of the signal and determines the slope of the decay of the
background in Fourier space (Mathur et al. 2011b). The number of functions (i) needed
depends on the presence of activity, (super)granulation, or faculae (bright spots) on
the star. Based on state-of the-art data, a two-component fit is in most cases necessary
and sufficient (Karoff et al. 2013; Kallinger et al. 2014). An example of a background
fit is shown in Fig. 6.

3.3 Oscillation signal

Oscillations establish themselves as a series of relatively narrow peaks on top of the
background described in the previous subsection. The oscillations are confined to
a limited range in frequency. Within this frequency range the individual modes of
stochastic oscillations have a Lorentzian shape with a width that represents the life-
time of the mode and a height determined by the intrinsic amplitude of the mode and
geometrical effects. In the limit of infinite lifetime, i.e., an oscillation that appears
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Fig. 6 Fourier power density spectrum of a red giant (KIC 9145955) in log-log space. The solid red

line shows the background fit with the different background components shown with dashed lines. The
white-noise level is indicated with a dotted-dashed line

coherent over the timespan of the observations, the mode is unresolved and takes the
form of a sinc2 function (see footnote 4) in power. Each oscillation mode is charac-
terized by its quantum numbers: radial order n, related to the number of nodes in the
radial direction (cf. Sect. 4.2.1); degree l, the number of nodal lines on the surface
and azimuthal order m, the number of nodal lines crossing the stellar equator. The
frequencies, width and amplitudes of the individual modes as well as the overall shape
of, and patterns in, the oscillation power excess have valuable diagnostic power. Here,
we first discuss the global features of the oscillation power excess, i.e., single mea-
sures that provide a diagnostic. We subsequently provide more details regarding the
individual frequencies and the diagnostics that can be extracted from them.

In red giants all non-radial modes have a mixed character, with a gravity-mode
behaviour (buoyancy is the restoring force) in the core and an acoustic behaviour (pres-
sure is the restoring force) in the envelope. Observationally, the acoustic behaviour is
most prominent, and we first discuss the related observed properties. Afterwards we
consider the more profound aspects of the star that are revealed by the mixed nature
of the modes.

3.3.1 Frequency of maximum oscillation power (νmax)

All solar-like oscillations in a star form together a bell-shaped power excess above the
granulation and background signal centred around a specific frequency (see Fig. 7,
where the amplitude of the power excess envelope is enhanced for visual purposes).
This specific frequency is often referred to as frequency of maximum oscillation power

or νmax. This frequency has been linked empirically to the acoustic cut-off frequency

νac = c

4π Hp

(3)
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Fig. 7 Oscillations in the background-corrected power density spectrum of KIC 9145955. The numbers

indicate the degree (l) of the modes (see Sect. 3.4). The red dashed curve shows a heavily (triangular)
smoothed power spectrum indicating the power excess envelope of the oscillations. The amplitude of the
smoothed power spectrum is enhanced for visual purposes

(Lamb 1932, using the approximation for an isothermal atmosphere); here c is the
adiabatic sound speed and Hp is the pressure scale height. (See Eq. (25) and subsequent
text for a theoretical explanation of the acoustic cut-off frequency.) It can be shown that
νmax provides a direct measure of the surface gravity (g) when the effective temperature
(Teff ) is known (e.g., Brown et al. 1991; Kjeldsen and Bedding 1995):

νmax ∝ g√
Teff

∝ M

R2
√

Teff
, (4)

with M and R the stellar mass and radius, respectively. A theoretical basis for this
relation has been investigated by Belkacem et al. (2011) and is discussed further in
Sect. 4.3.

The value of νmax can be estimated as the centroid of a Gaussian fit to the oscilla-
tion power excess (Kallinger et al. 2012). Alternatively, one can use the peak of the
oscillation power excess in the smoothed power spectrum (Huber et al. 2009) or the
first moment of the area under the smoothed power envelope (Hekker et al. 2010b).
All these methods use slightly different, but equally valid, definitions of νmax and
therefore can provide different values. Comparisons between values obtained with
different methods show that this difference is generally within a few per cent (Hekker
et al. 2011, 2012; Verner et al. 2011).

As stated above, for high-precision data such as the Kepler timeseries the main
sources of the signal in the timeseries data are the granulation and the oscillations.
The amplitudes of these signals are correlated with νmax, and, therefore, the frequency
of maximum oscillation power can also be directly estimated from the variance in the
timeseries (Hekker et al. 2012).
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3.3.2 Frequency pattern

Following asymptotic theory (Tassoul 1980, and Sect. 4.1), acoustic oscillation modes
(pressure as restoring force) of solar-like oscillators follow a distinct pattern:

νn l ≃ 
ν

(

n + l

2
+ ǫ

)

− dn l , (5)

with ν cyclic oscillation frequency, 
ν large frequency separation (Sect. 3.3.3), ǫ a
phase term (Sect. 3.3.4) and dnl a small correction to the leading order asymptotics,
which is zero for l = 0.

Based on the asymptotic expression, Mosser et al. (2011b) developed the universal

pattern for red-giant spectra, according to which all parameters are assumed to be
a function of 
ν. This is equivalent to assuming that the underlying physics of the
parameters varies as a function of the global stellar parameters. The universal pattern
has the following form to describe pure acoustic modes (Mosser et al. 2011b, 2012a):

νn p l =
(

n p + l

2
+ ǫ(
ν) − d̂l(
ν) + α(
ν)

2
[n p − nmax]2

)


ν, (6)

where nmax = νmax/
ν. The phase term ǫ and non-radial correction d̂l , with d̂0 = 0,
are described by scaling laws of the form A + B log 
ν (Mosser et al. 2010). The
second-order term (or curvature) in the asymptotic expression is represented by the
parameter α = 0.015
ν−0.32 (Mosser et al. 2012a).

The reason for the universal behaviour of red giants is not yet fully understood,
as the asymptotic approximation is fundamentally related to the behaviour of the
solution of the oscillation equations near the singularity at r = 0 (Gough 1986b,
1993, and Sect. 4.2.3). In the case of red giants the conditions in the central region
of the star are considerably different compared with the conditions in main-sequence
stars (Sect. 4.2.3). Nevertheless, it seems that the asymptotic approximation and the
universal pattern provide reasonable results for both models and observations. Only for
the very luminous and expanded red giants close to the tip of the RGB the universality
does not hold (Stello et al. 2014). For modes with low radial orders the dipole mode
is located closer to the neighbouring quadrupole mode, providing a regular pattern of
three modes together instead of a pattern of a cluster of two modes together (the 0–2
pair) alternating with one (dipole) mode.

3.3.3 Large frequency separation

The large frequency separation 
ν is the separation between modes of the same
degree and consecutive radial orders. 
ν is proportional to the inverse of the acoustic
diameter, i.e., the sound travel time across a stellar diameter. Furthermore, it can be
shown that 
ν is a direct probe of the mean density (ρ) of the star (Ulrich 1986):


ν = νn l − νn−1 l =
(

2
∫ R

0

dr

c

)−1

∝
√

M

R3 ∝
√

ρ, (7)
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with r the distance to the centre of the star, see also Eq. (31).
The near-regular pattern of the large frequency separation can be measured in a

global sense from the autocorrelation of a power spectrum (e.g., Huber et al. 2009),
the power spectrum of a power spectrum (e.g., Hekker et al. 2010b) or the mathemat-
ically equivalent autocorrelation of the timeseries (EACF, Mosser and Appourchaux
2009) with a cosine filter or Hanning function with a full-width at half maximum
(FWHM) of the order of the FWHM of the power excess. Additionally, Mosser et al.
(2011b) have used the universal pattern (Sect. 3.3.2) in which the known patterns in
the power spectrum are used to compute templates which are convolved with observed
power spectra to determine 
ν. Furthermore, the large frequency separation can be
obtained from fits to individual frequencies (Kallinger et al. 2010), from pair-wise
differences, or from a linear fit of the frequencies versus their radial order. It has been
shown that the different determinations are consistent within their uncertainties and
definitions (e.g., Verner et al. 2011; Hekker et al. 2011, 2012). Nevertheless, some
biases depending on the number of radial orders that were used in the analysis have
been identified (Hekker et al. 2012).

A convenient way to represent the power spectrum of solar-like oscillators is in
an échelle diagram (Grec et al. 1983), as shown for a subgiant star in Fig. 8. This is
obtained by dividing the frequency spectrum into segments of length 
ν and stacking
the segments. According to Eq. (5) this should lead to roughly vertical sequences of
points corresponding to different degrees. As shown in the figure this is satisfied for
modes of degree l = 0 and 2; for l = 1 the presence of mixed modes (see Sects. 3.4.1,
4.2, 5.4) causes departures from the simple behaviour.

We stress here that the actual separation between the frequencies of adjacent modes
of the same degree varies as a function of frequency due to stellar internal structure
properties, as also reflected by Eq. (6) and discussed further by Mosser et al. (2013b)
and in Sect. 4.1. Structure variations that happen on scales that are comparable with
or shorter than the oscillation wavelength, i.e., a glitch, cause a damped sinusoidal
modulation in the frequencies (see for more details Sects. 3.4.5 and 4.2.4). Structure
changes that take place over longer scales cause a gradual change, or curvature, in the
large frequency separation. Therefore, the value of the large frequency separation may
change depending on the frequency range that is taken into account.

3.3.4 Phase term (ǫ)

The asymptotic relation for acoustic modes (Eq. 5) also contains a phase term ǫ. This
phase term is a dimensionless offset of the radial modes in an échelle diagram (see
Fig. 8). Its value is correlated with the determination of 
ν. The value of ǫ can be
determined from the universal pattern in which it is considered to be a function of

ν. Additionally, a (weighted5) least-squares fit to the radial (l = 0) frequencies to

5 Ideally one should apply the same weights in observations and computed oscillations. However, in obser-
vations the weights are generally derived from the uncertainties in the frequencies. When using frequencies
computed from models a Gaussian weight resembling the amplitude of the oscillation modes is generally
applied. Nevertheless, Hekker et al. (2013) showed that there is good agreement between 
ν obtained from
the power spectrum of the power spectrum (e.g., Hekker et al. 2010b) and from a weighted linear fit through
a set of computed oscillations.

123



Giant star seismology Page 23 of 122 1

Fig. 8 Échelle diagram of KIC 11395018 showing the frequencies (black points) as determined by Mathur
et al. (2011a): modes with l = 0, l = 1 and l = 2 are indicated with circles, triangles and squares,
respectively. For reference, a grey-scale map showing the power spectrum (smoothed to 1 µHz resolution)
is included in the background. The fits made to the l = 0 and l = 2 modes are shown by red lines. The
values of 
ν and δν02 (at νmax) and the relationship 
ν(ǫ − 1), i.e., the absolute position of the l = 0
ridge, are indicated by the blue arrows, as labelled. Image reproduced with permission from White et al.
(2011), copyright by AAS

simultaneously determine 
ν and ǫ can be performed. These global methods average
over the variation of ǫ with frequency. Additionally, a ‘local’ ǫ can be determined by
only including the three central radial orders around νmax in the analysis (Kallinger
et al. 2012).

The inferred value of ǫ is generally between 0.5 and 1.5, with a potential ‘offset’
of ±1. This ‘offset’ only reflects the observational limitations in that the radial order
n cannot be measured independently and is not an offset of the actual value of ǫ.

The main diagnostic power of the global phase term lies in the mode identification
of the different ridges in the échelle diagram for stochastic oscillators with short mode
lifetimes. In these cases the width of the oscillation signals in the Fourier space does
not allow to resolve the small frequency separation (see next subsection) between the
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l = 0 and l = 2 modes and hence the l = 1 and l = 0, 2 ridges have very similar
characteristics. In these cases ǫ, i.e., the location of the radial modes in an échelle
diagram, can be used to identify the ridges correctly (White et al. 2012).

The ‘local’ phase term can be used to distinguish between different evolutionary
phases (Kallinger et al. 2012). This is caused by the fact that the differences in the
core cause differences in the thermodynamic state of the envelope, which results in a
different location of the second helium-ionisation zone for stars with an inert helium
core compared with stars with helium-core burning. The location of the second helium-
ionisation zone leaves a trace in small oscillatory deviations in the frequencies (see
Sects. 3.4.5 and 4.2.4 on glitches). This causes a difference in the ‘local’ phase term
for stars in different evolutionary phases (Christensen-Dalsgaard et al. 2014).

3.3.5 Small frequency separation (δν02 and δν13)

A typical separation in frequency exists between odd- and even-degree modes. This
is the so-called small frequency separation that can be approximated asymptotically,
for main-sequence stars, by (e.g., Gough 1986b, see also Eq. 32):

δνl l+2(n) = νn l − νn−1 l+2 ≃ −(4l + 6)

ν

4π2νn l

∫ R

0

dc

dr

dr

r
. (8)

This parameter is generally measured from frequency differences between observed
individual frequencies. Equation (8) depends on the sound-speed gradient, which
depends on the composition. Hence, δνl l+2(n) provides a measure of the helium
content in the core of main-sequence stars, and with that δνl l+2(n) is a diagnostic of
stellar age (Christensen-Dalsgaard 1984; Ulrich 1986; Christensen-Dalsgaard 1988).
It was noted by Huber et al. (2010) from early Kepler observations, that for more
evolved stars (subgiants and giants) the small frequency separation between modes
of degree 0 and 2 essentially scales as 
ν. This is due to the fact that these stars
have a highly concentrated core such that the inner turning point of the pressure-mode
cavity lies outside the compact core. Therefore, this small separation does not provide
a measure of the helium content in the core and hence is no longer an age diagnostic.

3.3.6 Small frequency separation (δν01)

In a Fourier spectrum dipole modes are located approximately mid-way between radial
modes as per Eq. (5). The offset from the midpoint between the radial modes and the
frequency of the dipole mode can be computed from a three-point difference6 and
indicated as δν0 1:

δν0 1(n) = 0.5(νn 0 − 2νn 1 + νn+1 0). (9)

In main-sequence stars δν0 1 is known to be sensitive to the central physical conditions.
For red giants this is not the case. It has been shown that for red giants δν0 1 is

6 Roxburgh and Vorontsov (2003) noted that a smoother behaviour is obtained by defining this quantity
with a five-point difference.
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correlated with the distance between the l = 1 turning point and the bottom of the
convective envelope. The value of δν0 1 takes small and negative values for stars
ascending and descending the RGB where the turning points of acoustic l = 1 modes
are well within the convective envelope. Stars in the He-core burning phase have
a shallower convective envelope and the turning points of l = 1 modes are in the
radiative region and δν0 1 generally takes positive values (Montalbán et al. 2010).
As shown in Sect. 4.2.5 (Figs. 32, 33) the evanescent region between the buoyancy
and acoustic cavities is smaller in a red-clump star compared with a RGB star. This
leads to a stronger coupling between modes in a red-clump star increasing the spread
in the modes, which most likely leads to less regular behaviour of δν0 1 in clump
stars compared with RGB stars. Hence, the value of δν0 1 and the regularity of the
acoustic dipole spectrum can be used as a diagnostic to distinguish between different
evolutionary phases (Montalbán et al. 2010). We note here that most of the work on
δν0 1 for red giants was performed before the discovery of the fact that all non-radial
modes are to some extent mixed modes. Hence, this influence was not taken into
account.

3.3.7 Period spacing (
Π )

As mentioned above, non-radial modes in red giants all involve aspects of gravity-mode
behaviour. To analyse the relevant properties we note that an asymptotic approximation
(see Sect. 4.1) reveals that gravity modes of a given degree appear with near constant
separation in period, the so-called period spacing 
Π , as reflected in the asymptotic
behaviour of their periods Πn,l :

Πn,l = Π0√
l(l + 1)

(n + ǫg + 1/2), (10)

with

Π0 = 2π2
(∫ r2

r1

N
dr

r

)−1

, (11)

where N is the Brunt–Väisälä frequency (Eq. 24), r1 and r2 the turning points of the
gravity-mode cavity and ǫg is a phase accounting for the behaviour near the turning
points. This defines the period spacing:


Πl = Π0/
√

l(l + 1). (12)

Based on the regular nature, one can use similar techniques to determine the period
spacing as used to determine 
ν (power spectrum of the power spectrum, auto-
correlations and differences between modes with consecutive order, see Sect. 3.3.3),
but now in period space and centred on regions where dipole (or quadrupole) modes are
expected. It is, however, important to account for the fact that in solar-like oscillators no
pure gravity modes can be observed, but only modes that have mixed gravity-pressure
nature (see also Sects. 3.4 and 4.2 for more details about mixed modes). Due to this
mixed nature the regular spacing in period deviates from the asymptotically predicted
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Fig. 9 Two period échelle diagrams with different density of l = 1 modes for a 1 M⊙ red-giant model
are shown (for details of the model, see Datta et al. 2015). The red points connected with the light grey

lines are l = 1 modes and the horizontal dotted lines represent the frequencies of the radial modes. The
blue dashed line shows the g-mode period spacing of high-order g modes. The top panel shows the period
échelle diagram for all the l = 1 modes in a frequency range spanning 7 radial orders, with 
Π = 73.28 s.
The lower panel shows the period échelle diagram for only a subset of the most p-dominated l = 1 modes
in a smaller frequency range consisting of 5 radial orders with 
Π = 73.26 s. Image reproduced with
permission from Datta et al. (2015), copyright by the authors

value of ‘pure’ gravity oscillation modes in the vicinity of ‘pure’ pressure modes. The
observed period spacing follows, in general, a predictable pattern for each acoustic
radial order with an empirically determined Lorentzian shape (Mosser et al. 2011b,
2012c, and Sect. 4.2.3).

The underlying period spacing can be determined from the modulated observed
period spacing using a period échelle diagram (see Fig. 9). In this diagram the period
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spacing can be obtained by aligning the g-dominated modes surrounded in a roughly
symmetric way by the p-dominated modes (Bedding et al. 2011; Mosser et al. 2012c;
Datta et al. 2015). The patterns in the period échelle diagram can also be described
by an analytical expression based on the coupling between the gravity and acoustic
cavity as derived by Mosser et al. (2012c) (see also Sect. 4.2.3):

ν = νn p,l + 
ν

π
arctan

[

q tan π

(

1


Πlν
− ǫg

)]

, (13)

where q is the coupling strength. This is set to q = 0 for no coupling and q = 1
indicates maximum coupling. The period spacing and coupling strength can be
determined in an iterative manner, when assuming ǫg is a fixed value (often zero,
i.e., the pattern is assumed symmetric). Note that Buysschaert et al. (2016) have
employed Eq. (13) while leaving ǫg also as a free parameter. They find that although
ǫg remains ill-defined, its determination improves the determination of the period
spacing.

An alternative way to determine period spacing and to constrain the evanescent
region between the p and g cavities (and thus coupling strength q) is through the
inertia ratio of dipole and radial modes (see Sect. 4.2). Benomar et al. (2014) for the
first time estimated mode inertias observationally from the measurements of mixed
mode characteristics. The mode inertia ratio could develop to be a diagnostic that can
potentially provide strong constraints on the stellar structure.

Recently, Mosser et al. (2015) and Vrard et al. (2016) have proposed a way to stretch
the period Fourier spectrum to remove the modulation due to the coupling between
the pressure and gravity modes and obtain the regular underlying period spacing in a
direct manner.

The period spacing provides a strong diagnostic on the central regions of the star.
It can be used to distinguish between stars in different evolutionary phases, most
notably between red giants with an inert He-core and red giants with He-core burn-
ing (Bedding et al. 2011; Mosser et al. 2011a, 2014). Furthermore, small deviations
from the regular period spacing pattern can reveal localised stellar structure changes
such as the chemical discontinuity due to the first dredge-up (Cunha et al. 2015, and
Sect. 4.2.4).

3.4 Individual oscillation modes

Individual oscillation modes in stochastic oscillations are characterized by their mode
frequency νcentral, line width Γ and height H . A resolved oscillation mode, i.e., a mode
with a lifetime that is at least ∼10 times shorter than the timespan of the timeseries data
(Hekker et al. 2010a) can be modelled by a Lorentzian profile in the power spectrum
P(ν):

P(ν) = H

1 +
(

2(ν − νcentral)

Γ

)2 . (14)
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The mode lifetime tdamp is directly related to the mode line width through Γ =
1/(π tdamp). The mode height and width are highly correlated and relate through the
root-mean-square flux amplitude A =

√
π HΓ/2 (e.g., Chaplin et al. 2005) which

is the area underneath the profile. Hence the amplitude is a more robust parameter.
The amplitude of the modes contains information on the excitation and damping of
the oscillations (see, e.g., Houdek 2012; Samadi et al. 2012, and Sect. 4.3). However,
the visibility of the modes is a combination of the intrinsic amplitude and geometrical
effects, i.e., cancellation of some of the signal due to the fact that only integrated light
from the visible part of stars can be observed. In case the oscillations are not resolved
(lifetime longer than the timespan of the timeseries data) they are often approximated
with a sinc function (see footnote 4) in which case the amplitude is A =

√
2Hδν,

where δν is the frequency resolution. In intermediate cases where the modes are partly
resolved a mixture of the resolved and unresolved description has to be applied (see
Sect. 4.3.2).

3.4.1 Mixed modes

Radial modes are always pure acoustic modes with pressure as the restoring force.
Non-radial modes in red giants, however, always have a mixed nature, i.e., are mixed

modes, for which buoyancy acts as restoring force in the deep interior of the star and
pressure acts as restoring force in the outer layers of the star. In other words a mixed
mode is a single mode with different behaviour in the different regions. Frequencies
of mixed modes are shifted compared with pure acoustic or gravity modes by an
amount depending on the coupling strength between the two (gravity and pressure)
oscillation cavities (e.g., Deheuvels and Michel 2010; Hekker and Mazumdar 2014,
and Sect. 4.2).

Mixed modes [and hence period spacings (Sect. 3.3.7)] are mostly observed in
dipole (l = 1) modes as for these modes the coupling between the pressure- and
gravity-mode cavities is stronger (narrower evanescent zone between the cavities, see
Fig. 12) and also because the period spacings are larger due to the dependence on√

l(l + 1) (see Eq. 10), and thus better resolved.
In case there are only a few mixed modes present in, for instance, subgiants,

Deheuvels and Michel (2010, 2011) showed that l = 1 avoided crossings in sub-
giant stars involve more than two modes and induce a characteristic distortion in
the l = 1 ridge in the échelle diagram (see Fig. 16). This can be used to constrain
stellar models. Deheuvels and Michel (2011) have done so by matching the observed
large frequency separation and frequency of the avoided crossing with values obtained
from models. This results in a precise age estimate given the mass and physics of the
models.

Following the analysis by Deheuvels and Michel (2011), Bedding (2012) introduced
a powerful tool for analysing these mixed modes. He showed that by replicating
the échelle diagram horizontally the full structure of the avoided crossings can be
displayed. Benomar et al. (2012) subsequently used this to develop a method to fit the
avoided crossings and determine the minimum separation between the two branches as
a measure of the coupling strength (see Sect. 4.2.2). This provides a useful diagnostics
of the stellar mass for subgiant stars.
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3.4.2 Mode identification

The degree l of the observed individual frequencies can be obtained from the known
pattern of the stochastic oscillation (Sect. 3.3.2) through an échelle diagram (Fig. 8),
where the ridges of radial and quadrupole modes are close together with the dipole
ridge appearing at about a 0.5
ν offset. In case the mode lifetimes are very short the
radial modes can be so broad that they overlap the quadrupole modes. In that case the
phase term (ǫ) can be useful to distinguish the odd and even ridge (Sect. 3.3.4). The
(acoustic) radial order n p can be estimated from Eq. (5), i.e., from the ratio of the
frequency of the mode over the large frequency separation bearing in mind that n is
an integer and that the phase term ǫ takes values between 0.5 and 1.5. Note that for
mixed modes the total radial order n consists of the nodes in the acoustic cavity n p

as defined here and the nodes in the buoyancy cavity. The buoyancy radial order ng

is indicated by definition with a negative number and can take large values (see also
Sect. 4.2.1 and Fig. 18).

Mode identification can also be performed from spectroscopic data. Red- or blue-
shifted parts of the surface of a star leave traces in the shape of a spectral line profile.
Over the course of the pulsation the blue- and red-shifted parts change and hence the
line-profile shape changes. Therefore, the amplitude and phase of the line-profile vari-

ations at a particular frequency are fundamentally different for radial and non-radial
oscillation modes. This technique has mainly been developed for stars with coherent
oscillations (Zima et al. 2004; Zima 2008), but also proved useful for providing evi-
dence for the presence of non-radial oscillations in red giants (Hekker et al. 2006;
Hekker and Aerts 2010).

3.4.3 Surface effect

Due to incomplete modelling of the convective outer layers of stars and the strong
non-adiabatic behaviour of the oscillations in the superficial layers there is an offset
between modelled and observed frequencies, the so-called surface effect. This offset
is a function of frequency, but independent of degree at least for the Sun. Using the
solar offset Kjeldsen et al. (2008) proposed a widely used power–law correction that
can be applied to other stars. An alternative procedure is to directly scale the solar
offset on a suitable frequency scale (e.g., Christensen-Dalsgaard 2012b). Additionally,
Aerts et al. (2010) have shown that due to their larger amplitudes in the inner regions
and hence larger inertia (cf. Eq. 38), mixed modes in subgiants are less sensitive to the
incorrect modelling of the non-adiabatic outer layers, and hence the solar calibrated
offset needs to be adapted. Ball and Gizon (2014), based on Gough (1990), have
developed a correction based on mode inertia. So far this method has only been tested
for observations of the Sun and solar-like stars as well as for models of different
mass and metallicity covering a significant portion of the HR diagram from the main-
sequence to red giants for models with Teff < 6500 K (Schmitt and Basu 2015). In
their work Schmitt and Basu (2015) concluded that the two-term model proposed by
Ball and Gizon (2014) works much better than other models across a large portion of
the HR diagram, including the red giants.
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For main-sequence stars it is possible to reduce the influence of the near-surface
region by using frequency-separation ratios such as

r0 2 = νn 0 − νn−1 2

νn 1 − νn−1 1
, (15)

which are essentially independent of the near-surface problems (e.g., Roxburgh and
Vorontsov 2003; Roxburgh 2005). As for the small frequency separations (δν02,
Sect. 3.3.5) the usefulness of the frequency-separation ratios for red-giant stars is
limited due to the universality of the frequency patterns (e.g., Huber et al. 2010).
Additionally, in giants all non-radial modes are mixed modes, which have different
sensitivities to the surface effect.

3.4.4 Rotational splitting

Rotation splits the non-radial modes into 2l + 1 single modes of different azimuthal
orders m. These incorporate modes travelling with the rotational direction (prograde

modes) and in the opposite direction (retrograde modes) in addition to the original
mode unperturbed by rotation, i.e., in cyclic frequency (see also Eq. (124) given in
angular frequency):

νn l m = νn l 0 + mδνn l m . (16)

In cases of slow rotation, which is in general the case for subgiants and red-giant stars,
the assumption of symmetric splittings is often valid. The relative heights or visibility

of the different azimuthal orders in a multiplet are indicative of the inclination angle
with respect to the rotation axis at which we view the system (Gizon and Solanki
2003). When viewing the system pole on, only the m = 0 mode is visible, while for
an equator-on system all modes with even l − m are visible. A rotationally split mode
can be fitted with a set of Lorentzian functions:

P(νn l) =
l
∑

m=−l

Ψl m(i)H

1 +
(

2(ν − νn l 0 − mδνn l m)

Γ

)2 , (17)

where Ψl m(i) is the visibility of the mode which depends on the inclination angle (i)
and δνn l m is the rotational splitting. Here we assumed that all modes in a multiplet are
excited to the same intrinsic average height, as may be reasonable for stochastically
excited modes observed for a long time compared with the lifetime of the modes.
To detect the average rotational splitting one can also use the fact that the rotational
splitting is approximately symmetric in slow rotators and apply, for instance, the EACF
(autocorrelation of the timeseries, Mosser et al. 2011b) with a very narrow Hanning
filter in the range of a non-radial rotationally split modes.

It has been shown that the rotational splitting of modes with mixed character (i.e.,
all non-radial modes in red-giant stars) is a function of the mixed character (Beck et al.
2012; Mosser et al. 2012b; Goupil et al. 2013, and Sect. 4.4). Hence the rotational
splitting of mixed modes is a diagnostic to probe the radial internal rotation profile.
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3.4.5 Glitches

Information on specific transition regions in a star, such as the boundaries of convective
zones or ionization zones of helium or hydrogen, can be obtained from the fact that,
at such boundaries, the properties of the star change on a scale substantially smaller
than the local wavelength of the oscillations (e.g.,Vorontsov 1988; Gough 1990, and
Sect. 4.2.4). These sharp features (also called glitches) cause oscillatory variations in
the frequencies with respect to the pattern described in Eq. (5), or the corresponding
pattern satisfied by mixed modes (cf. Eq. 13). The period of the variation depends on
the location of the feature, while the amplitude depends on the detailed properties of the
feature. Note that the diagnostic use of glitches can be done completely independent
of stellar models.

For acoustic modes the oscillatory behaviour due to glitches can be measured in
frequency differences (
ν) but more often in second differences, and can be described
by a damped oscillator:


2νn l ≡ νn−1 l − 2νn l + νn+1 l = c0νn le
−c2ν

2
n l sin (4πνn lτgl + 2φgl) (18)

in the case of the glitch due to the He II ionisation zone, where c0 indicates the
amplitude of the oscillation and c2 a characteristic width of the e-folding time of the
damped oscillator. Here τgl is the acoustic depth, i.e., the sound travel time between the
surface and the glitch, and φgl is a constant that accounts for the phase. Equation (18)
was derived by Houdek and Gough (2007) and applied in various forms by e.g., Miglio
et al. (2010), Mazumdar et al. (2014), Broomhall et al. (2014) and Verma et al. (2014).
In addition to the intrinsic limits of the sharpness of the glitch compared with the
local wavelength of the oscillation mode (see Sect. 4.2.4), the observational data also
provide natural limits. The depth in the star at which a glitch can be measured depends
on the frequency range covered by the oscillations, i.e., the largest period in Eq. (18)
that can be measured, while the minimum period is defined by the resolution of the
measured frequencies. From these limitations we find that the bottom of the convection
zone is located too deep in red giants to be measured. Furthermore, the helium I and
hydrogen ionisation zones are located close to the surface, which make them very
challenging to measure.

For mixed modes the effects of buoyancy glitches are described by Cunha et al.
(2015) and in Sect. 4.2.4. However, no solid observational results on such effects have
been presented so far.

3.5 Scaling relations and grid-based modelling

The scaling relations Eqs. (4) and (7) can be used to obtain the mean density and
surface gravity of stars exhibiting solar-like oscillations (and from that stellar mass
and radius) in a direct manner, i.e., so-called direct method. These scaling relations
are exceptionally good given that these relations do not account for metallicity dif-
ferences, nor do they account for any knowledge we have about stellar evolution.
To take account of this knowledge, it is also possible to compare the observables
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{
ν, νmax, Teff , [Fe/H], π , L} or a subset thereof with a grid of models; here [Fe/H]
is metallicity, π is parallax and L is luminosity. In this so-called grid-based modelling

one does account for knowledge of stellar structure and evolution, as well as metal-
licity. However, in case the scaling relations are used to determine 
ν and νmax from
the models suitable reference values (with uncertainties) to which one scales have to
be adopted. Alternatively, one can compute individual frequencies for the models and
derive 
ν from that.

Reference values Both the direct method and grid-based modelling are based on the
scaling relations (Eqs. 4, 7) which assume that the scaling is valid in a consistent
way between the reference and the observed star. Often reference values based on
the Sun are used; however, this may not be correct for stars with different properties,
such as a different metallicity or rotation rate, or stars in different evolution phases, as
their stellar internal structures are different. This has indeed been confirmed by White
et al. (2011) for stars with different metallicities along the main-sequence and just
beyond that. Mosser et al. (2013b) proposed new reference values based on relations
derived using results obtained using the universal pattern (Mosser et al. 2011b). It is
currently unclear whether these newly derived reference values are also valid when
other methods are used to derive 
ν and νmax. For instance, Hekker et al. (2013) failed
to confirm the relations quantitatively using stellar models. Furthermore, Miglio et al.
(2012) showed that the difference in internal temperature structure (hence sound speed)
between RGB and RC stars has a significant impact on the scaling relations. Therefore,
they applied a correction for red-clump stars in the open clusters NGC 6719 and NGC
6819 based on the masses of the RGB stars in the respective clusters and theoretical
models. Subsequently, Christensen-Dalsgaard et al. (2014) showed that the difference
in the variation of the phase term ǫ (see Sect. 3.3.4) with frequency between RC and
RGB stars is related to differences in the thermodynamic state of the convection zone.
This supports the findings of Miglio et al. (2012) that RC and RGB stars have internal
structures that are significantly different, which calls for corrections to the scaling
relations. Recently, Guggenberger et al. (2016) proposed a new reference function
for the 
ν scaling relation (Eq. 7) that accounts for metallicity differences and is
applicable for stars on the main sequence up till past the RGB bump on the red-giant
branch. Additionally, Sharma et al. (2016) and Serrenelli et al. (in preparation) devised
methods to apply a correction between 
ν scaling and 
ν from frequencies in model
calculations.

3.6 ‘Boutique’ modelling

Oscillation frequencies can be compared with stellar models to infer the internal stellar
structure. This is often done on a star by star basis, hence ‘boutique’ or ‘detailed’
modelling. This modelling can be done in both a forward and an inverse approach.

Forward modelling In forward modelling the observed frequencies and stellar param-
eters such as log g, Teff , [Fe/H] are matched with stellar models. This is mostly done
using χ2 minimisation either in a direct manner or through singular value decompo-
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sition (SVD) (e.g., Brown et al. 1994). In this procedure the surface term is accounted
for by one of the prescriptions mentioned above (Kjeldsen et al. 2008; Ball and Gizon
2014) or by using the frequency-separation ratios (Roxburgh and Vorontsov 2003;
Roxburgh 2005). Detailed descriptions of the different methods currently applied can
be found in the appendix of Chaplin et al. (2013), Ballard et al. (2014), Silva Aguirre
et al. (2015) and references therein.

Inverse modelling An inverse problem is a general framework that is used to convert
observed measurements into information about a physical object or system. For stars
the individual frequencies can be used to obtain information about the internal structure
of stars. An inverse problem is, however, by nature ill-posed, and many frequencies
probing the star to different depths are needed to obtain meaningful results. Most
commonly inversions have been used to study the stellar rotation at different depths
in the stars (e.g., Deheuvels et al. 2012, 2014; Di Mauro et al. 2016). It is, however, in
principle also possible to perform structure inversions. These have been very powerful
in determining the internal structure of the Sun (e.g., Gough et al. 1996, and references
therein). For other stars the lack of observed frequencies probing the star to different
depths has precluded detailed structure inversions. However, inversion techniques have
been used in asteroseismic analyses to constrain specific properties of stars (e.g.,Reese
et al. 2012; Buldgen et al. 2016). For a complete overview of stellar inversions we
refer to Basu (2014, 2016).

4 Theory of stellar pulsations

The general theory of stellar pulsations has been presented in considerable detail by,
for example, Unno et al. (1989) and Aerts et al. (2010). However, oscillations of
evolved stars present special properties which are important for the understanding of
the observations. Thus, here we provide some background which is useful in the inter-
pretation of the observations of the oscillations of such stars, relating the frequencies
and other aspects of the oscillations to the properties of the stars.

We are dealing with low-amplitude oscillations, which can be regarded as small
perturbations to the equilibrium structure. Formally, these can be described using lin-
earized perturbation analysis of the general equations of hydrodynamics. An important
result concerns the geometrical properties of the modes of spherically symmetric stars.
For the modes that are relevant the properties can be described by spherical harmonics
Y m

l (θ, φ) = Pm
l (cos θ)eimφ as functions of co-latitude θ and longitude φ; here Pm

l

is a Legendre function, characterized by the degree l and the azimuthal order m (see
Sect. 3.3 for a definition). The time dependence of a mode is conveniently written as
e−iωt where ω is the angular frequency, which is in general complex. The displacement
vector can be written, as a function of position r and time t ,

δr(r, t) = Re

{[

ξr (r)Y m
l ar + ξh(r)

(

∂Y m
l

∂θ
aθ + 1

sin θ

∂Y m
l

∂φ
aφ

)]

e−iωt

}

, (19)
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where Re denotes the real part, ξr and ξh are the radial- and horizontal-displacement
amplitude functions that depend only on the distance r to the centre, and ar , aθ and aφ

are unit vectors in a spherical polar coordinate system. Other oscillating variables, such
as the pressure perturbation, vary as the real part of Y m

l (θ, φ)e−iωt . We can separate
the frequency into real and imaginary parts as ω = ωr + iωi. Then the dependence of
the oscillations on longitude φ and time t is essentially

cos(mφ − ωrt)e
ωit . (20)

Unless m = 0 this describes a wave running in the φ direction, growing or decaying
with time depending on whether ωi is positive or negative. In much of the following
we consider adiabatic oscillations where processes causing excitation or damping are
neglected. Then the frequency ω is real and we ignore the distinction between ω and
ωr. We note that observed oscillations are typically discussed in terms of the cyclic
frequency ν = ωr/2π , as done in the previous sections. However, for the theoretical
analysis it is more convenient to use the angular frequency ω.

After this separation of variables we are left with differential equations that depend
just on r . Combined with suitable boundary conditions, this is a relatively straightfor-
ward numerical problem, which determines the frequenciesω as eigenvalues. However,
the physical treatment of the near-surface layers still suffers from substantial uncer-
tainties, particularly when the mode energetics is taken into account (see Sect. 3.4.3).

To evaluate the diagnostic potential of solar-like oscillations in giant stars and inter-
pret the inferences that are made, an understanding of the properties of the oscillations
is required. Moreover, these properties are fascinating in their own right. A full utiliza-
tion of the observed data requires detailed comparison of the observed frequencies,
and other properties, with computations for stellar models. However, a great deal of
insight as well as powerful diagnostics can be obtained from asymptotic analyses of
the oscillations, to which we turn next.

4.1 Asymptotic theory

We first concentrate on the oscillation frequencies and overall properties of the
eigenfunctions, assuming the oscillations to be adiabatic. Solar-like oscillations are
generally of high radial order, such that the eigenfunctions mostly vary on a scale
much shorter than the scale of variation of the equilibrium structure. In this case the
analysis of the behaviour of the modes and their relation to stellar structure in terms
of their asymptotic properties is extremely informative; some effects of rapid varia-
tions in the model structure, and hence departures from the asymptotic behaviour, are
discussed in Sect. 4.2.4. Also, owing to the high radial order it is common to ignore
the perturbation to the gravitational potential, in the so-called Cowling approximation

(Cowling 1941). We return to the limitations of this approximation towards the end of
Sect. 4.1.

The Cowling approximation reduces the equations of adiabatic oscillations to
a second-order system, greatly simplifying the analysis. The equations are often
expressed in the form
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d2 X

dr2 = −K X, (21)

for suitable choices of the dependent variable X and the function K . The choice of X

and K may depend on the specific properties that are being investigated. A convenient
formulation was derived by Gough (Deubner and Gough 1984; Gough 1993) based on
an analysis by Lamb (1932). Here X = c2ρ1/2div δr , where c is the adiabatic sound
speed and ρ is density. The corresponding approximation to K is

K = 1

c2

[

S2
l

(

N 2

ω2 − 1

)

+ ω2 − ω2
c

]

, (22)

which is determined by three characteristic frequencies of the star:

– The Lamb frequency Sl , with

S2
l = l(l + 1)c2

r2 . (23)

The Lamb frequency is a local characteristic frequency of horizontally propagating
sound waves with a wavenumber kh =

√
l(l + 1)/r .

– The buoyancy frequency (or Brunt–Väisälä frequency) N ,

N 2 = g

(

1

Γ1

d ln p

dr
− d ln ρ

dr

)

, (24)

where g is the local gravitational acceleration, p is pressure and Γ1 =
(∂ ln p/∂ ln ρ)ad, the derivative being for an adiabatic process; note that N 2 is
negative in convectively unstable regions. The Brunt–Väisälä frequency is the
local frequency of internal gravity waves of short horizontal wavelength.

– The acoustic cut-off frequency ωc,

ω2
c = c2

4H2

(

1 − 2
dH

dr

)

, (25)

where H = −(d ln ρ/dr)−1 is the density scale height. The acoustic cut-off
frequency arises from the inability of modes to propagate when their vertical
wavelength is too long compared with the scale of the density variation in the
equilibrium structure. This leads to reflection of the waves. We note that since ω2

c
depends on the second derivative of density (see the definition of density scale
height and Eq. 25), it varies rapidly in the region of substantial superadiabaticity
just below the surface, as shown in the right-hand panel of Fig. 10. On the other
hand, in the nearly isothermal atmosphere H ≃ Hp is essentially constant, and
ω2

c ≃ c2/(4H2). Thus ωc/2π reduces to νac (cf. Eq. 3).

According to Eqs. (21) and (22) the behaviour of the oscillations is determined
by the dependence of the characteristic frequencies on position. This is illustrated in
Fig. 10 for a model approximating the present Sun. To characterize the location of
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Fig. 10 Characteristic frequencies for a model of the Sun, expressed in terms of cyclic frequencies, as
functions of fractional radius. The solid line shows the buoyancy frequency N/2π (cf. Eq. 24), the dashed

lines show the Lamb frequencies Sl/2π for l = 1 and 2 (cf. Eq. 23) with S1/2π having lower values than
S2/2π , and the dot-dashed line shows the acoustic cut-off frequency ωc/2π (cf. Eq. 25). The horizontal

dotted line indicates an estimate of the frequency of maximum oscillation power νmax (cf. Eq. 26), with
the blue part marking the p-mode cavity for l = 1. The right-hand panel shows an expanded view of the
near-surface region

typical frequencies of solar-like oscillations the horizontal line shows the estimated
frequency νmax of maximum oscillation power, obtained as

νmax = 0.6νac, (26)

where νac is the isothermal acoustic cut-off frequency (cf. Eq. 3); in the Sun νmax ≃
3150 µHz. At this frequency ω ≫ N except in the atmosphere, reducing Eq. (22)
to K ≃ c−2(ω2 − S2

l − ω2
c ). The corresponding modes are acoustic modes, or p

modes, where pressure is the restoring force. In the region where K > 0 the solution
X oscillates as a function of r (see Eq. 21), whereas X behaves locally exponentially
where K < 0. For acoustic oscillations the oscillatory region, also known as the p-

mode cavity, extends from the surface to a distance rt from the centre, approximately
given by ω ≃ Sl , or

ω√
l(l + 1)

= c(rt)

rt
. (27)

Physically this corresponds to total internal reflection of the oscillations, described as
a superposition of sound waves. The upper turning point Rt is where ω ≃ ωc(Rt),
which is satisfied just below the photosphere at high frequency and somewhat deeper
at lower frequency (see right panel of Fig. 10). Waves with frequencies exceeding
the acoustic cut-off frequency in the atmosphere are free to travel outwards in the
atmosphere, resulting in strong damping.
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A more quantitative analysis of Eq. (21) can be carried out using JWKB theory (see
Gough 2007). In general, this results in an eigenvalue condition on ω given by

∫ r2

r1

K 1/2dr = (k − 1/2)π, (28)

for integer k, where r1 and r2 are adjacent turning points at which K = 0, such that
K > 0 between r1 and r2. In the present case, for predominantly acoustic modes in
main-sequence stars, this leads to

ω

∫ Rt

rt

(

1 − ω2
c

ω2 −
S2

l

ω2

)1/2
dr

c
≃ (k − 1/2)π. (29)

For low-degree modes, rt is close to the centre in main-sequence stars. Equation (29)
can be reduced to

νnl ≃ 
ν

(

n + l

2
+ ǫ

)

− dnl , (30)

using an expansion around r = 0 as well as near the surface (Gough 1986a, 1993).
For main-sequence stars k can in general be related directly to the radial order n of
the mode which was, therefore, used instead of k in Eq. (30). For evolved stars the
definition of mode order is more complex; we return to this in Sect. 4.2.1. Equation (30)
is the basis for the different frequency separations


ν = νnl − νn−1 l ≃
(

2
∫ R

0

dr

c

)−1

, (31)

δνl l+2(n) = νnl − νn−1 l+2 ≃ −(4l + 6)

ν

4π2νnl

∫ R

0

dc

dr

dr

r
, (32)

and the phase term ǫ. As discussed in Sects. 3.3.3–3.3.6 these quantities provide
important diagnostics of stars based on their acoustic oscillations.7 From homology
scaling c2 ∝ M/R. It follows from Eq. (31) that 
ν, and hence from the leading-order
first term in Eq. (30) νnl , scale as

νnl ∝ 
ν ∝
√

M

R3 ∝
√

ρ̄. (33)

From Eq. (23) it follows that the same scaling applies to Sl .
To investigate the changes in oscillation properties as a star evolves from the main

sequence through the subgiant phase to the red-giant branch we consider a 1.3 M⊙
evolution sequence from Jiang and Christensen-Dalsgaard (2014). The evolution in
the HR diagram is illustrated in Fig. 11. The behaviour of the Lamb frequency remains
similar as the star evolves, apart from the scaling with ρ̄1/2. However, the behaviour

7 We note that the asymptotic behaviour of δνl l+2 is only valid for main-sequence stars, and even here it
has limited validity; e.g., Christensen-Dalsgaard (1991), Aerts et al. (2010).
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Fig. 11 Evolution track of a 1.3 M⊙ star, from Jiang and Christensen-Dalsgaard (2014). The models MSG
and MRG which are analysed below are marked by diamonds, and the segment corresponding to Fig. 13 is
indicated in red

of the Brunt–Väisälä frequency is very different for red-giant models compared with
main-sequence models. This can be seen by approximating N 2 as

N 2 ≃ g2ρ

p
(∇ad − ∇ + ∇μ), (34)

where ∇ = d ln T/d ln p, ∇ad is its adiabatic value and ∇μ = d ln μ/d ln p, with
μ being the mean molecular weight. In a red giant with a compact core g reaches
very high values in the deep interior of the star and so, therefore, does N . This is
illustrated in Fig. 12 (note the logarithmic abscissa). Given the larger radius, both Sl

and νmax are substantially reduced. However, the most dramatic difference compared
with Fig. 10 is the very large value of N in the core. Additional features in N are caused
by the composition discontinuity at r ≃ 0.09R left behind after the first dredge-up
(see Sect. 2.1.2) and local maximum at r ≃ 0.005R arising from the steep abundance
gradient in the hydrogen-burning shell. Note also the very deep convective envelope,
where N is imaginary and hence not shown.

For ascending-branch red-giant models such as the one shown in Fig. 12, there
are two regions where K > 0, leading to an oscillatory behaviour of the eigenfunc-
tions, i.e., with ω > Sl , N or ω < Sl , N . Of these, the outer region (ω > Sl , N )
corresponds essentially to the p-mode cavity in main-sequence stars discussed above.
Modes trapped in this region, with the eigenfunction decreasing exponentially below it,
satisfy Eq. (29). We note, however, that the analysis leading to the asymptotic approxi-
mation for low-degree modes cannot immediately be transferred to more evolved stars,
given that the lower turning points lie outside the compact core (see also Sect. 4.2.3).
Even so, both model computations and observations show that the acoustic modes of
red giants satisfy a relation very similar to Eq. (30), i.e., the ‘universal pattern’. This
was discussed in Sect. 3.3.2, where departures from this pattern were also mentioned.
Indeed, Dziembowski (2012) found from stellar models that for the most luminous
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Fig. 12 Characteristic frequencies for a red-giant model with mass 1.3 M⊙ and radius 6.2 R⊙ (Model
MRG in Fig. 11); a–d mark the turning points for l = 1 (cf. the analysis in Sect. 4.2.3) at the frequency
indicated by the dotted line (cf. Eq. 26), with the red and blue parts marking, respectively, the g-mode and
p-mode cavities for l = 1. See caption to Fig. 10 for the meaning of the different linestyles

red-giant branch stars the dipolar mode frequencies are shifted substantially relative to
the location at the mid-point between the neighbouring radial-mode frequencies which
is predicted by the leading-order term in Eq. (29). This was confirmed observationally
by Stello et al. (2014).

The inner oscillatory region (ω < Sl , N ) is in the core of the model, where the
frequency is below the Brunt–Väisälä frequency. Modes trapped in this g-mode cavity

are standing internal gravity waves, g modes, where buoyancy is the restoring force.
Their frequencies may be estimated from Eq. (28), with r1 and r2 being approximately
the points where ω = N . Approximating K by assuming that ω ≪ Sl and neglecting
ωc we obtain

√

l(l + 1)

∫ r2

r1

(

N 2

ω2 − 1

)1/2

dr ≃ (k − 1/2)π. (35)

In most of the region ω ≪ N . With a correction for the behaviour near the turning
points we can, therefore, approximate this further. We obtain a relation for the period
Π = 2π/ω:

Πk l = Π0√
l(l + 1)

(k + ǫg + 1/2), (36)

where

Π0 = 2π2
(∫ r2

r1

N
dr

r

)−1

, (37)
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and ǫg is a phase term accounting for the behaviour near the turning points.8 Thus for
modes trapped in the core of the model we obtain oscillations with uniformly spaced
periods. These periods increase with increasing k, and with a spacing Πk+1 l −Πk l ≃

Πl = Π0/

√
l(l + 1) which depends on the degree of the modes. The diagnostic

power of the period spacing is summarized in Sect. 3.3.7. As discussed in Sect. 4.2.1
g modes are by convention assigned negative radial orders ng, with frequency tending
to zero as ng tends to −∞. Thus at least in simple cases of a pure g-mode spectrum
k in Eq. (37) can be identified with |ng|. We return to a more complete discussion of
mode order in Sect. 4.2.1 and beyond.

The preceding discussion was based on assuming the Cowling approximation,
reducing to two the order of the equations of adiabatic pulsations. Dziembowski (2012)
pointed out, however, that this approximation is questionable for dipolar modes (with
l = 1). Here the perturbation to the gravitational potential gives rise to a slowly vary-
ing component of the solution which may have a significant effect on the properties of
the modes. Takata (2005) and Takata (2006) provided the basis for a more complete
analysis of these modes by introducing a change of variables that reduces the full
oscillation equations for l = 1 to a second-order system, facilitating the asymptotic
analysis. A detailed asymptotic analysis in this case was carried out by Takata (2016a)
and supplemented by a more physical analysis, of broader applicability, by Takata
(2016b). Qualitatively the new analyses are broadly consistent with earlier work on
which we focus here. However, they contribute greatly to an understanding of the
properties of the oscillations and the detailed diagnostic potential of the observed
oscillation properties. Thus Takata’s results will undoubtedly play a major role in the
further development of the field.

In the analysis leading to Eqs. (29) and (35) we assumed that the modes were
completely trapped in the corresponding regions, i.e., acoustic modes with pressure
as the restoring force (p modes) in the outer part of the star and gravity (g) modes with
buoyancy as the restoring force in the core. However, it is clear from Fig. 12 that the
evanescent region separating the two trapping regions is quite thin, particularly for
l = 1 modes. This leads to substantial coupling between the two regions and hence
generally to a mixed character of the modes. These mixed modes are responsible for
the diagnostic richness of the solar-like oscillations in evolved stars. We discuss this
in the following subsection.

4.2 Mixed modes

The first to consider non-radial mixed modes in highly evolved stars was likely Dziem-
bowski (1971), who analysed the oscillations of Cepheid-type stars. Dziembowski
noted that the huge values of the buoyancy frequency in the core of such stars meant
that even at high frequencies the modes behaved as standing internal gravity waves in
the inner parts of the star. Dziembowski carried out an asymptotic analysis of these
properties. This was subsequently followed by a detailed investigation concerning the
effects of non-adiabatic properties of the modes by Dziembowski (1977). Scuflaire

8 We note that we follow the notation by Mosser et al. (2012c) for ǫg here and in the subsequent discussions.
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Fig. 13 Evolution of frequencies for a 1.3 M⊙ stellar model, from the beginning of the subgiant phase
through the early red-giant phase (marked by the red part of the line in Fig. 11; see Sect. 2.1.2). The
frequencies have been scaled by (R/R0)3/2, where R0 is the ZAMS radius, to correct for the evolution
with mean density of the acoustic-mode frequencies (cf. Eq. 7). The heavy long-dashed line shows an
estimate of νmax (cf. Eq. 26), similarly scaled. The dashed lines show radial modes while the solid lines

show dipolar modes, exhibiting avoided crossings first mentioned by Aizenman et al. (1977). The lower

panel shows a small part, marked by a red rectangle, of the upper panel, to illustrate the behaviour in more
detail. Adapted from Jiang and Christensen-Dalsgaard (2014)

(1974) analysed the oscillation properties of polytropes of high polytropic index and
hence centrally condensed models. Scuflaire similarly noticed the mixed character of
the modes and may have been the first to use explicitly the term ‘mixed modes’. Osaki
(1975) followed the evolution of mixed modes in a massive main-sequence model. He
noticed the effect of the increasing frequencies of the gravity waves in the core that
led to the characteristic behaviour of the model frequencies with age (see Fig. 13).

The overall evolution of the frequencies of mixed modes is illustrated in Fig. 13,
showing results for a 1.3 M⊙ evolution sequence extending from just after central
hydrogen exhaustion to the early part of the red-giant ascent (cf. Fig. 11). To eliminate
the dependence of the acoustic-mode frequencies on stellar radius the frequencies
have been scaled with (R/R0)

3/2 (cf. Eq. 7), where R0 is the zero-age main-sequence
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radius, such that the modes following the acoustic scaling relation, Eq. (33), appear
with constant frequency. This is approximately the case for the radial modes (dashed
lines in Fig. 13), and for l = 1 (solid lines in Fig. 13) for those modes that are
predominantly of acoustic nature. However, there is clearly a second class of modes
with scaled frequencies increasing with age. These modes are predominantly of g-
mode character. Their frequencies increase with age following the strong increase in
the buoyancy frequency caused by the contraction of the core (cf. Eq. 34). Where
the frequency of such a mode meets an acoustically dominated mode the frequencies
do not cross but approach quite closely. This is followed by an exchange of mode
character such that the mode previously of g-mode nature becomes predominantly
acoustic and vice versa. This behaviour was first noticed for evolving stars by Osaki
(1975). It was also investigated by Aizenman et al. (1977), who were probably the first
to use the term ‘avoided crossing’9 to describe it in astrophysics. Note, however, that
similar phenomena have wide applicability to cases of coupled oscillations, including
in atomic physics. An early illustrative analysis was provided by Neuman and Wigner
(1929).

Even though the actual frequencies do not cross it is sometimes useful to relate
them to fictitious uncoupled gravity and acoustic modes. These are the so-called ‘γ ’
and ‘π ’ modes, respectively, that do cross (see Aizenman et al. 1977). As discussed
below the behaviour of the actual modes can then be analysed by introducing coupling
between these fictitious modes. This also allows the definition of the numbers Nπ and
Nγ that represent the number of π and γ modes in the relevant frequency interval, e.g.,
corresponding to the range of radial modes (e.g., Benomar et al. 2013). In the earlier
phases of evolution Nγ ≪ Nπ , whereas on the red-giant branch (towards the right
edge of Fig. 13) Nπ ≪ Nγ . This variation in the overall structure of the oscillation
spectrum has a major effect on the observed Fourier spectra (see Fig. 7).

To characterize the relative contributions of the different regions of the star to a
mixed mode, a useful quantity is normalized inertia E . This is defined by

E =
∫

V
ρ|δr|2dV

M |δr|2phot

, (38)

where the integral is over the volume of the star, and the normalization uses the
average squared photospheric displacement. In addition to E we also consider mode

mass Mmode = M E , where M is the mass of the star. These quantities are defined
such that the average kinetic energy of the oscillation is

Ekin = 1

2
MmodeV 2

rms, (39)

where Vrms is the average photospheric velocity. For p-dominated modes E is largely
a function of frequency. This frequency dependence is determined by the depth of
the upper turning point Rt and hence the decrease in amplitude of the eigenfunction
between the oscillatory region below Rt and the surface. The value of E can be

9 Also, more poetically, known as ‘mode kissing’.
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much larger for g-dominated modes, with a considerable amplitude in the gravity-
wave propagating region in the deep interior, than for p-dominated modes. This is
conveniently characterized by the scaled inertia

Q = E

Ē0(ω)
, (40)

where Ē0(ω) is the radial (purely acoustic) mode inertia at the frequency of the mode
considered.

For the analysis of red-giant oscillations it is convenient to consider the fraction of
the mode inertia that comes from the inner parts of the star relative to the total mode
inertia. Following Goupil et al. (2013) we introduce

ζ = Ecore

E
, (41)

where Ecore is defined as in Eq. (38) but restricting the integral to the region where
ω < N , Sl . Evidently ζ is small for modes trapped in the envelope, whereas ζ is close
to one for modes trapped in the core. We also note that, as a rough approximation,

ζ ≃ 1 − Q−1, (42)

assuming that the envelope contribution to the inertia is similar to the inertia of a radial
mode with the same frequency.10

For the practical evaluation and later analysis we note that the inertia can be
expressed in terms of the displacement vector (cf. Eq. 19) as

E =
4π
∫ R

0 [ξr (r)2 + l(l + 1)ξh(r)2]ρr2dr

M[ξr (Rphot)2 + l(l + 1)ξh(Rphot)2] , (43)

where Rphot is the photospheric radius.

4.2.1 Mode order

The mixed nature of the modes precludes a simple identification of the radial order
of a mode based on the number of nodes. Using an earlier analysis by Eckart (1960),
Scuflaire (1974) and Osaki (1975) independently proposed a scheme plotting the
eigenfunction in a suitable phase diagram, e.g., in terms of (ξr , ξh); the radial order
is determined by counting the zero-crossings of ξr with a positive or negative sign
depending on whether the curve crosses the axis in the counter-clockwise or clockwise
direction in the phase diagram. These zero-crossings are associated with the regions
in the star where the mode has a p-mode or a g-mode character, respectively. If the

10 This neglects the contribution from the evanescent region to the inertia in the calculation of Q, which
may be significant. Thus estimating Q from ζ using Eq. (42) leads to an underestimate for g-dominated
modes.
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number of counter-clockwise crossings is n̂p and the number of clockwise crossings
is |n̂g|,11 with n̂g < 0, the mode order is

n = n̂p + n̂g. (44)

When the perturbation to the gravitational potential is neglected this defines a mode
order that is not changed for a given mode as the star evolves, even though its dominant
physical character may change. For modes of degree l ≥ 2 this property has also been
found to be satisfied for solutions of the full equations of adiabatic oscillation. On the
other hand, an application of the Eckart scheme to dipolar modes (l = 1) leads to a
poorly defined mode order for evolved models (Lee 1985; Guenther 1991) or centrally
condensed polytropes (Christensen-Dalsgaard and Mullan 1994). It was shown by
Takata (2005) and Takata (2006) that a relation satisfied by the eigenfunctions of
dipolar modes allows the definition of a scheme for the determination of mode order
that is well-defined and invariant under evolution. As in Eq. (44) this is characterized
by contributions n̂p and n̂g from the p-mode and g-mode dominated parts of the
star. We use this in the later discussion of dipolar modes. Together with the original
scheme proposed by Scuflaire (1974) and Osaki (1975) this defines mode orders that
are invariant under evolution. Thus the order is unchanged when following a given
mode as the star evolves in Fig. 13.

Formally, modes with positive n may be classified as p modes and modes with
negative n as g modes. This classification largely corresponds to the physical nature
of the modes for unevolved stars. However, as discussed below the non-radial mixed
modes develop a large number of nodes in the g-mode propagation region as the star
evolves on the red-giant branch and hence typically have a large negative value of n̂g.
Thus for such stars all relevant modes have negative n, and other properties of the
modes must be used to characterize their physical nature. In any case, it should be
kept in mind that the radial order defined here is a purely theoretical concept, although
very useful in characterizing the oscillation modes of a given stellar model.

4.2.2 Subgiant stars

As a star evolves, the first g-dominated mixed modes start to be observable in
subgiants. This provides a useful illustration of the properties of mixed modes. The
characteristic frequencies for a subgiant model are shown in Fig. 14. This model has a
helium core of radius 0.022R, containing 5% of the star’s mass. The behaviour of the
acoustic frequencies differs little from those of a main-sequence model. However, the
compact core and resulting high gravitational acceleration give rise to a high peak in
the buoyancy frequency in the core, augmented by the sharp composition gradient in
the hydrogen-burning shell. Therefore, at the indicated typical oscillation frequency
(horizontal dotted line in Fig. 14) there are two trapping regions. The increase in
the core buoyancy frequency with age leads to avoided crossings when following the
evolution of the modes with age. This is illustrated in the top left panel of Fig. 15,

11 Here the hat is used to distinguish these numerical contributions to the order from the asymptotic
properties, discussed below.
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Fig. 14 Characteristic frequencies for the 1.3 M⊙ subgiant model MSG in Fig. 11, of age 4.293 Gyr and
with Teff = 5887.8 K. The red arrow marks the peak in the buoyancy frequency arising from the hydrogen-
burning shell. See captions to Figs. 10 and 12 for the meaning of the linestyles

Fig. 15 Evolution of frequencies and mode inertias as a function of age (upper abscissa) and effective
temperature (lower abscissa), for a 1.3 M⊙ evolution sequence (cf. Fig. 11), including the model MSG
illustrated in Fig. 14. Dashed lines show modes with l = 0, and solid lines show modes with l = 1 (left)
and l = 2 (right). The lower panels show the evolution of the inertia for the modes identified by triangles

and squares in the upper panels, as well as a neighbouring radial mode (dashed line); note that the right-

hand panel uses a logarithmic ordinate scale. The vertical dotted line in the top panels marks the model
corresponding to the échelle diagram in Fig. 16
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which shows the behaviour of radial and dipolar modes. The resulting changes in the
character of the modes in terms of the mode inertia for two of the dipolar modes,
compared with a neighbouring radial mode, are shown in the lower left panel of
Fig. 15. As long as the dipolar modes are predominantly acoustic their inertia is very
similar to that of the radial mode. As a mode undergoes an avoided crossing and takes
on a substantial g-mode character its inertia increases. At the next avoided crossing
its inertia decreases again and the mode returns to an acoustic character, exchanging
character with the next mode. At the point of closest approach the inertias of the two
modes are very similar.

Figure 14 shows that for dipolar modes the evanescent region is relatively thin.
This leads to strong coupling between the two oscillatory regions, a relatively large
minimum separation during the avoided crossings, and a rather modest increase in
the mode inertia when the modes are most g-mode like. This should be contrasted
with the case of quadrupolar modes, shown in the right panels of Fig. 15. Here the
evanescent region is considerably thicker, the coupling consequently weaker and the
avoided crossings very sharp. Also, the inertia increases very rapidly as a mode takes
on predominantly g-mode character. This shows that in any given model it is unlikely
to find a mode that is not either predominantly p- or g-dominated.

The diagnostic potential of mixed modes in subgiant stars was discussed in
Sect. 3.4.1.

The presence of mixed modes causes departures from the asymptotic behaviour of
pure acoustic modes, as illustrated in the échelle diagram in the top panel of Fig. 16; for
comparison the bottom panel shows the corresponding diagram for the purely acoustic
modes in the Sun. In the case of subgiant models the density of g-dominated modes
is relatively low (i.e., Nγ ≪ Nπ ; see above), and each avoided crossing effectively
adds another mode to the frequency spectrum. The resulting changes in the oscillation
spectrum were analysed by Deheuvels and Michel (2010) based on a simple physical
model of coupled oscillators. They considered the coupling between a single γ mode
and several π modes.12 The effect on the distribution of peaks in the échelle diagram
is illustrated in Fig. 16 for the model marked by a vertical dotted line in Fig. 15. At
high frequency the dipolar modes have not yet been affected by g-mode mixing, and
the behaviour corresponds to the purely acoustic case. However, as shown in Fig. 15
there is a pair of mixed dipolar modes with nearly the same inertia at a frequency
around 930 µHz. These are visible as a pair of modes on either side of the l = 1 ridge
in Fig. 16. At lower frequency essentially all the dipolar modes show an effect of the
avoided crossings, as also argued by Deheuvels and Michel (2010).

For l = 2 the right-hand panels of Fig. 15 also indicate the presence of g-dominated
modes. However, for these the scaled inertias Qn l are so high that they would not be
visible with the proposed scaling of symbol size in Fig. 16. Therefore, they are indicated
by plusses. As discussed above the high scaled inertias of mixed l = 2 modes are a
consequence of the much weaker coupling between the buoyancy and acoustic cavities
for quadrupole modes. Only mixed quadrupole modes with frequencies close to the
pure acoustic l = 2 mode can reach observable amplitudes and could thus be detected.

12 This was extended to the coupling between Nπ π modes and Nγ γ modes by Benomar et al. (2013).
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Fig. 16 Top échelle diagram plotted with 
ν = 51.6 µHz, for the 1.3 M⊙ subgiant model MSG , illustrated
in Fig. 14 and marked with a vertical dotted line in Fig. 15, of age 4.293 Gyr and with Teff = 5887.8 K.
Modes with l = 0 are shown as circles, l = 1 as triangles, l = 2 as squares and l = 3 as diamonds. The size
of the symbols is proportional to Q−1/2 (cf. Eq. 40), providing a rough estimate of mode amplitude relative
to a radial mode of the same frequency (cf. Eq. 118). For four quadrupolar modes very small symbols have
been replaced by ‘+’. Dipolar modes are connected with dotted lines to highlight the effects of an avoided
crossing; the two dipolar modes at the centre of an avoided crossing in Fig. 15 are shown with red triangles.
Bottom for comparison we also show an échelle diagram for the observed low-degree observations of the
Sun (Chaplin et al. 2002, 
ν = 135.4 µHz)

However, such modes would be difficult to identify observationally, except if a clear
pair of closely spaced modes is detected.

4.2.3 Ascending-branch red giants

As a star evolves up the red-giant branch its internal structure and hence its oscillation
spectrum change dramatically. As an example of an ascending-branch star we consider
the most evolved stellar model in Fig. 13, which is indicated with the upper diamond
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Fig. 17 Mode inertia for the red-giant model MRG in Fig. 11 (1.3 M⊙ , 6.2 R⊙). The upper panel shows
the inertia (cf. Eq. 38) as a function of frequency for modes of degree l = 0 (circles, connected by a solid

line), l = 1 (triangles, connected by a dashed line) and l = 2 (squares, connected by a dot-dashed line).
The lower panel shows the normalized inertia (cf. Eq. 40) for l = 1 and 2

in Fig. 11. The properties of the modes of this model in terms of the mode inertia
and scaled mode inertia (cf. Eqs. 38 and 40) are shown in Fig. 17. The l = 1 and 2
modes form a very dense spectrum with inertias typically exceeding the inertia of
the neighbouring acoustic modes by several orders of magnitude. These high-inertia
modes are buoyancy-dominated modes that are predominantly trapped in the g-mode
cavity in the deep interior of the star. Additionally, there are acoustic resonances where
one or more modes have inertias close to the radial-mode inertia. This is particularly
visible in the bottom panel of Fig. 17, where low scaled inertia Qn l indicates the
modes that have largest amplitude in the p-mode cavity.

To further illustrate the properties of the modes, Fig. 18 shows the integrands of
the inertia for the most p-dominated and the most g-dominated dipolar modes with a
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Fig. 18 Integrands I for the mode inertia E (cf. Eq. 38), defined such that E =
∫ R

0 Id ln r , for modes
with l = 1 in the model MRG in Fig. 11 (1.3 M⊙ , 6.2 R⊙). The red dashed line shows the p-dominated
mode with frequency 84.3 µHz and the black solid line the g-dominated mode with frequency 79.1 µHz.
The modes are marked as red diamonds in Fig. 21

frequency near 80 µHz. There is clear similarity in shape between the two curves;13

the main difference is in the behaviour in the evanescent region near r/R = 0.1, where
the eigenfunction increases with depth for the g-dominated mode (black curve) and
decreases with depth for the p-dominated mode (red curve). As a result, the region
beneath 0.1R contributes 99.5% to the inertia of the g-dominated mode, while for the
most p-dominated mode 63% of the inertia comes from the g-mode cavity. Hence,
even for p-dominated modes the contribution from the g-mode cavity is significant.
Additionally, Fig. 18 illustrates the extremely rapid variation of the eigenfunction that
results from the high buoyancy frequency in the g-mode cavity. This rapid variation
becomes even more extreme in more evolved red giants where the eigenfunctions may
have thousands of nodes in the deep interior. This places severe requirements on the
numerical techniques used to compute these modes. Techniques that explicitly take
such rapid variations into account have indeed been developed (Gabriel and Noels
1976; Townsend and Teitler 2013).

Pressure-dominated modes The acoustic resonances of non-radial modes together
with the radial modes satisfy a frequency pattern similar to the asymptotic behaviour
of acoustic modes in main-sequence stars (cf. Eq. 30). This is evident in the échelle
diagram shown in Fig. 19 where in particular the l = 0 and 2 modes have a behaviour
very similar to what is seen in the solar case (cf. bottom panel of Fig. 16). In addition
to these p-dominated modes a few additional l = 2 modes are visible with the chosen
scaling. For l = 1 the pattern is more complicated, i.e., several mixed modes are
visible per acoustic-mode order. Nevertheless, a dominant set of modes still follows
the asymptotic expression.

13 In particular, it may be shown (see Eq. 72) that the integrand in the g-mode cavity is proportional to the
buoyancy frequency N ; cf. Fig. 12.
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Fig. 19 Échelle diagram for the model MRG in Fig. 11 (1.3 M⊙ , 6.2 R⊙). See the caption to Fig. 16 for
the meaning of symbols and symbol sizes

This regular pattern is a universal feature of observed (and modelled) red-giant oscil-
lations (Mosser et al. 2011b, and Sect. 3.3.2). However, the reason that the asymptotic
relation holds is not entirely clear. The analysis leading to Eq. (30) is fundamentally
related to the behaviour of the solution of the oscillation equations near the singularity
at r = 0 (see also Gough 1986a, 1993). However, in the case of red giants the prop-
erties of the acoustic resonances are determined by the requirement that the solution
decrease with increasing depth in the evanescent region (see also Fig. 18). Here condi-
tions are very different from the conditions in the central regions of a main-sequence
star. Despite these different conditions the universal pattern seems to hold. A better
physical understanding of this behaviour of the frequency pattern of the acoustically
dominated modes may lead to additional diagnostic potential of the observations.

Gravity-dominated modes The properties of gravity-dominated modes are to a large
extent determined by the structure of the core. Hence, these oscillations have a large
potential for the study of the internal structure of red giants. It was found by Beck et al.
(2011) that the observed spectrum of a red giant shows additional peaks which were
identified as coming from mixed modes with a stronger g-dominated component (see
Fig. 1). The behaviour of these mixed modes is dominated by the g-mode asymptotic
relation, Eq. (36). According to this relation the gravity modes are uniformly spaced in
period. This is illustrated by Fig. 20 showing the period spacing Πn l −Πn+1 l for l = 1,
as a function of frequency. At relatively low frequency there are modes with nearly
constant spacing, while the spacing shows a characteristic decrease around the more
p-dominated modes. The actual period spacing is in excellent agreement, particularly
at low frequency, with the asymptotic period spacing marked by the horizontal dashed
line. Thus observations of low-frequency g-dominated modes provide a direct measure
of the integral of the buoyancy frequency in the core of the star.

The fact that several dipolar mixed modes are visible in the vicinity of the acous-
tically dominated modes, as observed by Beck et al. (2011), might indeed have been
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Fig. 20 Period spacing for l = 1 modes, as a function of frequency, in the model MRG in Fig. 11
(1.3 M⊙ , 6.2 R⊙). The heavy dashed line shows the asymptotic period spacing Π0/

√
2 (cf. Eqs. 36 and

37). For clarity we do not show the individual modes

Fig. 21 Frequency as a function of scaled mode inertia Q (left), period spacing (centre) and period modulo
period spacing (
Π1 = 75.4 s), i.e., period échelle diagram (right) for l = 1 modes in the model MRG in
Fig. 11 (1.3 M⊙ , 6.2 R⊙). The red diamonds mark the modes illustrated in Fig. 18 or, in the central panel,
the period spacings between those marked modes and the adjacent mode with higher period

expected from the rough amplitude scaling in an échelle diagram such as shown in
Fig. 19. In fact, as discussed in Sect. 4.3, even fully g-dominated modes may have
sufficient visibility to be observed in very long time series, such as those that were
obtained by Kepler’s nominal 4-year mission. An example is shown in fig. 1b of Stello
et al. (2013a) for a red-clump star.

Following Bedding et al. (2011) we introduced period échelle diagrams in
Sect. 3.3.7, based on the uniform period spacing of g-dominated modes. Figure 21
shows such a diagram for a part of the modes shown in Fig. 20. For comparison we
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also show the scaled mode inertia and the period spacing. Gravity-dominated modes
with high inertia fall approximately on a vertical line in the period échelle diagram.
This is as expected from the asymptotic behaviour. Around this vertical line departures
are visible near the acoustic resonances. It may be noticed that the variations near the
resonances are qualitatively similar to the variations induced by g-dominated modes
in the frequency échelle diagram for a subgiant star (cf. Fig. 16).

Coupling of buoyancy and acoustic cavities Asymptotic analysis of the mixed modes
in red giants must take into account the coupling between the buoyancy and acoustic
cavities. A full analysis of this problem has been carried out by Shibahashi (1979)
(see also Unno et al. 1989).14 The analysis is based on simplified equations of the
form given in Eq. (21), and has been implemented for the red-giant case by Goupil
(private communication) and Mosser et al. (2012c). Shibahashi showed that continuous
matching of the solutions between the two cavities leads to the resonance condition

cot

(∫ rb

ra

K 1/2dr − φg

)

tan

(∫ rd

rc

K 1/2dr − φp

)

= q, (45)

implicitly determining the eigenfrequencies. In Eq. (45) ra, rb, rc and rd ≃ R are
the four turning points where K changes sign (cf. Fig. 12), and φg and φp are phases
depending on the properties of the turning points. Additionally,

q = 1

4
exp

(

−2
∫ rc

rb

|K |1/2dr

)

(46)

is a measure of the strength of the coupling between the two cavities.
Takata (2016b) carried out a very illuminating physical analysis of the properties

of mixed modes in terms of the reflection and transmission of waves at the evanescent
region, with a more rigorous analysis for dipolar modes provided by Takata (2016a).
He pointed out that Eq. (46) is only valid in the case of weak coupling and provided
expressions of more general validity. In particular, with strong coupling the value of
q may substantially exceed the upper limit of 1/4 indicated by Eq. (46). However,
the resonance condition, Eq. (45), on which the following discussion is largely based,
remains valid.

To analyse Eq. (45) it is convenient to introduce

θg =
∫ rb

ra

K 1/2dr − φg, θp =
∫ rd

rc

K 1/2dr − φp (47)

14 Shibahashi used a slightly different form of the asymptotic equation, replacing K in Eq. (22) by

K = 1

c2

[

S2
l

(

N 2

ω2 − 1

)

+ ω2 − N 2

]

= ω2

c2

(

S2
l

ω2 − 1

)(

N 2

ω2 − 1

)

.

This essentially only differs from Eq. (22) in the near-surface layers and hence affects, e.g., the phase ǫ in
Eq. (30). The following analysis follows Shibahashi (1979).
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(e.g., Unno et al. 1989; Mosser et al. 2012c), so that the equation becomes

tan θp cot θg = q. (48)

We approximate K by K ≃ l(l + 1)r−2 N 2/ω2 in the buoyancy cavity, [ra, rb] and
by K ≃ ω2/c2 in the acoustic cavity, [rc, rd]. Then we obtain

θp ≃ ω/ωp − φp, θg ≃ ωg/ω − φg, (49)

where

ωp =
(∫ rd

rc

dr

c

)−1

≃ 2
ν (50)

(cf. Eq. 31) and

ωg =
√

l(l + 1)

∫ rb

ra

N

r
dr ≃ 2π2


Πl

(51)

(cf. Eq. 37). In Eq. (50) we neglected the small contribution to 
ν from the core
region.

To interpret Eq. (48) we first consider the uncoupled case, i.e., q = 0. This should
in principle yield Eqs. (30) and (36) for the uncoupled π and γ modes, respectively. In
the uncoupled case Eq. (48) has one set of solutions with tan θp = 0, or, equivalently,

ν = ω

2π
≃ 
ν(np + ǫp) (52)

for integer np, and ǫp = φp/π . This indeed superficially recovers the leading-order
term in the acoustic-mode asymptotic relation (30) for the uncoupled π modes,
although with φp and ǫp being independent of l. In contrast, the observed and computed
p-dominated frequencies satisfy Eq. (30) which includes an l dependence. However,
the analysis leading to Eq. (52) neglected the dependence on l of K in the acoustic
cavity and the detailed behaviour near the lower turning point rc. To compensate for
this we simply replace ǫp by ǫp l (and similarly for φp) with ǫp l = ǫp 0 + l/2, such
that we recover Eq. (30). A full understanding of the universal pattern (Eq. 6) requires
a more complete analysis extending the one leading to Eq. (45), which has so far
not been carried out. However, it was pointed out by Mosser et al. (2012c, 2015),
Deheuvels et al. (2015) that expressing θp as

θp = π


ν

(

ν − ν
(p)

np l

)

, (53)

in terms of purely acoustic frequencies ν
(p)

np l , such as the universal acoustic-mode
pattern, Eq. (6), allows the use of a more complete description of the location of the
acoustic resonances than provided by Eq. (52).

The second set of solutions for an uncoupled (q = 0) case satisfy cot θg = 0 or,
equivalently,

Π = 2π

ω
= 
Πl(|ng| + ǫg + 1/2), (54)
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where ng is an integer and ǫg = φg/π . In accordance with the discussion in Sect. 4.2.1
we have chosen ng < 0, using ng rather than n̂g in this asymptotic expression. We
discuss the relation between ng and n̂g below. In this case we indeed recover Eq. (36),
defining the uncoupled γ modes. Corresponding to Eq. (53), we express θg as

θg ≡ ωg

ω
− φg ≃ π

(

1


Πlν
− ǫg

)

= π


Πl

⎛

⎝

1

ν
− 1

ν
(g)

ng l

⎞

⎠+ π

2
, (55)

where we introduced the uncoupled g-mode frequency as per Eq. (54):

ν
(g)

ng l =
[


Πl(|ng| + ǫg + 1/2)
]−1

. (56)

We note that, in the last equalities in Eqs. (53) and (55), we ignored the contributions
npπ and |ng|π which have no effect in Eq. (48).

To analyse the coupled case, i.e., Eq. (48), Mosser et al. (2012c) rewrote it by
moving the g-mode-related part to the right-hand side as tan θg, using Eqs. (53) and
(55) and taking the inverse tangent, to obtain

ν = ν
(p)

np l + 
ν

π
arctan

[

q tan π

(

1


Πlν
− ǫg

)]

. (57)

This provides an implicit equation for ν, which can be determined iteratively, given
the other parameters of the equation. Also, it provides the basis for determining these
parameters through fits to observed frequencies. As discussed in Sects. 3.3.7 and 5.4
this results in powerful diagnostics for stellar structure and evolution.

The detailed relation between the numerical order n and its components n̂p and
n̂g (cf. Sect. 4.2.1) and the asymptotic indices np and ng has apparently not been

fully explored. Passing through an acoustic resonance ν = ν
(p)

np l is associated with the
increase by one in the number of nodes in the p-mode region of the star, and hence
with an increase by one in n̂p. In fact it seems that we can identify n̂p with np for
the acoustically-dominated modes. Similarly, there is a close relation between n̂g and
ng characterizing the asymptotic properties of the g-dominated modes, at least for
stars on the ascending red-giant branch. The situation is probably more complicated
in more complex stars, possibly with several separate regions of g-mode propagation
and/or buoyancy glitches (see also Sects. 4.2.4 and 4.2.5).

As noted by Mosser et al. (2012c) a useful quantity is the estimate of the number of
g-dominated modes associated with a given acoustic resonance, which can be obtained
as

N = 
ν


Πlν
(p)

np l

2 . (58)

Adding the mode at the acoustic resonance the total number of modes in a 
ν interval
around the resonance is N + 1.
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An alternative way to analyse Eq. (48) was proposed by Christensen-Dalsgaard
(2012a)15 and developed further by Jiang and Christensen-Dalsgaard (2014). They
rewrote Eq. (48) as

sin θp cos θg − q cos θp sin θg = 0. (59)

This can be rewritten as

cos[ωg/ω + Φ(ω) − φg] = 0 , (60)

where Φ satisfies

tan Φ = q cot θp = q cot
[ π


ν

(

ν − ν
(p)

np l

)]

. (61)

By choosing the appropriate integer multiples of π we can define Φ as a continuous
function of ω. Thus the eigenfrequencies satisfy

ωg/ω + Φ(ω) − φg = (k + 1/2)π, (62)

for integer k, or equivalently

Ψ (ν) ≡ 1


Πlν
+ π−1Φ(2πν) − ǫg − 1/2 = k. (63)

The function Φ is illustrated in Fig. 22. To understand its properties it is convenient
to rewrite Eq. (61) as Φ = arctan[q cot π(ν −ν

(p)

np l)/
ν].16 The value of q is typically
relatively small. Therefore, for most frequencies Φ is close to a multiple of π . This
is illustrated by the dotted lines in Fig. 22. However, near the acoustic resonances,
where ν ≃ ν

(p)

np l , the argument to arctan goes through a singularity. This leads to the
rapid variation of Φ.

We note that Eq. (63) provides an alternative way to determine the frequencies
of mixed modes, given 
ν, ν

(p)

np l , q,
Πl and ǫg: Φ can be directly computed from
Eq. (61), defining Ψ as a function of frequency from Eq. (63); the frequencies of the
mixed modes are then simply obtained as those values where Ψ takes on consecu-
tive integer values. This is numerically straightforward, given that Ψ is a monotonic
function of ν, and relates the frequencies directly to the mode order in the integer k.

In Eq. (63) increasing k leads to decreasing frequency, corresponding to decreasing
n, where n is the numerical mode order introduced in Sect. 4.2.1; also, Φ is only
defined from Eq. (61) to within an integer multiple of π . It appears that this can be
chosen such that k = −n. This reflects the fact that Eq. (63) defines the complete
spectrum of mixed modes for the given degree.

15 We note that the analysis by Christensen-Dalsgaard (2012a) (CD12) suffers from two sign mistakes
which fortuitously cancel. One arose from the neglect of a singularity in the evanescent region in the
asymptotic expression (CD12, eq. 1). The second is a simple sign error in the analysis leading to CD12,
Eq. (22), such that that equation, and the remaining analysis, is correct.
16 Combining this equation with Eq. (63) leads to an equation analogous to Eq. (57), although perhaps of
doubtful usefulness in the analysis of the properties of the modes.
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Fig. 22 The effective phase Φ (cf. Eq. 61) as a function of frequency for l = 1, in the model MRG in Fig. 11
(1.3 M⊙ , 6.2 R⊙). The horizontal dotted lines indicate multiples of π . Here we used θp = π(ν/
ν−ǫp l ),
with 
ν = 9.32 µHz and ǫp l = 1.528

The behaviour of Φ near the resonances is directly related to the variation in the
period spacing (cf. Fig. 20). Writing Eq. (63) as

Πn l = 
Πl [k + ǫg + 1/2 − π−1Φ(2πνn l)], (64)

with νn l = 1/Πn l , and making a Taylor expansion of Φ(2πνk+1) − Φ(2πνk) we
obtain

Πn l − Πn+1 l ≃ 
Πl

(

1 − 2
Πl

Π2
n l

dΦ

dω

)−1

. (65)

Thus for the g-dominated modes, where Φ is nearly constant, we recover 
Πl . At
the same time the period spacing decreases near the acoustic resonances (note that
dΦ/dω < 0). Jiang and Christensen-Dalsgaard (2014) presented an approximation to
Eq. (65) and discussed the use of this to estimate q from the variation in the period
spacings.

The quality of the asymptotic fit derived above (Eq. 63) is illustrated in Fig. 23 for
model MRG in Fig. 11. For the g-dominated modes the relative differences between
the computed and asymptotic frequencies are less than 10−4. The relative difference
increases to 5×10−4 for frequencies undergoing acoustic resonances. However, these
differences have a far stronger effect on the period spacings.

The coupling constant q depends on the properties of the evanescent region and
hence in principle provides further diagnostics of the stellar interior. This is reflected by
Eq. (46) that was already obtained by Shibahashi (1979). The values of q determined
from Eq. (46) and from fits to numerical frequencies were compared by Jiang and
Christensen-Dalsgaard (2014), who found substantial differences between these val-
ues. This appears in part to be due to the neglect of the perturbation to the gravitational
potential in the asymptotic analysis, and could, for dipolar modes, be avoided by using
the formulation of Takata (2006) which avoids this approximation. Furthermore, the
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Fig. 23 Period échelle diagram for l = 1, in the model MRG in Fig. 11 (1.3 M⊙ , 6.2 R⊙). Here a frequency
range encompassing two pressure-dominated modes is shown. The numerically computed periods are shown
by a solid line with plus symbols. The solution from Eq. (63), based on Φ as shown in Fig. 22, is depicted
by a dashed line and diamonds

approximation to Eq. (65) by Jiang and Christensen-Dalsgaard (2014) neglects poten-
tial singularities, particularly in the evanescent region. These effects require further
analysis. Finally, as mentioned above, Takata (2016a, b) showed that Eq. (46) is only
valid for weak coupling, which may not be appropriate in the cases considered by
Jiang and Christensen-Dalsgaard (2014).

From an observational point of view Mosser et al. (2012c) determined coupling
strengths for a substantial number of red-giant and clump stars observed with Kepler;
they noted that clump stars showed larger values of q than did the red giants, in many
cases exceeding the upper limit of 0.25 predicted by Eq. (46). A very large number of
Kepler targets was analysed by Mosser et al. (2017b), providing a detailed overview
of the dependence of q on stellar parameters.

The phase ǫg in principle provides further information about stellar structure, par-
ticularly the regions at the turning points of the g-mode cavity. Buysschaert et al.
(2016) carried out fits to data for three red giants obtained by Kepler, including a
variable ǫg as one of the fitted parameters (see Sect. 3.3.7). They found that ǫg was
only weakly constrained by the observations; however, allowing ǫg to vary resulted
in a clearer definition of the values of the period spacing and its uncertainty obtained
in the fit. From a theoretical point of view, Takata (2016a) provided some insight into
the dependence of ǫg on the properties of the model. These issues also deserve further
studies.

Asymptotic properties of mode inertia It is instructive to consider the asymptotic
properties of the mode inertia, in particular the relative contribution ζ from the core
(cf. Eq. 41). The value of ζ is closely related to the effects of rotation on the oscillation
frequencies and the damping of the modes. The following is based on the detailed
analysis by Shibahashi (1979, S79), which was further developed by Goupil et al.
(2013) and Deheuvels et al. (2015).
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S79 expressed the asymptotic analysis in terms of two functions v(r) and w(r)

related to ξr and ξh by

v = ρ1/2cr

(
∣

∣

∣

∣

∣

1 −
S2

l

ω2

∣

∣

∣

∣

∣

)−1/2

ξr

w = ρ1/2ωr2
(
∣

∣

∣

∣

N 2

ω2 − 1

∣

∣

∣

∣

)−1/2

ξh. (66)

In the outer parts of the star the modes are predominantly acoustic, with |ξr | ≫ |ξh|.
In this case the integral for the inertia (Eq. 43) is dominated by the term in ξr . From
the asymptotic expression for v (Eq. (28) of S79, applied in the acoustic outer region)
we here obtain

ξr ≃ Cρ−1/2c−1/2ω−1/2r−1 cos

(∫ R

r

K 1/2dr − φ′
p

)

, (67)

where C is a normalization constant and φ′
p is a phase. As noted above, we use the def-

inition of K given in footnote 14. As in the derivation of Eq. (50), we neglected S2
l /ω2

in the amplitude function in Eq. (66) compared with 1, which is a good approximation
except close to the turning point rc. Using the same approximation, we obtain from
Eq. (67) the contribution of the outer parts of the star to the numerator in Eq. (43)

Ip =
∫ R

rc

ξ2
r ρr2dr ≃ C2ω−1

∫ τc

0
cos2(ωτ − φ′

p)dτ, (68)

where

τ =
∫ R

r

dr

c
(69)

is the acoustic depth, and τc is the acoustic depth of the turning point rc. For a mode
of high acoustic order the integral over cos2 can be replaced by 1/2 τc. Using Eq. (50)
we obtain

Ip ≃ 1

4
C2 1

ω
ν
. (70)

In the inner parts of the star the mode is buoyancy dominated, with |ξh| ≫ |ξr |. Here,
the inertia integral is dominated by the term in ξh. In this case the relevant asymptotic
solution, from the relevant expression for w (Eq. (29) of S79, in the g-mode cavity) is

ξh ≃ Aρ−1/2ω−3/2r−3/2L−1/2 N 1/2 sin

(∫ r

ra

K 1/2dr − φ′
g

)

, (71)

where L2 = l(l + 1), A is a normalization constant and φ′
g is a phase. As in the

derivation of Eq. (51) we neglected 1 compared with N 2/ω2. From Eq. (71) we then
obtain for the contribution of the g-mode region to the numerator in Eq. (43)
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Ig = L2
∫ rb

ra

ξ2
h ρr2dr ≃ A2ω−3L

∫ rb

0
N sin2

(

L

ω

∫ r

0
N

dr ′

r ′ − φ′
g

)

dr

r
, (72)

where we extended the integrals to r = 0. It should be noticed that the amplitude
of the integrand scales like N , when integrating with respect to ln r . This is indeed
confirmed by comparing the integrand shown in Fig. 18 with the buoyancy frequency
in Fig. 12. Introducing the buoyancy radius

υ =
∫ r

0
N

dr

r
(73)

we obtain

Ig ≃ A2ω−3L

∫ υb

0
sin2

(

L

ω
υ − φ′

g

)

dυ ≃ 1

2
A2ω−3Lυb, (74)

where υb is the buoyancy radius of the turning point rb, and replacing as before the
integral over sin2 by 1/2 υb. Using Eq. (51) yields

Ig ≃ A2 π2


Πlω3 . (75)

Finally, by combining Eqs. (70) and (75), we obtain

Ip

Ig
≃ C2

A2


Πlν
2


ν
. (76)

To complete the analysis we need the ratio C/A between the amplitudes of the
eigenfunctions in Eqs. (67) and (71). This ratio is determined by the coupling across
the evanescent region, [rb, rc]. From Eq. (30) of S79, and using the dispersion relation
(Eq. 48), it can be shown that

C

A
= q−1/2 cos θg

cos θp
. (77)

Thus
Ip

Ig
≃ q−1 cos2 θg

cos2 θp


Πlν
2


ν
, (78)

or, using Eqs. (53) and (55),

Ip

Ig
≃ q−1 
Πlν

2


ν

cos2
[

π

(

1


Πlν
− ǫg

)]

cos2

⎡

⎣

π(ν − ν
(p)

np l)


ν

⎤

⎦

. (79)
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It follows that the fractional contribution of the g-mode region to the inertia is obtained
as

ζ ≃ Ig

Ip + Ig
=
(

1 + Ip

Ig

)−1

≃

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1 + q−1 
Πlν
2


ν

cos2
[

π

(

1


Πlν
− ǫg

)]

cos2

⎡

⎣

π(ν − ν
(p)

np l)


ν

⎤

⎦

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎭

−1

≡ ζas (80)

(Deheuvels et al. 2015). They also demonstrated that ζas provides a remarkably good
fit to the numerically computed ζ . By using Eq. (48) this can be further simplified as
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. (81)

Mosser et al. (2015) pointed out that Eq. (81) shows a very interesting relation
between ζ and the actual period spacing between mixed modes. To see this, we return
to Eq. (65). Differentiating Eq. (61) we obtain

dΦ

dω
= −qω−1

p
1

(q2 cot2 θp + 1) sin2 θp

= −qω−1
p

1

q2 + (1 − q2) sin2 θp
. (82)

Substituting this into Eq. (65), using Eqs. (50) and (53), yields

Πn l − Πn+1 l ≃ ζas
Πl , (83)

with ζas given by Eq. (81). This is the result obtained by Mosser et al. (2015). Equa-
tion (83) is satisfied to high accuracy by computed values of ζ and period spacing
for red-giant models. As an example, Fig. 24 shows part of the period spacing from
Fig. 20, but including also ζ
Π1, with ζ computed from the numerical eigenfunctions.

We note that the derivation of ζas, and hence the relation in Eq. (83), assumes the
validity of the comparatively simple asymptotics employed by Shibahashi (1979),
which requires a slow variation of the equilibrium quantities. This approximation is
not valid in the case of sharp features in the buoyancy frequency, such as is the case for
Model 1a of Cunha et al. (2015) (see also Fig. 30). In these cases the more complex
analysis of Cunha et al. would be required.
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Fig. 24 Enlargement of the period spacing for l = 1 modes, as a function of frequency, shown in Fig. 20, in
the model MRG in Fig. 11 (1.3 M⊙ , 6.2 R⊙). The heavy dashed line shows the asymptotic period spacing

Π1 = Π0/

√
2, and the red dotted line and symbols show ζ
Π1 (cf. Eq. 83), where ζ was obtained from

the numerically computed eigenfunctions

From Eq. (83) Mosser et al. (2015) and Vrard et al. (2016) noted that the properties
of ζas (or ζ )17 are largely controlled by the properties of the acoustic resonances,
with little dependence on the period spacing. As a result they were able to develop
a technique for determining ζ from the observations in the vicinity of the acoustic
resonances. Given ζ , they introduced a stretching function P(ν)18 by

dP(ν) = − 1

ζ

dν

ν2 , (84)

and the stretched periods Π̃nl = P(νnl). Replacing ζ by ζas and relating ζ−1
as to dΦ/dω

using Eqs. (81) and (82) yield

dP(ν) =
(

− 1

ν2 + 
Πl

π

dΦ

dν

)

dν, (85)

or, with suitable choice of integration constant,

P = 1

ν
+ 
Πl

π
Φ = 
Πl

[

Ψ (ν) + ǫg + 1/2
]

, (86)

using the definition of Ψ in Eq. (63). From Eq. (63) it follows that the stretched periods
of the modes satisfy

Π̃n l = 
Πl(k + ǫg + 1/2). (87)

17 In the following we only distinguish between ζ and ζas when directly relevant.
18 Mosser et al. (2015) used the opposite sign and furthermore denoted the stretched variable ‘τ ’; we
change the notation to avoid confusion with the acoustic depth, and change the sign to obtain a quantity
more closely related to the period.
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Fig. 25 Left period échelle diagram with 
Π1 = 75.4 s for l = 1 modes, in the model MRG in Fig. 11
(1.3 M⊙ , 6.2 R⊙), as also shown in the right panel of Fig. 21. Right period échelle diagram using stretched
periods Π̃ , with 
Π1 = 75.6 s. The red diamonds mark the modes illustrated in Fig. 18

Thus we formally recover the relation (54) for the uncoupled g modes. However, this
relation is now valid for all modes. As shown by Mosser et al. (2015) this greatly
simplifies the period échelle diagram when expressed in terms of the stretched period.
This is illustrated in Fig. 25; as suggested by Eq. (87) all modes fall essentially on a
straight line.

Vrard et al. (2016) developed the stretching technique into an automated method
for analysing the red-giant mixed-mode spectra of large samples of stars; this is par-
ticularly powerful in dealing with the complications of rotational splitting. We return
to this in Sect. 4.4.

4.2.4 Effects of glitches

Much of the preceding discussion of the properties of red-giant oscillations was based
on the asymptotic properties of the modes. This conveniently allows characterizing
the oscillation spectrum by a relatively small number of parameters, such as 
ν,

Π1, etc. However, the asymptotic approximation also indicates a limitation of the
diagnostic potential of the observations, as far as the detailed internal properties of the
stars are concerned. It should be kept in mind that the asymptotic analysis is based
on the assumption that the underlying stellar structure varies on a scale that is long
compared with the local wavelength of the oscillations. Structure features on a smaller
scale introduce perturbations to the frequencies which may provide diagnostics about
these structures. This was pointed out in the case of p modes in the Sun by Gough
(1990), who noted that at the base of the convection zone in normal solar models the
second derivative of the sound speed is discontinuous. In addition, the relatively rapid
variation of Γ1, and hence the sound speed, in the second helium ionization zone may
also cause departures from the asymptotic behaviour. Vorontsov et al. (1991) used the
signature of helium ionization in observed solar frequencies to infer the solar envelope
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Fig. 26 Top panel gradient of sound speed with respect to acoustic depth τ (cf. Eq. 69) in the red-giant
model MRG in Fig. 11 (1.3 M⊙ , 6.2 R⊙). Lower panel scaled displacement eigenfunction, on arbitrary
scale, for a radial mode with frequency ν = 98.1 µHz in the same model. The lower abscissa shows acoustic
depth and the upper abscissa the corresponding relative distance to the centre

helium abundance. Such features in the sound speed were denoted acoustic glitches by
Gough (2002). Similarly, sharp features in the buoyancy frequency (buoyancy glitches

Cunha et al. 2015) may affect g-dominated modes.
The base of the convective envelope in red giants is typically too deep to induce

a significant effect on the p-dominated modes (Miglio et al. 2010). An example of
the acoustic glitch associated with the helium ionization zone in a red-giant star is
illustrated in Fig. 26, showing the derivative of sound speed in terms of acoustic depth
τ (cf. Eq. 69). Here the dominant feature is the dip in dc/dτ near τ = 1.5×104 s which
is associated with the second helium ionization zone. For comparison the lower panel
shows the scaled displacement eigenfunction of a radial mode of frequency 98.1 µHz,
with a variation at the helium feature which is substantially slower than the structural
variation. Thus the helium dip does act as an acoustic glitch.

Gough (1990) showed that the effect of an acoustic glitch is to introduce a variation
δν(gl) of the form

δν(gl) ∝ sin(4πντgl + 2φgl) (88)

(see also Eq. 18), where τgl is the acoustic depth of the glitch and φgl is a phase. Thus at
fixed τgl we expect an oscillatory behaviour of δν(gl) as a function of cyclic frequency,
with a period of around (2τgl)

−1. Gough (1990) furthermore proposed isolating the
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Fig. 27 Second frequency differences (cf. Eq. 89) in the model illustrated in Fig. 26 for l = 0 (circles)
and the most acoustically dominated modes with l = 1 (triangles) and l = 2 (squares). For clarity modes
of degree 0 and 2 are connected by a dotted line

effect of the glitch from other possible slower variations of the frequencies with radial
order by considering second differences at fixed l,


2νn l = νn−1 l − 2νn l + νn+1 l . (89)

This is illustrated in Fig. 27 for the same model as shown in Fig. 26. The effect of the
helium glitch is only relevant for the acoustic properties of the modes, and hence we
have selected just those modes with l = 1 and 2 with the lowest inertia in each radial-
mode frequency interval; modes with degree 0 and 2 are connected by a dotted line. The
figure shows the expected oscillatory behaviour, although modes with l = 1 that are
more strongly affected by the mixed nature show some scatter around the general trend
and hence have not been connected. The period of the oscillation is roughly consistent
with the acoustic depth of the glitch. The amplitude of the oscillation depends on the
strength of the glitch, which is determined by the magnitude of the variation in Γ1
and hence provides a diagnostic of the helium abundance in the convective envelope
of the star. With increasing frequency the local wavelength of the eigenfunction gets
shorter, making the glitch appear less sharp and hence reducing the amplitude of the
variation in the second difference (see also Sect. 3.4.5).

Houdek and Gough (2007) carried out a detailed analysis of the effects of the
acoustic glitches in the first and second helium ionization zones and the base of the
convective envelope in the Sun. This led to an expression already summarized in
Eq. (18). They noted the importance of a proper definition of the acoustic surface, i.e.,
the zero point of the acoustic depth, in the interpretation of the analysis of acoustic
glitches. The potential uncertainty involved in the definition of the acoustic surface,
and the effects of the near-surface errors in stellar modelling (cf. Sect. 3.4.3), can in
principle be avoided by converting the acoustic depth to an acoustic distance from the
centre (e.g., Ballot et al. 2004); this uses the fact that the asymptotic large frequency
separation 
ν is related to the total acoustic radius of the star (cf. Eq. 31). In practice the
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Fig. 28 Buoyancy frequency in 1 M⊙ model with a radius of 9.7 R⊙ and an effective temperature of 4439 K
(adapted from Cunha et al. 2015)

acoustic depth of a feature and the large frequency separation may respond differently
to the near-surface uncertainties, in particular since 
ν is typically determined from
a suitable fit or average over the observed modes.

Buoyancy glitches, i.e., sharp features in the buoyancy frequency, are of great
potential interest owing to their sensitivity to the composition structure. Analysis of
buoyancy glitches caused by the composition discontinuities established through grav-
itational settling has played a major role in the study of white-dwarf oscillations as
important diagnostics of the internal structure of the stars (e.g., Winget et al. 1994).
Additionally, in a detailed analysis Miglio et al. (2008) demonstrated the diagnos-
tic potential of the buoyancy glitch at the edge of convective cores in more massive
main-sequence pulsators, leading to oscillations with mode order in the period spac-
ings of high-order g modes. Evidence for this behaviour was found by Degroote
et al. (2010) in a slowly pulsating B star observed by CoRoT, indicating effects of
processes smoothing the composition gradient at the edge of the core. Thus it is of
great interest to consider the potential for studies of buoyancy glitches in evolved
stars.

Figure 12 shows the presence of potential glitches in the buoyancy frequency in
red-giant models. These were analysed in considerable detail by Cunha et al. (2015),
including an asymptotic analysis of the effect of a discontinuity in composition and a
resulting singularity in the buoyancy frequency (cf. Eq. 34). Here we discuss aspects
of these issues using as an example a model corresponding to Model 1a of Cunha
et al. (2015), but with a density discontinuity at the base of the dredge-up region. The
buoyancy frequency for this model is shown in Fig. 28. The model is in a somewhat
later evolutionary stage, just before the red-giant ‘bump’, than the model shown in
Fig. 12. Here the convective envelope has retracted in mass since the maximal extent
of the first dredge-up (see Sect. 2.1.2), leaving behind a composition and density
discontinuity within the g-mode propagation region, here shown as a sharp spike in
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Fig. 29 Top panel Buoyancy frequency in the core of the model illustrated in Fig. 28 (Cunha et al. 2015).
Bottom panel scaled horizontal displacement (on arbitrary scale) for a mode in this model with l = 1,
ν = 43.41 µHz

N at r/R ≃ 0.02. This is obviously a glitch.19 The second relatively sharp feature
is associated with the hydrogen-burning shell. As illustrated in Fig. 29 this is not a
glitch, however, since the eigenfunction varies extremely rapidly in this region. This
is an immediate consequence of the asymptotic behaviour in Eq. (71), according to
which the local radial wave number scales as N/r and hence becomes very large at
the peak in the buoyancy frequency.

The analysis by Cunha et al. (2015) shows that, for a pure g mode, the presence of a
buoyancy glitch gives rise to an oscillatory behaviour such as was found by, e.g., Miglio
et al. (2008), with a period depending on the location of the glitch within the g-mode
cavity. Taking into account also the mixed nature of the modes, with the coupling to
the p-mode behaviour, leads to a complex variation in the frequencies and the period
spacings, as illustrated in Fig. 30.20 The presence of a glitch clearly invalidates the
derivation of the asymptotic relation in Eq. (83) between ζ and the period spacing, as
also illustrated in Fig. 30. This shows a very interesting diagnostic potential for the
characterization of the chemical profile left by the dredge-up in red giants just below
the bump; however, since the effects are subtle a more detailed analysis is required to
ascertain whether the effect can reliably be isolated in the existing data. Cunha et al.
(2015) proposed a diagnostic of the irregularity of the period spacings, based on a

19 As discussed by Cunha et al. (2015) this feature remains sharp compared with the local wavelength even
if some numerical (or physical) diffusion is allowed, smoothing the composition gradient. This deserves
further study.
20 We note that this is rather more complex than the simple model of the effects of a buoyancy glitch
considered by Mosser et al. (2015).
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Fig. 30 Period spacings for modes with l = 1, in a 1 M⊙ model at the bump, with buoyancy glitch (adapted
from Cunha et al. 2015). The red dotted line shows ζ
Π1,as. The lower panel provides a blow-up of the
region near the asymptotic period spacing

Fourier transform of period spacing as a function of period, which in the model results
provides a strong indication of glitch effects. This also demonstrated that the effects
in red-giant models are closely linked to the red-giant bump.

As discussed in the next section buoyancy glitches play a dominant role in the
oscillation spectrum of core helium-burning stars.

4.2.5 Stars on the red clump

A major early realization in the analysis of space-based asteroseismic observations
of evolved stars was that there is a sharp distinction between stars on the ascending
red-giant branch, with hydrogen fusion around the helium core, and stars in the red
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Fig. 31 Helium abundance as a function of fractional radius in a model in the core helium-burning phase,
with initial mass 1.5 M⊙, radius 12.2 R⊙ and effective temperature 4648 K

clump where in addition there is helium fusion near the centre (Bedding et al. 2011;
Mosser et al. 2011a) (see also Sect. 3.3.7). The g-mode period spacing is substantially
smaller in the red giants than in clump stars. This is a straightforward consequence of
the difference in the internal structure between these different stars (at fixed surface
radius, say), given the asymptotic expression for the period spacing, Eq. (37), and the
expression for the buoyancy frequency, Eq. (34). The core helium-burning stars have
a convective core (see Figs. 4, 5), which restricts the g-mode cavity and contributes
to reducing the integral over the buoyancy frequency in Eq. (37), hence increasing
the asymptotic period spacing (e.g., Christensen-Dalsgaard 2014). In addition, with
ignition of helium burning the core expands, reducing the local gravitational accel-
eration and hence the buoyancy frequency (cf. Eq. 34), further increasing the period
spacing.

To illustrate these effects we consider models discussed by Christensen-Dalsgaard
et al. (2014). The evolution sequence, extending from the pre-main sequence through
the central helium-burning phase, was computed with the GARSTEC code (Weiss
and Schlattl 2008). This includes full treatment of the helium flash and the subse-
quent sub-flashes (see Sect. 2.1.3). The resulting helium abundance profile Y in a
model with initial mass 1.5 M⊙ near the end of central helium burning is illustrated
in Fig. 31. The region of constant Y inside 0.0015 R is convective. As discussed in
Sect. 2.1.4 a discontinuity in Y , and hence in density, may be established at the edge
of the convective core. In the rest of the helium core the smaller steps in compo-
sition reflect the convective mixing associated with the initial helium flash and the
sub-flashes.

The buoyancy frequency of this model is illustrated in Fig. 32 and compared
with that of a red-giant model of the same initial mass and approximately the
same radius and slightly lower effective temperature. This immediately shows the
two effects mentioned above: the presence of a convective core and the lower
general level of the buoyancy frequency in the core helium-burning model. As a
result the asymptotic dipolar period spacing in the core helium-burning model is
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Fig. 32 The solid curve shows the buoyancy frequency in the core helium-burning model illustrated in
Fig. 31. For comparison, the dashed curve shows the buoyancy frequency in a red-giant model on the same
1.5 M⊙ initial mass evolution sequence, with a radius of 12.0 R⊙ and effective temperature 4532 K. The
solid and dashed green lines show the Lamb frequency S1 for the clump and red-giant models, respectively.
The dotted lines indicate the frequencies νmax of maximum oscillation power (cf. Eq. 26), with the red and
blue parts marking, respectively, the g-mode and p-mode cavities for l = 1; for clarity the g- and p-mode
cavities are also shown, respectively, by the red and blue bars above the plot, for the red-giant (RGB) and
clump (RC) models


Π1 = 244.2 s while in the red-giant model 
Π1 = 56.9 s. This is the effect
found by Bedding et al. (2011) and Mosser et al. (2011a) and extensively used since
then to characterize evolved stars (e.g., Stello et al. 2013b; Mosser et al. 2014, see
Fig. 47).

A second clear difference between the red-giant and clump models in Fig. 32 is the
extent of the evanescent region between the buoyancy and acoustic cavities, which is
much smaller in the clump than in the red-giant model, leading to a stronger coupling.
The effect of this is illustrated in frequency échelle diagrams in Fig. 33 where, as
in Fig. 16, the symbol size provides an indication of the expected amplitude of the
modes. It is evident that the stronger coupling in the clump model leads to a much
broader spread of modes, particularly for l = 1. This is probably the reason for the less
regular behaviour of the dipolar mode separations found by Montalbán et al. (2010)
who identified the most acoustic modes as those modes having the smallest inertia in
a given radial-mode interval (see also Sect. 3.3.6). To illustrate this, these modes are
shown in red in Fig. 33.

The diagnostics of clump stars has so far predominantly been based on the observed
and asymptotically calculated period spacings. However, the actual behaviour of the
model frequencies is rather more complicated, owing to the composition discontinu-
ities and resulting spikes in the buoyancy frequency, also visible in Fig. 32. These act
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Fig. 33 Frequency échelle diagrams for the red-giant (top) and clump (bottom) models illustrated in
Fig. 32. In the red-giant model 
ν = 3.845 µHz, and in the clump model 
ν = 3.870 µHz. For clarity the
frequencies have been shifted by ν0 = 0.4 µHz in both panels. Circles, triangles and squares show modes
of degree 0, 1 and 2, respectively. As in Fig. 16 the symbol size for the non-radial modes have been scaled
with Q−1/2, where Q is the inertia ratio (Eq. 40), providing a rough indication of the expected amplitude
of the modes. The dipolar modes with lowest inertia in each radial-mode frequency interval are shown in
red in the bottom panel

as glitches and lead to partial reflection of the g modes. The specific behaviour depends
strongly on fine details of the model calculation, such as whether diffusion (numerical
or physical) is included and whether the composition profile and buoyancy frequency
are properly resolved in the numerical computations. Figure 34 shows the computed
dipolar period spacings in the core helium-burning model in Fig. 32, compared with
the asymptotic period spacing and the period spacing expected from the asymptotics
in Eq. (83), but using the numerically computed ζ . The computed period spacing is
clearly related to the expected behaviour in this case, reflecting the location of the
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Fig. 34 Dipolar period spacings derived from the differences in the periods of the computed modes (solid

line) in the core helium-burning model illustrated in Fig. 31. The horizontal dashed line shows the asymptotic
period spacing 
Π1; the red dotted line shows the period spacing ζ
Π1 predicted from the comparatively
simple asymptotic analysis in Sect. 4.2.3 (cf. Eq. 83), although using ζ computed from the numerical
eigenfunctions

acoustic resonances shown by ζ , but with substantial variations caused by the glitches
in the buoyancy frequency.21

To illustrate further the sensitivity of the clump-model oscillations to details of the
model structure we consider two models with initial mass 1 M⊙ computed with the
LPCODE (Althaus et al. 2005). Their helium-abundance profiles Y are illustrated in
Fig. 35. The models only differ in the sharp decrease in Y caused by the off-centre
onset of the helium flash and the associated convective mixing. In one model this
is essentially discontinuous, whereas in the second model the composition has been
slightly smoothed by diffusion. The resulting buoyancy frequencies in the vicinity of
this glitch are shown in Fig. 36, which also shows the scaled horizontal displacement
for a dipolar mode in the ‘sharp’ model. For the model with the sharp helium profile
this variation in the buoyancy frequency is clearly a glitch. For the slightly smoothed
model the scales of the buoyancy frequency and the eigenfunction are comparable,
and hence one may expect a smaller effect of the local model structure.22

This is indeed confirmed by the dipolar period spacings shown in Fig. 37. For the
‘sharp’ model the period spacings vary wildly, with little indication of the effects of the
acoustic resonances, as reflected by the period spacing expected from asymptotics (cf.
Eq. 83) shown by the dotted red curve. In the slightly smoothed model (bottom panel)
the variations in the period spacing are less dramatic and there are some indications
of the decreases in the period spacing expected from the asymptotic behaviour, shown

21 We note that the behaviour illustrated here is insensitive to the details of the frequency calculation,
provided this is done with sufficient precision. Thus it is a property of the structure of the stellar model,
although not necessarily of a star!
22 It might also be noticed that ξh is discontinuous at the glitch: this is a consequence of the singularity in
the buoyancy frequency.
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Fig. 35 Helium abundance as a function of fractional radius in two models in the core helium-burning
phase, with initial mass 1.0 M⊙, radius 12 R⊙ and effective temperature 4699 K. The inset shows the region
near the sharp decrease in Y at r/R ≃ 0.0047 caused by convection associated with the helium flash at
the start of helium burning. One model (solid) has a composition discontinuity, whereas in the second
model (dashed) this has been slightly smoothed by diffusion. (Models courtesy of Marcelo Miguel Miller
Bertolami)

Fig. 36 Top panel Buoyancy frequency in the vicinity of the sharp decrease in the helium abundance in
the models illustrated in Fig. 35. For the nearly discontinuous helium profile the buoyancy frequency is
essentially a delta function (solid line). The buoyancy frequency for the slightly smoothed model is shown
by a dashed line. Bottom panel scaled horizontal displacement (on arbitrary scale) for a mode in the model
with the nearly discontinuous helium profile, with l = 1, ν = 19.9 µHz. (Models courtesy of Marcelo
Miguel Miller Bertolami)
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Fig. 37 Dipolar period spacings derived from the differences in the periods of the computed modes (solid

line) in the core helium-burning models illustrated in Fig. 35. The top panel shows results for the model
with a sharp helium profile from the onset of the helium flash, while the lower panel is for the model
with a slightly smoothed profile. The horizontal dashed lines show the asymptotic period spacing 
Π1,
while the red dotted lines show ζ
Π1 (see caption to Fig. 34). (Models courtesy of Marcelo Miguel Miller
Bertolami)

by the red dotted curve. However, even in this case a proper analysis of the variation
in the period spacing, and a determination of its asymptotic value, would be difficult.

The behaviour of the internal structure during the phases of the helium flash and
sub-flashes was analysed by Bildsten et al. (2012). They found strong changes in the
asymptotic period spacing and the coupling between the buoyancy and acoustic prop-
agation regions, noting that this may provide opportunities for the detailed diagnostics
of this evolution phase. Even though it is brief, the large number of clump stars for
which oscillation data are available from Kepler may make it realistic that at least a
few stars are in this phase; interestingly, Mosser et al. (2014) do in fact identify several
such stars in their (
ν,
Π1) diagram (see Fig. 47). Cunha et al. (2015) pointed out
that the expansion of the helium core at the onset of helium burning compresses the
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hydrogen-burning shell, so that it acts as a buoyancy glitch during this phase (unlike
on the red-giant branch; cf. Fig. 29). This would add to the diagnostic potential of the
observed oscillations. We note, however, that the early helium-burning model consid-
ered by Cunha et al. (2015) did not have discontinuities in the composition and hence
did not suffer from the strong glitch effects illustrated in Fig. 37.

Constantino et al. (2015) carried out an extensive analysis of the oscillation prop-
erties of stars in the clump phase, varying also convective-core overshoot and other
mixing processes at the edge of the convective core. This clearly showed the very rich
pulsational behaviour that may be found in these stars. An interesting issue raised was
the relation to the g-mode oscillations of the core helium-burning subdwarf B stars
which essentially correspond to the naked core of the clump stars (e.g., Østensen et al.
2014). Constantino et al. also addressed the fact that computed asymptotic period spac-
ings for clump models tend to be lower than the observed spacings (see also Fig. 47).
A possible solution, although perhaps with limited physical justification, would be
the effect of what Constantino et al. call the ‘maximum-overshoot’ scheme. Similarly,
Bossini et al. (2015) considered various mixing schemes at the edge of the helium-
burning convective core and their effects on the period spacing. They also pointed
out that combining observed period spacings with the location of the so-called AGB

bump in stellar clusters, resulting from non-monotonic luminosity evolution at the
onset of helium shell burning (see Sect. 2.1.5), would provide further observational
constraints on these mixing processes. Further studies are certainly needed on the
apparent discrepancies between the theoretically predicted detailed properties and the
observations, and of the consequences for the interpretation of the observations in
terms of simple diagnostics such as the asymptotic period spacing.

4.3 Energetics of stellar oscillations

It is generally accepted that solar-like oscillations, including those in the Sun, are
intrinsically damped (but see Xiong and Deng 2007) and excited stochastically by the
near-surface convection whose near-sonic speed makes the gas motions efficient in
generating acoustic noise (Stein 1968). This is confirmed by analysis of the statisti-
cal properties of the variations in solar-oscillation amplitudes (Chaplin et al. 1997),23

which follow the pattern expected from stochastic excitation (Kumar et al. 1988; Chang
and Gough 1998). Also, there is a striking similarity of the variation of amplitudes with
frequency from the main sequence to red-giant branch, apart from the scaling of the
frequency of maximum power with surface gravity (e.g., De Ridder et al. 2009; Stello
et al. 2010). Furthermore, there is strong evidence that the variability seen in very
evolved stars represents an extension of the red-giant solar-like oscillations (Dziem-
bowski and Soszyński 2010; Mosser et al. 2013a). This possibly includes semiregular
variables, where analysis of up to century-long series of amateur observations has
revealed statistical properties matching those of solar-like oscillations (Christensen-
Dalsgaard et al. 2001). A concise review of energetics of red-giant oscillations was
provided by Dupret and Belkacem (2012).

23 A similar analysis of the extended Kepler observations would be very interesting.
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The general theory of stochastic forcing of a damped oscillator was described
by Batchelor (1953). It was applied to the analysis of observed solar modes by
Christensen-Dalsgaard et al. (1989). The resulting average power spectrum of a single
mode, with angular frequency ω0 and damping rate η = −ωi (cf. Eq. 20), has the form

P(ω) ≃ 1

4ω2
0

Pf(ω)

(ω − ω0)2 + η2 , (90)

where Pf is the average power spectrum of the forcing function, which varies relatively
slowly with frequency. Consequently the spectrum is a Lorentzian with a full width at
half maximum in angular frequency of 2η; in terms of cyclic frequency the full width
at half maximum is

Γ = η

π
. (91)

Measurement of the width of the observed peaks, therefore, provides a measure of the
damping rates of the modes (see also Sect. 3.4, in particular Eq. 14). In addition to
the damping rate it is convenient to characterize the damping by the mode damping

time tdamp, defined by the time required to reduce the mode amplitude by a factor e
and given by

tdamp = η−1. (92)

4.3.1 Properties of the damping rate

To study the energetics of the modes the full set of non-adiabatic equations must be
solved. These include also perturbations to the energy transport and the energy equation
and result in a determination of the complex frequency ω = ωr + iωi as an eigenvalue,
and hence the damping rate η = −ωi. However, to analyse η it is convenient to express
it in terms of the work integral (e.g., Baker and Kippenhahn 1962; Cox 1967, see also
Aerts et al. 2010). Considering just perturbations to thermodynamic quantities the
result is

η = ηgas = − 1

2ω2
r

Re

[∫

V

δρ∗

ρ
(Γ3 − 1)δ(ρε − div F)dV

]

∫

V
ρ|δr|2dV

, (93)

where ε is the rate of energy generation per unit mass, F is the flux of energy,
Γ3 − 1 = (∂ ln T/∂ ln ρ)ad and the star indicates the complex conjugate; also, δ

denotes the Lagrangian perturbation, i.e., the perturbation following the motion (see
also footnote 24). The integral in the numerator of Eq. (93) reflects the operation of
a heat engine, with δρ defining compression, and δ(ρε − div F) defining heating. If
the integral is positive, ωi is positive and the mode is excited. However, in the case
discussed here of solar-like oscillations the integrated effect is negative and the mode
is damped.

Equation (93) is generally valid, including for fully non-adiabatic solutions. A
major source of uncertainty in the calculation of the work integral is the treatment of
the perturbations to the convective contribution to the flux, particularly near the surface.
An additional complication in the near-surface region is the effect of turbulent pressure
pt which makes a significant contribution to the total pressure in the outermost parts
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of the convection zone and hence also affects the pulsations. As a consequence, the
full expression of the damping rate becomes

η = ηgas + ηt, (94)

where ηgas is given by Eq. (93) and

ηt = 1

2ωr

Im

(∫

V

δρ∗

ρ
δptdV

)

∫

V
ρ|δr|2dV

(95)

(e.g., Balmforth 1992a; Houdek and Dupret 2015), Im denoting the imaginary part.
We return to these convective effects below.

In much of the star where the oscillations are essentially adiabatic, the contribution
to the work integral can be estimated from the quasi-adiabatic approximation, calcu-
lating all terms from the adiabatic eigenfunctions. In red giants a potentially substantial
contribution to the damping comes from the buoyancy-dominated region in the core,
where the very high radial order of the g-mode behaviour causes a strong diffusive
damping. In the outer parts of the star, on the other hand, the contributions to the damp-
ing are dominated by the near-surface layers, where the properties of the oscillations
are independent of degree. To analyse this it is, therefore, convenient to separate the
work integral into contributions from the core and the envelope. We introduce

D = − 1

2ω2
r

Re

[

δρ∗

ρ
(Γ3 − 1)δ(ρε − div F)

]

+ 1

2ωr
Im

(

δρ∗

ρ
δpt

)

, (96)

such that the full expression for the work integral can be written

η =
∫

V
DdV

∫

V
ρ|δr|2dV

=
∫

env DdV
∫

V
ρ|δr|2dV

+
∫

core DdV
∫

V
ρ|δr|2dV

. (97)

Here, as in the determination of ζ (Eq. 41), we have separated the star into the envelope
and the core, the latter being defined as the region where ω < N , Sl . In the envelope
contribution we can replace D by the function D̄0 for radial modes, interpolated to the
frequency of the mode considered. Also, the denominator is closely related to the mode
inertia (Eq. 38); using this we replace the denominator in the first term by Q times the
corresponding integral for radial modes, similarly interpolated, where Q is the scaled
inertia (Eq. 40). Thus the first term becomes Q−1η̄0, where η̄0 is the interpolated
damping rate for radial modes. In the second term we replace the denominator by an
integral just over the core, using Eq. (41). Thus we finally obtain the full damping rate
as

η = Q−1η̄0 + ζ

∫

core DdV
∫

core ρ|δr|2dV
≡ Q−1η̄0 + ζηcore (98)

(see also Grosjean et al. 2014). As discussed below, η̄0 can be obtained from solving
the full non-adiabatic equations for radial oscillations. However, we first consider the
estimate of the second term from the asymptotic properties of the eigenfunction.
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In the core there is no contribution to D from the turbulent pressure. For simplicity
we neglect the term in the energy generation in Eq. (96), and we assume that the flux
is purely radiative. Also, in the core we can use the quasi-adiabatic approximation, so
that the eigenfunctions are real, and no complex conjugate is needed, and we replace
(Γ3 −1)δρ/ρ by δT/T . Thus we obtain, for the contribution from the core in Eq. (98),

ηcore = 1

2ω2
r

∫

core

δT

T
δ(div F)dV

∫

core ρ|δr|2dV
. (99)

The flux is obtained as

F = −4ac̃T 4

3κρ
∇ ln T ≡ −K∇ ln T, (100)

defining the conductivity K; here a is the radiation density constant, c̃ is the speed of
light and κ is the opacity. In δ(div F) the radial component of F dominates, since it
involves the second derivative of the rapidly varying eigenfunction. Thus, we neglect
the tangential component of the flux and obtain, using also the neglect of the nuclear
term,

δ(div F) = L

4πr2

d

dr

(

δL

L

)

, (101)

where L = 4πr2 Fr is the luminosity, Fr being the radial component of the flux. Here,
using Eq. (100),

δL

L
= 2

ξr

r
+ δFr

Fr

= 2
ξr

r
+ δK

K
+ 1

d ln T/dr
δ

(

d ln T

dr

)

, (102)

or, expanding the last term24

δL

L
= 2

ξr

r
+ δK

K
− dξr

dr
+ 1

d ln T/dr

d

dr

(

δT

T

)

. (103)

In the asymptotic analysis of this equation for the extreme g-mode behaviour in the
core we follow Godart et al. (2009) (see also Dziembowski 1977). From the oscillation
equations it may be shown that

∣

∣

∣

∣

p′

ξr d p/dr

∣

∣

∣

∣

= O(ω/Sl) ≪ 1, (104)

24 Here we use relations such as δT = T ′ + ξr dT/dr between the Lagrangian perturbation δT and the
Eulerian (local) perturbation T ′; note that, unlike the Lagrangian perturbation, the Eulerian perturbation
commutes with the radial derivative.
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and hence, according to footnote 24,

δp

p
≃ ξr

d ln p

dr
. (105)

It follows that δp/p is small compared with terms involving derivatives of ξr and,
given the quasi-adiabatic approximation, the same is true of δρ/ρ and δT/T . From
the equation of continuity,

δρ

ρ
= −div (δr) = − 1

r2

d

dr
(r2ξr ) + l(l + 1)

r2 ξh, (106)

it then follows that
dξr

dr
≃ l(l + 1)

ξh

r
, (107)

where in addition we neglected 2ξr/r compared with dξr/dr . In Eq. (103) 2ξr/r and
δK/K = O(δp/p) can be neglected compared with dξr/dr . Using also

δT

T
= ∇ad

δp

p
(108)

and Eqs. (105) and (107) we obtain

δL

L
≃ 1

d ln T/dr
∇ad

dξr

dr

d ln p

dr
− dξr

dr
≃
(∇ad

∇ − 1

)

l(l + 1)
ξh

r
. (109)

Using Eqs. (101), (105), (108) and the equation of hydrostatic support we can finally
write the numerator in Eq. (99) as

∫

core

δT

T
δ(div F)dV = −

∫

core
∇adξr

gρ

p

(∇ad

∇ − 1

)

l(l + 1)
1

r

dξh

dr
Ldr. (110)

To approximate the integrand in Eq. (110) we use the g-mode asymptotic eigen-
function in Eq. (71). From Eq. (107) we furthermore have, to leading order,

1

r

dξh

dr
≃ L−2 d2ξr

dr2 ≃ −L−2 K ξr , (111)

where again we introduced L2 = l(l + 1). Here we used that, to leading order, ξr sat-
isfies an equation of the form in Eq. (21); in the g-mode cavity K can be approximated
by

K ≃ L2

r2

(

N 2

ω2 − 1

)

. (112)

Differentiating Eq. (71), Eq. (111) also yields

ξr ≃ −Aρ−1/2ω−1/2
r r−3/2L1/2 N−1/2 cos

(∫ r

ra

K 1/2dr − φ′
g

)

. (113)
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Fig. 38 Mode damping time tdamp = 1/ηcore corresponding to the asymptotic core damping rate (Eq. 116),
evaluated at the frequency νmax of maximum oscillation power estimated as in Eq. (26). The results were
obtained for a 1 M⊙ evolution sequence and are shown against surface radius (lower abscissa) and luminosity
(upper abscissa) in solar units, for l = 1 (solid) and l = 2 (dashed)

Thus the integrand in Eq. (110) becomes

− A2ω−3
r L3∇ad

(∇ad

∇ − 1

)

g

p
Nr−5

L cos2
(∫ r

ra

K 1/2dr − φ′
g

)

. (114)

The integral in the denominator of Eq. (99) is evaluated essentially as in Eq. (72),
yielding

∫

core
ρ|δr|2dV ≃ 4π A2ω−3L

∫ rb

0
N sin2

(

L

ω

∫ r

0
N

dr ′

r ′ − φ′
g

)

dr

r
. (115)

Thus we finally obtain, replacing cos2 and sin2 by their average values 1/2,

ηcore ≃ L2

8πω2
r

∫

core
∇ad

(∇ad

∇ − 1

)

Ng

pr4 Ldr/r

∫

core Ndr/r
. (116)

As a star evolves up the red-giant branch, increasing the luminosity and the mass of
the core, the core gravitational acceleration and buoyancy frequency increase. Accord-
ing to Eq. (116) these effects all contribute to increasing the core damping rate. This
is illustrated in Fig. 38, showing the corresponding damping time in a 1 M⊙ evolu-
tion sequence. On the low red-giant branch the core damping is small and unlikely to
affect the observed properties of the modes, while around the bump, clearly reflected
in the figure, the core damping rate has increased to a level where the corresponding
damping time is comparable with or smaller than the duration of the nominal Kepler

mission, such that significant effects can be expected (see also Fig. 41 below).
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Returning to the near-surface contributions to the damping of the modes, a full non-
adiabatic treatment of the oscillations is required, taking into account the pulsation-
induced perturbations to the convective properties. These issues were discussed in
detail by Houdek and Dupret (2015). Time-dependent generalizations of mixing-length
theory were developed by Unno (1967) and Gough (1977b, based on earlier work
in 1965), while Xiong (1977) used a Reynolds-stress model to treat convection in
pulsating stars.

Unno’s theory was further developed by Gabriel (1996) and Grigahcène et al.
(2005). With a suitable adjustment of parameters it provides a relatively reasonable fit
to the detailed observations of solar oscillation linewidths (Dupret et al. 2006). This
was subsequently used in the analysis of red-giant mode energetics by Dupret et al.
(2009) and Grosjean et al. (2014).

Gough’s theory was generalized to included nonlocal effects by Balmforth (1992a),
based on an analysis by Gough (1977a). Specifically, local mixing-length theory
implicitly makes the assumption that the relevant convective scales are much smaller
than the scale of variation of stellar structure, whereas in fact the typical mixing-length
scale is of order a pressure scale height. The nonlocal analysis involves an average
over the extent of the motion of convective eddies and over the ensemble of eddies
at any given location; this also gives rise to limited convective overshoot and circum-
vents mathematical problems that occur in a fully local convection formulation when
consistently including turbulent pressure in the equation of hydrostatic support. The
theory has so far only been developed for radial oscillations; however, given that the
relevant effects are concentrated in the superficial layers of the stars, the results are
expected to be representative also for non-radial oscillations of low degree, at least
in the frequency range of solar-like oscillations. With suitable, and plausible, choice
of parameters characterizing the nonlocality this formulation results in oscillation
line widths in reasonable agreement with solar observations (e.g., Balmforth 1992a;
Houdek et al. 2001; Chaplin et al. 2005).

Given the fully non-adiabatic results for radial modes, including the effects of
turbulent pressure, we can estimate the damping times of the mixed modes by
combining the radial-mode damping rate25 with the asymptotic treatment of the
damping in the core (cf. Eq. 98). An example is shown in Fig. 39, for a fairly
low-luminosity 1 M⊙ red giant. Here we obtained η̄0 using the Gough (1977b) and
Balmforth (1992a) nonlocal treatment of the perturbations to the convective proper-
ties, as described by Houdek et al. (1999). We note that the acoustic-mode lifetimes
are a factor 2–3 larger than those found by Grosjean et al. (2014) and hence in
substantially better agreement with observations (Huber et al. 2010; Corsaro et al.
2015a, Handberg et al. submitted). Comparison with Fig. 38 indicates that in this case
the near-surface damping dominates near ν = νmax, even for the most g-dominated
modes.

25 We note that the properties of radial modes, including the damping rate, can be computed as a continuous
function of ωr by imposing a no-work boundary condition at the bottom of the computational domain (e.g.,
Christensen-Dalsgaard and Frandsen 1983a), thus avoiding the need for interpolation.
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Fig. 39 Mode damping times tdamp = 1/η in the 7 R⊙ red-giant model from the 1 M⊙ sequence illustrated
in Fig. 38. The dotted curve shows radial-mode damping times computed using a nonlocal time-dependent
convection formulation (Houdek et al. 1999), and the solid (l = 1) and dashed (l = 2) curves show the
results of combining the radial-mode damping rates with the asymptotic estimate (Eq. 116), as in Eq. (98).
The vertical dot-dashed line marks an estimate of the frequency νmax of maximum oscillation power (cf.
Eq. 26). (Radial-mode damping rate courtesy Günter Houdek.)

4.3.2 Mode excitation

Stochastically excited mode amplitudes were first estimated by Goldreich and Keeley
(1977). Their results were used by Christensen-Dalsgaard and Frandsen (1983b) in a
first estimate of the expected mode amplitudes of stochastically excited oscillations
across the HR diagram. This was later summarized by Kjeldsen and Bedding (1995)
in a widely used relation according to which the mode amplitudes roughly scale as
L/M . In particular, it was already then clear that evolved stars were expected to have
higher oscillation amplitudes, as has certainly been confirmed observationally.

The stochastic energy input from convection is driven by turbulent Reynolds stresses
and entropy fluctuations, their relative importance depending on the detailed assump-
tions made in the calculation (e.g., Balmforth 1992b; Goldreich et al. 1994; Samadi
and Goupil 2001; Samadi et al. 2003; Chaplin et al. 2005). However, regardless of
these details the dominant contributions come from the near-surface layers where con-
vection is most vigorous. Here the local properties of the oscillations are essentially
independent of the degree of the mode, at least for the low-degree modes that are
relevant in distant stars, and the rate of energy input is consequently a function of
frequency but not degree. It may be shown (e.g., Chaplin et al. 2005) that the resulting
mean square amplitude can be expressed as

〈A2〉 ≃ 1

Eη

F(ω)

E
, (117)

where F is the rate of energy input. The details of this expression, including the precise
form of F(ω), depend on the observed quantity represented by A (see also Sect. 1.2).
However, since the ratio between the physical amplitudes of different observable oscil-
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lation properties is generally a function of frequency this does not change the form
of the equation. From Eq. (117) the rate of energy input can be determined from
η〈A2〉, with η determined from the observed line width and the mode inertia obtained
from computed eigenfunctions. In this manner Stein and Nordlund (2001) showed a
remarkable agreement between the predictions from three-dimensional simulations of
convection and radial-velocity observations of solar oscillations. Also, Jacoutot et al.
(2008) used such a comparison to constrain the detailed properties of their simulations
of solar convection. A similar analysis based on the results from Kepler, including for
red giants, would clearly be very interesting. Samadi et al. (2007) compared the rate
of energy input obtained from hydrodynamical simulations with the results obtained
for mixing-length based models. The analysis was extended to red giants by Samadi
et al. (2012), comparing the results with CoRoT observations analysed by Baudin et al.
(2011). They noted the importance of the proper conversion of the predicted velocity
amplitudes to the photometric data, such as obtained by CoRoT.

As discussed above, the properties of η can be understood in terms of the work
integral, Eq. (93). Here (and in the expression for the contribution ηt from the turbulent
pressure, Eq. 95) the denominator essentially corresponds to the normalized mode
inertia E , apart from the normalization with the surface displacement (cf. Eq. 38).
Near the surface the integrands in the numerators of Eqs. (93) and (95) depend only on
frequency. Thus if the contribution from the core to the work integral can be neglected,
Eη is just a function of frequency. Consequently, 〈A2〉 ∝ E−1, and the amplitude of
a general non-radial mode, relative to a radial mode of the same frequency, scales as

〈A2〉 = Q−1〈 Ā2
0〉 (118)

(cf. Eq. 40), where 〈 Ā2
0〉 is the radial-mode amplitude, interpolated to the frequency of

the mode considered. However, in the mixed modes in red giants the contribution ηcore
from the damping in the core can be very significant and must be taken into account.
Using Eqs. (40) and (98) we obtain

〈A2〉 ≃ 1

QĒ0(ω)[Q−1η̄0 + ζηcore]
F(ω)

QĒ0(ω)

≃ 1

1 + Qζηcore/η̄0
Q−1 1

Ē0(ω)η̄0

F(ω)

Ē0(ω)

≃ 1

1 + (Q − 1)ηcore/η̄0
Q−1〈 Ā2

0〉; (119)

here, despite the caveat in footnote 10, we used Eq. (42) to replace Qζ by Q −1, with
sufficient accuracy for the present purpose.

In terms of the observed oscillation power spectrum 〈A2〉 corresponds to the area
under a Lorentzian peak (cf. Eq. 90). Of more relevance to the interpretation of the
observations is the peak height H , related to 〈A2〉 by

H = 2

η
〈A2〉 (120)
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(see Baudin et al. 2005; Chaplin et al. 2005, and Sect. 3.4). Relating as in Eq. (119)
the peak height to the peak height H̄0 of radial modes, interpolated to the relevant
frequency, we obtain

H ≃ 1

[1 + (Q − 1)ηcore/η̄0]2 H̄0. (121)

In particular, in the lower part of the red-giant branch the core damping is small
compared with the envelope contribution (cf. Fig. 38) and hence can be neglected;
consequently the peak heights of all mixed modes are predicted to be comparable to
the peak height of the adjacent radial modes, in clear contradiction to the observations.

In an important breakthrough in the interpretation of the observations of red-giant
oscillations it was noted by Dupret et al. (2009) that the origin of this discrepancy
was the assumption that all peaks have a Lorentzian profile, leading to Eq. (120). In
fact, this is only strictly true if the oscillations are observed for an infinite period. For
observations over a finite period Tobs the line profile is a combination of a Lorentzian
and a sinc2 function (cf. footnote 4). The broader peaks result in a reduction in H , at the
given 〈A2〉, and a behaviour that is qualitatively consistent with the observations. This
analysis was extended, including a more detailed comparison with the observations,
by Grosjean et al. (2014).

Fletcher et al. (2006) showed that the transition between unresolved and fully
resolved peaks can be approximated by replacing Eq. (120) by

H = 2

η + 2/Tobs
〈A2〉. (122)

As a result, Eq. (121) is replaced by

H ≃ 1 + 2t̄damp,0/Tobs

[1 + (Q − 1)ηcore/η̄0][1 + (Q − 1)ηcore/η̄0 + 2Qt̄damp,0/Tobs]
H̄0, (123)

where we introduced the interpolated radial-mode damping time t̄damp,0 = 1/η̄0 and
peak height H̄0. For observations extending over 100–1000 days, as was the case for
CoRoT and the nominal Kepler mission, typically t̄damp,0 ≪ Tobs and the correction
in the numerator in Eq. (123) can be neglected. However, the same is not true of
the corresponding term in the denominator for the more g-dominated mixed modes,
with Q much larger than 1 (cf. Fig. 17), whose heights are, therefore, reduced. A
further reduction can clearly come from the core damping, represented by ηcore. It
seems probably that this reduction of peak height is the reason that Frandsen et al.
(2002) only identified the radial modes in 30-day observations of ξ Hydrae, since
even the acoustically dominated dipolar modes have a somewhat higher inertia than
the neighbouring radial modes.

To illustrate these effects Fig. 40 shows a simplified modelling of power density
spectra, for the 1 M⊙, 7 R⊙ model illustrated in Fig. 39, based on the damping times
shown there. Here we have approximated H̄0 by a Gaussian centred on the estimated
νmax ≃ 68 µHz and with a maximum of 1. The total power is calculated as the
sum over the modes of degree l = 0 − 2, each mode represented by a Lorentzian
with the width corrected for the finite observing time, as implicit in Eq. (122), and
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Fig. 40 Simulated power spectra for the model illustrated in Fig. 39, for observing times of 100 days (top)
and 1000 days (bottom). The combined power density is shown with the black curve, while the red, blue

and green curves show the contributions from modes with degree l = 0, 1 and 2

a height given by Eq. (123). In the top panel, for Tobs = 100 days, most mixed
modes have a strongly reduced height, owing to the relatively short observing time,
although some mixed dipolar modes may in principle be visible. At high frequency the
peaks are very substantially broadened by the short mode lifetimes (cf. Fig. 39). With
Tobs = 1000 days, shown in the lower panel, most dipolar mixed modes are excited to
substantial heights, and hence one might expect to detect an almost complete dipolar
spectrum, at least at moderate and high frequency. However, at low frequency the
dipolar modes are strongly suppressed by the increase in the damping rate (note that,
according to Eq. (116), ηcore ∝ ν−2) and in particular the small damping rate compared
with 2/Tobs. For l = 2 the suppression of the peak height, except for the most acoustic
modes, is far higher owing to the larger values of Q, and very few if any mixed modes
are predicted to be visible.
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Fig. 41 Simulated power density, in m2 s−2
µHz−1, for models in a 1.5 M⊙ evolution sequence with radii

5.2 R⊙ (top), 7.3 R⊙ (middle) and 11.9 R⊙ (bottom). Image reproduced with permission from Grosjean
et al. (2014), copyright by ESO

The strong increase in the damping rates as the star moves up the red-giant branch
(cf. Fig. 38) has a dramatic effect on the predicted power density spectra; this is illus-
trated in Fig. 41 taken from Grosjean et al. (2014), for a 1.5 M⊙ evolution sequence
here assuming Tobs = 360 days.26 For the 5.2 R⊙ model all dipolar mixed modes are

26 Note that, as already mentioned, the computed radial-mode lifetime is substantially shorter than used in
Fig. 40, leading to broader peaks of the acoustically-dominated modes.
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visible. When R reaches 7.3 R⊙ the heights of the dipolar mixed modes are substan-
tially reduced, although many modes would still be expected to be visible. Finally,
at a radius of 11.9 R⊙, just below the bump, the mixed modes are no longer vis-
ible. Although further investigations along these lines, matching also the observed
linewidths, are needed, this clearly indicates a serious limitation on the diagnostic
possibilities for very evolved stars.

At even higher luminosity, the damping in the g-mode cavity becomes so strong that
gravity waves are damped before being reflected from the centre, essentially eliminat-
ing the g-dominated mixed modes. In this case the remaining p-dominated oscillation
spectrum can be computed for just the envelope model, applying boundary conditions
at the edge of the g-mode cavity which select those waves that propagate towards
the centre (Dziembowski 1977; Osaki 1977; Van Hoolst et al. 1998; Dziembowski
et al. 2001; Dziembowski 2012). It was noted by Dziembowski (2012) that towards
the tip of the red-giant branch the resulting loss of wave energy to the core becomes
essentially negligible.

As shown by Eqs. (119) and (123) the mode amplitudes and peak heights of the
mixed modes depend strongly on the mode inertia, in units of the radial-mode inertia.
It was pointed out by Benomar et al. (2014) that this provides an opportunity to
use the observed amplitudes or peak heights as diagnostics of the stellar interior,
supplementing the information obtained from the frequencies. In particular, given the
sensitivity of ζ , and equivalently Q, on the coupling strength q (cf. Eq. 81) this may
provide information about the evanescent region between the acoustic- and gravity-
mode cavities. These possibilities should be further explored, given the extended data
available from Kepler.

The original amplitude scaling relation with L/M proposed by Kjeldsen and Bed-
ding (1995), and the analysis carried out in this section, strictly speaking only apply to
the amplitudes observed in radial velocity, which are directly related to the mode
energy; furthermore, for comparison with observations, the predicted amplitudes
should be referred to the effective height in the atmosphere where the radial-velocity
observations are carried out, requiring modelling of the oscillation eigenfunctions in
the atmosphere. We also note that, as discussed briefly in the opening paragraph
of Sect. 3.4, the observed amplitudes depend on the mode visibility, determined
by the geometric cancellation across the stellar disk, which has not been taken
into account here. Predicting photometric amplitudes requires the ratio between the
intensity variations, in the appropriate wavelength band, and the velocity ampli-
tudes (e.g., Houdek 2006, 2009; Samadi et al. 2013; Grosjean et al. 2014) which,
as noted by Kjeldsen and Bedding (1995), depends on the effective temperature.
Analyses of observed amplitudes have typically started from the L/M scaling but
introduced different exponents and included the dependence on Teff (e.g., Huber
et al. 2011b; Corsaro et al. 2013). However, there is still a very substantial poten-
tial for more detailed comparisons between observed and modelled amplitudes and
linewidths.
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4.4 Rotation

A striking result of the early analysis of red-giant observations from Kepler was the
detection by Beck et al. (2012) of rotational splitting of the observed frequencies, lead-
ing to a first inference of the internal rotation of a red-giant star. Extensive results are
now available for both red-giant and clump stars (e.g., Mosser et al. 2012b; Deheuvels
et al. 2015; Vrard et al. 2016). Strikingly, the inferred core rotation of red giants is far
slower than would be expected from models of angular-momentum evolution (e.g.,
Eggenberger et al. 2012; Marques et al. 2013; Cantiello et al. 2014, see Sect. 5.5) .
Here we discuss the effects of rotation on the stellar oscillation frequencies.

For evolved stars it is generally assumed that rotation is so slow that second-order
effects of rotation, including the centrifugal acceleration, can be neglected. Then in
particular the hydrostatic structure of the star is not affected. The oscillation frequen-
cies are affected by advection of the pattern of waves propagating in the azimuthal
direction, such that the frequencies of prograde waves (travelling in the direction of
rotation) increase and frequencies of retrograde waves decrease. In addition, the oscil-
lations are affected locally by the Coriolis force in a frame rotating with the star. The
result is the first-order rotational splitting, with the frequencies given by

ωnlm = ωnl0 + mδωnlm (124)

(see also Sect. 3.4.4).
We cannot assume that stars rotate as a solid body. Hence the rotational splitting

measures an average over the internal rotation rate, determined by the properties of
the mode. For simplicity we only consider the case of the so-called shellular rotation
where the angular frequency Ω = Ω(r) only depends on the distance to the centre.
Then δωnlm does not depend on m, and we can express it as

δωnl =
∫ R

0
Knl(r)Ω(r)dr, (125)

where the rotational kernel Knl is given by

Knl(r) =
[

ξ2
r + l(l + 1)ξ2

h − 2ξrξh − ξ2
h

]

r2ρ
∫ R

0

[

ξ2
r + l(l + 1)ξ2

h

]

r2ρdr
. (126)

Here the first two terms provide a weighted average of Ω and correspond to the
advection, while the last two terms arise from the Coriolis force. It is common also to
consider

βnl =
∫ R

0
Knl(r)dr, (127)

such that for uniform rotation δωnl = βnlΩ . For acoustic modes with |ξr | ≫ |ξh| we
can neglect the last two terms in the numerator of Knl , so that βnl ≃ 1. For general
rotation we obtain in this case

δωnl ≃ 〈Ω〉, (128)
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i.e., an average angular velocity weighted by the local contribution to the inertia. For
high-order g modes, on the other hand, with |ξh| ≫ |ξr | we can neglect the terms in
ξr to obtain

βnl ≃ 1 − 1

l(l + 1)
; (129)

in particular, for dipolar modes, with l = 1, we obtain βn1 ≃ 1/2.
To analyse the rotational splitting for red giants, we follow Goupil et al. (2013)

and use the asymptotic description of the mode inertia discussed in Sect. 4.2.3. For
simplicity, we suppress the subscript ‘nl’ in the following. Neglecting the term in ξrξh
in Eq. (126) and using Eqs. (80) and (129), β may be approximated by

β ≃ [1 − (l(l + 1))−1]Ig + Ip

Ip + Ig
= [1−(l(l+1))−1]ζ +(1−ζ ) = βcore+βenv; (130)

here the contributions to β from the core and the envelope are

βcore =
∫

core
K(r)dr ≃ [1 − (l(l + 1))−1]ζ (131)

and

βenv =
∫

env
K(r)dr ≃ 1 − ζ. (132)

We furthermore introduce the average kernel-weighted core and envelope angular
velocities:

〈Ω〉core =
∫

core Ω(r)K(r)dr
∫

core K(r)dr
(133)

and

〈Ω〉env =
∫

env Ω(r)K(r)dr
∫

env K(r)dr
. (134)

These averages formally depend on the mode; however, the dependence on at least the
mode order is weak, given the asymptotic description of the modes and assuming that
Ω(r) varies smoothly with r on the scale of the eigenfunctions. With these definitions
we obtain

δω = βcore〈Ω〉core +βenv〈Ω〉env ≃ 〈Ω〉core{[1 − (l(l + 1))−1]ζ + (1 − ζ )R}, (135)

where R = 〈Ω〉env/〈Ω〉core. Writing the splitting δν = δω/2π in terms of cyclic
frequency and specializing to l = 1, we finally obtain

δν = δνmax[(1 − 2R)ζ + 2R] (136)

(Goupil et al. 2013), where δνmax = 〈Ω〉core/4π , assuming that the core is rotating
substantially faster that the envelope, so that the maximum splitting occurs for the
g-dominated modes with ζ ≃ 1. Thus we find that the splitting varies linearly with
ζ . This is illustrated for a stellar model in Fig. 42; from the coefficients of the linear
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Fig. 42 Computed rotational splittings as functions of ζ for dipole modes, with l = 1, in the red-giant
model MRG in Fig. 11 (1.3 M⊙ , 6.2 R⊙). An angular velocity was imposed with Ω = 4.98 × 10−6 s−1

in the core, corresponding to a rotation period of 15 days, Ω = 3.02 × 10−7 s−1 in the envelope and a
narrow transition at the hydrogen-burning shell, with r = 0.09R. All modes with frequency above 0.4νac
were included. We note the expected linear dependence (cf. Eq. 136). The dashed line shows a uniformly
weighted linear least-squares fit to the results

fit the core and envelope rotation can be determined with very good precision: the
relative errors in the inferred 〈Ω〉core and 〈Ω〉env are 0.6 and 6%, respectively.

In analyses of observed power spectra Mosser et al. (2012c) and Mosser et al.
(2012b) assumed that the envelope contribution to the splitting could be neglected,
corresponding to taking R = 0, and applied an empirically based approximation to
the splitting, which can be expressed as δν = ζMosserδνmax, where

ζMosser = 1 − λ

1 +

⎛

⎝

ν − ν
(p)

np l

γ
ν

⎞

⎠

2 , (137)

where λ and γ are empirically determined parameters.27 An expression of this form can
in fact be obtained from the full asymptotic expression for ζ , Eq. (81), by expanding
the inverse, assuming that ζ is close to 1, and expanding sin2 on the assumption that
ν is close to ν

(p)

np l . A similar functional form, based on a Lorentzian departure from
the asymptotic period spacing, was used by Stello (2012) in the analysis of computed
period spacings.

The relative contribution to the rotational splittings of the different parts of the star
can also be illustrated by the partial integrals of the kernels (see Beck et al. 2012,
supplementary material). These are shown in Fig. 43 for selected p- and g-dominated
modes with l = 1 and 2 in a 1.3 M⊙ red-giant model, normalized such that the
surface values are one. This shows that even for the p-dominated modes a substantial

27 Mosser et al. (2012b) denotes this Rnp (ν).
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Fig. 43 Normalized partial kernel integrals for the model MRG in Fig. 11 (1.3 M⊙ , 6.2 R⊙). The modes
illustrated are l = 1, ν = 79.09 µHz (g-dominated; blue, solid), l = 1, ν = 84.33 µHz (p-dominated, blue,

dashed), l = 2, ν = 82.19 µHz (g-dominated, red, dot-dashed), l = 2, ν = 87.42 µHz (p-dominated, red,

triple-dot-dashed). The right-hand panel shows details near the surface. The vertical dotted line marks the
base of the convective envelope

contribution to the splitting comes from the radiative core, particularly for l = 1. This
is related to the fact that ζ even for these modes is substantially bigger than 0. Given
that generally R ≪ 1 for red giants, this makes it difficult to determine the envelope
rotation rate; observations of rotational splittings for modes with l = 2 or, even better,
l = 3 would be very helpful.

The analysis of rotationally split modes in red giants is complicated by the possible
overlap between neighbouring multiplets in the mixed-mode spectrum, when δνmax ∼
ν2
Π . Even so, Mosser et al. (2012b) succeeded in determining the rotational splitting
in a large number of stars, including cases of overlap, by identifying the pattern of
rotationally split components using the approximation in Eq. (137). As pointed out
by Mosser et al. (2015) the analysis is greatly simplified by using the stretching with
the function P introduced by Eq. (84). We first note that, according to Eq. (136), the
frequencies of the rotationally split modes can be approximated by

νnlm ≃ νnl0 + mζ δνmax, (138)

where for simplicity we neglected the envelope contribution and hence assumed that
R ≃ 0. From this it follows, using also that P is defined as a function of frequency,
that the rotationally split modes for a given m are approximately uniformly spaced in
stretched period P(νnlm), with a period spacing given by


Πlm ≃ 
Πl

(

1 − 2m〈ζ 〉δνmax

ν

)

, (139)
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Fig. 44 Stretched period échelle diagrams for rotationally split dipolar modes in the model MRG in Fig. 11
(1.3 M⊙ , 6.2 R⊙). In the left-hand panel slow rotation, with an angular velocity 5 times smaller than in
Fig. 42, was assumed, while the right-hand panel used the same angular velocity as in Fig. 42. Plusses

show modes with m = 0 and diamonds the rotationally split modes with m = ±1. The red diamonds mark
the modes illustrated in Fig. 18

where 〈ζ 〉 is a suitable average of ζ . In a period échelle diagram based on the stretched
periods this corresponds of a sequence of modes on a line inclined relative to the
modes with m = 0. Two examples of this are shown in Fig. 44, for l = 1 and two
different rotation rates. We note that in the right-hand panel the rotational splitting in
terms of period is around 62 s, i.e., comparable with the period spacing of 75 s and
hence leading to a complex structure of the power spectrum. Even so, the structure of
the rotationally split modes can be unambiguously identified in the stretched period
échelle diagram.

Mosser et al. (2015) argued that 〈ζ 〉 can be represented by N (ν)/[N (ν)+1] where
N measures the number of gravity modes in a 
ν-wide interval around ν (see Eq. 58).
Assuming also that the modes considered have frequencies close to the frequency νmax
of maximum oscillation power they obtain for the period spacings


Πlm ≃ 
Πl(1 − mxrot), (140)

where

xrot = 2
N (νmax)

N (νmax) + 1

δνmax

νmax
. (141)

As a complication in the treatment of red-giant rotational splitting it was noted by
Ouazzani et al. (2013) that the core rotation may be so rapid that the perturbation
analysis discussed here is inadequate. In such cases, Ouazzani et al. demonstrated that
a two-dimensional solution of the oscillation equations is required, involving coupling
between components of different degrees. A complication in these cases is also that
properties of the eigenfunctions, in particular the mode inertia, can vary substantially
between the different components of the multiplet.
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5 Groundbreaking results

Asteroseismology of red-giant stars has been very successful over the past decade with
many publications and ground-breaking results. We anticipate that this will continue
in the decade(s) to come (see next section). In this section we discuss results that we
think have been seminal for the field.

Early observations and interpretations of oscillations in very large red giants such
as Arcturus (Merline 1995) and α UMa (Buzasi et al. 2000; Dziembowski et al. 2001)
have already been conducted during the last century and the beginning of this century.
Following these discoveries, the study of solar-like oscillations in red-giant stars all
along the red-giant and horizontal branch (Sects. 2.1.2, 2.1.4) has effectively started
with the spectroscopic campaigns in which ξ Hydrae (Frandsen et al. 2002), ǫ Ophi-
uchi (De Ridder et al. 2006) and η Serpentis (Barban et al. 2004) were observed. In
these observations oscillation power excesses exhibiting a regular pattern of oscilla-
tion modes were observed unambiguously for the first time for early red giants. These
discoveries led to many questions concerning, e.g., whether non-radial oscillation
modes would be observable or damped in the core or what the typical lifetime of the
stochastically excited and damped modes would be. Data from the dedicated photo-
metric space missions MOST (Microvariability and Oscillations of STars; Matthews
et al. 2000), CoRoT (Convection Rotation and planetary Transits; Baglin et al. 2006)
and Kepler (Borucki et al. 2008) have been vital in answering these and subsequent
questions.

5.1 Non-radial oscillation modes

The theoretical work by Dziembowski et al. (2001) for α UMa showed that high up
on the red-giant branch non-radial modes are strongly damped in the core. Extrapolat-
ing from this result, it was initially thought that non-radial modes would be strongly
damped in the cores of stars all along the red-giant branch (Christensen-Dalsgaard
2004). However, this was contradicted by observations. Firstly, Hekker et al. (2006)
claimed the detection of non-radial modes in red-giant stars. For this claim they anal-
ysed the moments of the cross-correlation functions (CCFs) of the spectra of ξ Hydrae,
ǫ Ophiuchi and η Serpentis taken during the previously mentioned spectroscopic cam-
paigns (see Sect. 3.4 for this diagnostic). The variations in the moments as a function
of frequency were inconsistent with radial modes, and hence Hekker et al. (2006)
concluded that these oscillations are non-radial. This was subsequently followed by a
similar claim based on MOST data of ǫ Ophiuchi (Kallinger et al. 2008a), where the
authors extracted frequencies of non-radial modes from the power spectrum. These
claims were finally unambiguously confirmed using CoRoT data (De Ridder et al.
2009). The CoRoT data showed that the oscillations in red giants form a regular pat-
tern similar to that seen for the Sun. This includes oscillation modes with significant
amplitudes at the expected locations of dipole (l = 1) and quadrupole (l = 2) modes.
Hence, these observations confirmed that non-radial modes reach observable heights
at the surface of red-giant stars (see Fig. 45 taken from De Ridder et al. 2009). At
the same time, the presence of non-radial modes with observable amplitudes at the
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Fig. 45 Left Power density spectrum of the red giant CoRoT-101034881 showing a frequency pattern with
a regular spacing. Right échelle diagram of the modes shown in the left panel showing ‘ridges’ related to
radial and non-radial modes. Image reproduced with permission from De Ridder et al. (2009), copyright
by Macmillan

stellar surface for stars along the red-giant and horizontal branch could be confirmed
theoretically by Dupret et al. (2009, see also Sect. 4.3).

5.2 Mode lifetimes

The mode lifetimes of the individual oscillation frequencies (see Fig. 39) are tied to
the excitation and damping of the modes. From the first observations of ξ Hydrae the
lifetimes and amplitudes of the oscillation modes were examined by, e.g., Houdek
and Gough (2002) and Stello et al. (2006b). Houdek and Gough (2002) reproduced
the amplitudes tolerably well with their computations of a stochastic excitation model
in which they used a non-local time-dependent generalisation of the mixing-length
formulation of Gough (1977b). Subsequently, Stello et al. (2006b) estimated the mode
lifetime for ξ Hydrae from the scatter of the measured frequencies about a regular
pattern. With this method Stello et al. (2006b) found a substantially shorter mode
lifetime than Houdek and Gough (2002). Data from the CoRoT space mission were
again seminal in showing that lifetimes of oscillation modes can vary from tens of
days to of order one hundred days (see narrow peaks in the left panel of Fig. 45; De
Ridder et al. 2009).

Although the physics responsible for the damping mechanism is not yet fully under-
stood (see also Sect. 4.3), the mode lifetime (τ ∝ 1/Γ , with Γ indicating the FWHM
mode linewidth) follows a trend with temperature (see Fig. 46 and Chaplin et al. 2009;
Baudin et al. 2011; Corsaro et al. 2012, 2015a, and references therein). Interestingly,
there seems to be a steeper temperature gradient for the hotter main-sequence stars
than for the cooler red-giant stars, whose origin is yet to be explained.

5.3 Glitches

The first evidence for the helium glitch in a red-giant star was found using CoRoT
data by Miglio et al. (2010), who pointed out that the properties of the glitch could
be used as additional seismic diagnostics in the global characterization of the star.
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Fig. 46 Linewidths (Γ ) of the l = 0 ridge plotted against Teff for the stars of NGC 6791 (red circles) and
NGC 6819 (green squares). Red-giant-branch stars (RGB) are indicated with filled symbols and red-clump
stars (RC) with open symbols (see legend). Also shown are measured linewidths for main-sequence and
subgiant field stars (blue diamonds) from Appourchaux et al. (2012). The fit to the main-sequence and
subgiant stars taken from Appourchaux et al. (2012) is also shown (dot-dashed blue line). The dashed black

line shows an exponential fit to all stars. Image reproduced with permission from Corsaro et al. (2012),
copyright by AAS

Broomhall et al. (2014) made an extensive analysis of the effects of the helium glitch
in red-giant models. They noted the difficulty in obtaining meaningful inferences of
the helium abundance, given the limited number of modes available for the analysis.
Encouraging results were obtained by Corsaro et al. (2015b) for 18 low-luminosity red
giants observed for the full Kepler mission; they showed that the formulation derived
by Houdek and Gough (2007) gave an excellent fit to the observed glitch signatures
and obtained relatively precise determinations of the amplitude and acoustic depth of
the glitch signal. Vrard et al. (2015) analysed a large sample of Kepler red giants and
found interesting differences in the glitch properties of red-giant-branch and clump
stars. This may be related to the difference found by Kallinger et al. (2012) between
these two evolutionary stages in the phase term ǫ (cf. Sect. 3.3.4), which appears to be
caused by differences in the ionization behaviour of helium (Christensen-Dalsgaard
et al. 2014).

5.4 Mixed modes

A first mention of dense and/or irregular frequency patterns in the solar-like oscillations
of red giants was made by Hekker et al. (2009). These authors already indicated that
this could be explained by the fact that the observed oscillations are influenced by their
behaviour in both the p-mode and g-mode cavity. Kepler observations were needed to
resolve these modes and identify that non-radial modes in red-giant stars are mixed
modes (Bedding et al. 2010a), i.e. they propagate in both the outer acoustic cavity as
well as in the inner buoyancy cavity. Results on mixed modes for stars observed by
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Fig. 47 Dipolar period spacing 
Π1 as a function of the frequency spacing 
ν. Top the seismic proxy
for the stellar mass is indicated by the colour code. The evolutionary states are indicated by S (subgiants),
R (RGB), f (helium subflash stage), C (red clump), p2 (pre secondary clump), 2 (secondary clump), and A
(stars leaving the red clump moving toward the AGB). The error boxes on the right side indicate the mean
uncertainties, as a function of 
Π1, for stars on the RGB; for clump stars, uncertainties are indicated on the
left side. Dotted lines indicate the boundaries between evolutionary stages. We note that only Mosser et al.
(2014) have so far claimed evidence of stars with sub-flashes (f); these assignments have not been assessed
nor dismissed by other work. Bottom zoom in the red-clump region. Image reproduced with permission
from Mosser et al. (2014), copyright by ESO

both CoRoT and Kepler have been presented by, e.g., Beck et al. (2011), Bedding et al.
(2011), Mosser et al. (2011a) and Mosser et al. (2014). The detection of mixed modes
in timeseries data from the Kepler mission for a few hundred stars showed that the
period spacing between the mixed modes is a direct measure of whether a star is in the
hydrogen shell burning phase or also burning helium in the core (Bedding et al. 2011;
Mosser et al. 2011a). Subsequently, Mosser et al. (2014) used the combined period
spacing and large frequency separation to also identify stars in short evolutionary
phases such as the helium subflash stage, pre-secondary clump stars and stars leaving
the red clump moving towards the AGB (see Fig. 47). The differences in the period
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Fig. 48 Rotational splitting δνrot as a function of large frequency separation 
ν in log-log scale. RGB
stars are indicated with crosses, red-clump stars are indicated with triangles and secondary-clump stars are
indicated with squares. All symbols are colour coded by the mass estimate from asteroseismic parameters
(see colour bar). The mean uncertainties in δνrot are indicated by the vertical bars on the right. The hori-

zontal dotted line indicates the frequency resolution. The dashed (dotted-dashed) line shows the confusion
limit with mixed modes in RGB (RC) stars. Image reproduced with permission from Mosser et al. (2012b),
copyright by ESO

spacings between stars with an inert helium core and stars with core-helium fusion are
in part attributed to the presence of a convective core in stars with helium-core fusion
(Christensen-Dalsgaard et al. 2014, see also Sect. 4.2.5).

5.5 Radial differential rotation

Using the fact that different mixed modes probe different radial regions in stars, Beck
et al. (2012) investigated the mixed modes for rotational splittings. They found that
rotational splittings show different behaviour depending on whether the rotationally-
split modes are pressure dominated or gravity dominated. Qualitative comparison with
models revealed that subgiants and red-giant stars ascending the red-giant branch
exhibit radial differential rotation with the core rotating faster than the surface (Beck
et al. 2012; Deheuvels et al. 2012). Deheuvels et al. (2014) showed that the core
of stars in the subgiant phase spins up before reaching the base of the RGB and
subsequently spins down on the RGB (Mosser et al. 2012b, see their Fig. 9) due
to efficient transport of angular momentum (AM) from the core to the envelope the
origin of which is still unknown. At the same time Mosser et al. (2012a) also found an
important slow down for red-clump stars compared with the red-giant-branch stars (see
Fig. 48). Deheuvels et al. (2012), Deheuvels et al. (2014) and Di Mauro et al. (2016)
subsequently performed rotational inversions to investigate the radial rotation profiles.
They showed that the core rotation rate can be determined with only a weak model
dependence. Additionally, an upper limit for the surface rotation could be obtained.

Interestingly, from a theoretical point of view the observed core rotation cannot be
explained. Current models include transport of angular momentum due to rotationally
induced instabilities and circulations as well as magnetic fields in radial zones (gen-
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Fig. 49 Evolution of the average core rotation period as a function of stellar radius for different
assumptions of angular momentum transport in a 1.5 M⊙ model initially rotating at 50 km s−1. Models
without angular momentum transport (green), including transport of angular momentum due to rotational
instabilities (purple) and accounting for magnetic torques in radiative regions (red, Tayler-Spruit magnetic
fields) are shown. The star symbols indicate the locations of KIC8366239 and KIC5006817 as derived using
the maximum observed splitting of their mixed modes (Beck et al. 2012, 2014). Dashed lines indicate a
linear fit to the different curves during the early RGB. The vertical dotted line shows the location of H-core
exhaustion (TAMS, terminal-age main sequence). The red dotted line shows the evolution of core rotational
period for a model where the resulting Tayler-Spruit diffusion coefficient has been multiplied by a factor of
100. Stars in the red giant sample of Mosser et al. (2012b) with R < 7.5 R⊙ are shown as black dots. The
best fit to the core rotation of the sample Mosser et al. (2012b) is also shown as a dashed blue line. Image
reproduced with permission from Cantiello et al. (2014), copyright by AAS

erated by the Tayler-Spruit dynamo; Tayler 1973; Spruit 1999) and internal gravity
waves. However, these models over-predict the core rotation rate by about one order
of magnitude (e.g., Eggenberger et al. 2012; Marques et al. 2013; Fuller et al. 2014;
Cantiello et al. 2014), as illustrated in Fig. 49. This leads to the conclusion that an
additional angular momentum transport process must be operating that is currently
not included in the models. Belkacem et al. (2015a) and Belkacem et al. (2015b)
investigated the efficiency of mixed modes in extracting angular momentum from the
innermost regions of subgiants and red giants. They concluded that for evolved red
giants, mixed modes are sufficiently efficient to balance and exceed the effect of the
core contraction, in particular in the hydrogen-burning shell. However, this is not the
case for subgiants and early red giants.

5.6 Suppressed dipole modes

For a small subset of stars the dipole (l = 1) modes seem to be suppressed, i.e. they have
a low height or visibility (V 2, i.e. amount of integrated power compared with that of
the radial modes) in the power spectrum. This was first flagged by Mosser et al. (2012a)
and followed by a detailed investigation for a single star by García et al. (2014). These
authors concluded that the low visibility cannot be explained by damping effects nor

123



1 Page 98 of 122 S. Hekker, J. Christensen-Dalsgaard

by a fast-rotating core. Recently, Fuller et al. (2015) showed in a theoretical study that a
high magnetic field in the stellar core, i.e. a magnetic greenhouse effect, would induce
low mode visibilities. In parallel, Stello et al. (2016a) showed that there is agreement
between the observed and simulated visibilities of the suppressed oscillation modes and
that this lends evidence for the presence of a high magnetic field in the cores of the red
giants with suppressed dipole modes. Further support for this model follows from the
fact that the suppressed modes are only found in stars with masses above ∼1.1 M⊙, i.e.,
stars that in the main-sequence phase would have had a convective core which could
have given rise to a dynamo-generated field in the core. Figure 50 shows a schematic
diagram of the magnetic greenhouse scenario as well as a comparison of the predicted
visibilities from this scenario with observed visibilities of dipole modes as a function
of stellar mass. Subsequently, Stello et al. (2016b) also investigated the suppression
of quadrupole and octupole modes. They found that mode suppression weakens for
higher-degree modes with a reduction in the quadrupole mode visibility of up to 49%
and no detectable suppression in octuple modes. This is consistent with predictions
based on the theory of the magnetic greenhouse effect (Fuller et al. 2015) applied to
these higher-degree modes. Recently, Mosser et al. (2017a) analysed a sub-sample of
red giants with suppressed modes, characterized by having high signal-to-noise ratio,
and showed that in these cases the suppressed dipole modes are mixed modes, with a
character similar to that of modes in stars with no suppression. Therefore, in this case
a mechanism that only partially damps the oscillations without affecting the basic
frequency structure, is implied. On this basis Mosser et al. (2017a) questioned the
scenario of Fuller et al. (2015). However, it remains to be seen whether the magnetic
mechanism, perhaps with suitable modifications, is consistent with these observations.

5.7 Galactic archaeology

The large number of dwarfs and intrinsically bright red-giant stars for which accurate
stellar parameters are now becoming available from asteroseismology has added a
new dimension to the field of Galactic archaeology, i.e., the study of the formation and
evolution of the Milky Way by reconstructing its past from its current constituents.
The first study using asteroseismic data to probe the galactic disk was performed on a
set of about 800 CoRoT stars. This study showed qualitative agreement between the
models and observations, but also flagged differences in νmax distributions (Miglio
et al. 2009). This was subsequently followed by a population synthesis study using
asteroseismic data of about 500 dwarfs observed with Kepler. Again the models and
observations were in qualitative agreement, although there were differences present
in the mass distributions (Chaplin et al. 2011).

These early investigations have initiated major collaborations between astero-
seismic experts and experts in galactic astronomy to combine the efforts of large
spectroscopic surveys (see Feltzing 2016, for an overview of the ongoing spectro-
scopic surveys and the requirements for them) with the asteroseismic measurements.
These collaborations have among others led to improvements in red giant spectroscopy
(Pinsonneault et al. 2014; Ren et al. 2016; Valentini et al. 2016); to improved esti-
mates of distances and extinctions (Rodrigues et al. 2014); to a direct measurement
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Fig. 50 Left Average visibility of each star vs. νmax, which correlates closely with surface gravity (shown
on the top axis) for stars with masses ranging from 0.9 to 2.1 (top to bottom and colour scale). Stellar
mass has a formal 1σ uncertainty of 10%. Stars evolve from right to left in the diagrams, corresponding
roughly with the beginning of the red-giant phase to the red-giant luminosity bump. The solid black line

shows the theoretical predicted dipole-mode suppression for 1.1M⊙, 1.3M⊙, 1.5M⊙, 1.7M⊙ and 1.9M⊙
(top to bottom panels) and a radial-mode lifetime of 20 days. The fiducial dotted lines separate normal and
dipole-suppressed stars. Image reproduced with permission from Stello et al. (2016a), copyright by AAAS.
Right Schematic representation of the magnetic greenhouse effect. Acoustic waves excited in the envelope
couple to gravity waves in the radiative core. In the presence of a magnetic field in the core, the gravity
waves are scattered at regions of high field strength. Because the field cannot be spherically symmetric,
the waves are scattered to high angular degree and become trapped within the core, where they eventually
dissipate (dashed wave with arrow). Image reproduced with permission from Fuller et al. (2015), copyright
by Macmillan

of a vertical age gradient in the Milky Way (Casagrande et al. 2016); as well as to the
detection of α-rich young stars, i.e., stars that are young according to their asteroseis-
mic measures and old based on their chemical abundance of α elements (Chiappini
et al. 2015; Martig et al. 2015). First studies investigating these young α-rich stars
hint towards these stars being blue stragglers (Yong et al. 2016; Jofré et al. 2016).
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5.8 Extra-solar planets

The photometric timeseries obtained by the CoRoT and Kepler space instruments are
suitable for both exoplanet studies and asteroseismology. The combination of both
has been the basis of many ground-breaking planet discoveries (e.g., Carter et al.
2012; Barclay et al. 2013; Campante et al. 2015). Transiting exoplanets leave larger
signatures in the timeseries data when orbiting a smaller star, hence one may expect an
observational bias against stars with larger radii. Nevertheless, it is possible to detect
transiting planets around early red giants. Huber et al. (2013) detected a planetary
system consisting of two transiting planets around a low-luminosity red giant. Using
the rotationally split (mixed) oscillation modes (Sect. 3.4.4) they also found that the
spin axis of the star is not aligned with the orbital axis of the two planets. This could
only be explained by a third wide companion, which has indeed been detected (Otor
et al. 2016). Studies like the one by Huber et al. are essential to unravel planet formation
scenarios.

6 Future

The wealth of data obtained by the photometric space missions CoRoT (Baglin
et al. 2006), Kepler (Borucki et al. 2008) and K2 (Howell et al. 2014) is currently
being explored. Exploiting these as well as data from future complementary (space)
telescopes such as TESS (Ricker et al. 2014), PLATO (Rauer et al. 2014) and the
ground-based SONG network (Grundahl et al. 2014) will be essential to study many
of the questions that are still open in stellar structure and evolution of giant stars
exhibiting solar-like oscillations. These questions include, but are not limited to con-
vection, rotation, (core) overshoot, additional mixing and stellar ages. We discuss these
in some detail here.

Convection and surface effects Deep in stars convection leads to a temperature strati-
fication that is essentially adiabatic. Near the surface, where the convective transport is
less efficient, a substantially superadiabatic region is present. In stellar models this is
typically described with some form of a mixing-length approach (e.g., Böhm-Vitense
1958; Canuto and Mazzitelli 1991). To take the next step forward it is important to
improve the models to take convection properly into account. Very promising efforts
are in progress to perform 3D hydrodynamical simulations of the atmosphere and
near-surface part of the interior in which convection is realistically modelled (see
for instance Trampedach et al. 2014a, b; Magic and Weiss 2016). The results of the
simulations can be used in stellar modelling through a calibration of parameters of
simpler formulations, such as the mixing length (Salaris and Cassisi 2015). Alterna-
tively, the outer layers of the model can be replaced by suitably averaged versions of
the simulations, interpolated to the parameters of the star.

The inadequate modelling of the structure of the outermost layers is an impor-
tant contribution to the frequency dependent offset between the model frequencies
and observed frequencies, i.e., the surface effect. As discussed in Sect. 3.4 several
approaches exist to mitigate this, although these all require adjustments on a star by
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star basis. Thus a better theoretical understanding of these effects is highly desirable.
Replacing the outer layers of the model by an averaged 3D simulation goes some way
towards reducing these effects (Rosenthal et al. 1999; Robinson et al. 2003; Sonoi et al.
2015; Ball et al. 2016). An additional contribution comes from non-adiabatic effects
and the influence of turbulent pressure which are typically ignored in the modelling.
Interestingly, combining 3D simulations with a non-local treatment of time-dependent
convection and non-adiabaticity very substantially improves the agreement between
observed and modelled solar oscillation frequencies (Houdek et al. 2017).

Rotation The current stellar models cannot reproduce the core rotation rates observed
using rotationally split mixed modes (see Sect. 5.5). In these models transport of
angular momentum due to rotationally induced instability and circulation, as well as
magnetic fields in radiative zones generated by the Tayler-Spruit dynamo are included
(Cantiello et al. 2014). The fact that these models can still not match the observations is
most likely due to missing physics in the models. Observations of (radially differential)
rotation in stars across the HR diagram may provide indications of what additional
physical effects play a role. Additionally, the impact on red-giant models of the recent
results by van Saders et al. (2016) and Metcalfe et al. (2016) regarding rotation in
main-sequence stars and subgiants may need to be investigated. van Saders et al.
(2016) showed that the effective loss of angular momentum ceases above a critical
Rossby number (Ro):

Ro = rotation period

convective turn-over time
≈ 2.1. (142)

Subsequently, Metcalfe et al. (2016) aimed to explain the underlying reasons for this
by proposing a scenario implying a change in the character of differential rotation
that ultimately disrupts the large-scale organisation of the magnetic field in solar-type
stars. This process begins at Ro ≈ 1, where the rotation period becomes comparable
to the convective turn-over time. Metcalfe et al. (2016) speculated that this may lead
to an accelerated decrease in the surface area of spots while the star goes through a
rapid phase of magnetic evolution while crossing the Vaughan–Preston gap (Vaughan
and Preston 1980). Due to the changes in magnetic topology during this fast phase
of magnetic evolution stars reach Ro ≈ 2 where magnetic breaking operates with a
dramatically reduced efficiency (van Saders et al. 2016). Although this scenario is still
speculative the proposed changes in the rotation of main-sequence stars may impact
the rotation profiles of red giants.

Finally, in terms of observations of the envelope rotation rate it will be of importance
to measure rotational splittings of p-dominated l = 2 and l = 3 modes (see Sects. 3.4.4
and 4.4) as these have larger sensitivity to the surface layers (see red triple-dot-dashed
line in Fig. 43). Radial-velocity observations are more sensitive to these higher-degree
modes and hence SONG could play a major role in this.

Additional mixing The standard theory of stellar evolution fails to explain abundance
anomalies observed in stars ascending the red-giant branch. Spectroscopic studies
showed that when stars reach the bump (see Sect. 2.1.2) a drop in the surface carbon
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isotopic ratio, lithium and carbon abundances is present, while nitrogen increases
slightly (e.g., Gilroy and Brown 1991; Tautvaisiene et al. 2013). This is not seen in
standard stellar models and provides evidence that an extra-mixing process should
occur when low-mass stars reach the bump (e.g., Lagarde et al. 2015, for a study into
the effects of rotation-induced mixing using both asteroseismic and spectroscopic
constraints).

Asteroseismic measurements of the strength and locations of boundaries between
radiative and convective regions that are observable as glitches (see Sects. 3.4.5 and
4.2.4) could be very important to determine the strength, location and efficiency of
the additional mixing that needs to be added to the models to match both the observed
stellar internal structure and the observed chemical yields.

Core overshoot In models the edge of a convective core can be described by different
criteria (Sect. 2.1.1). Whether semi-convection exists or another form of slow mixing
is present can currently not be directly constrained from observations (Constantino
et al. 2015, 2016). With the mixed modes it is possible to probe the stellar core (e.g.,
Bedding et al. 2011; Mosser et al. 2014); model investigations show that there are
prospects to investigate sharp features around the core (Cunha et al. 2015), and this
will be essential in constraining the properties of the edge of a convective core. Such
glitch analysis (Sects. 3.4.5, 4.2.4) based on mixed modes may be the only source of
direct observational evidence that can be obtained for the region where core overshoot
may take place. A full exploitation of the archival data from Kepler may provide these
observational constraints on the core overshoot processes.

Suppressed dipole modes As described in Sect. 5.6 for a fraction of the observed
red-giant stars the dipole modes are suppressed. Currently there exists one scenario
(Fuller et al. 2015) to explain the presence of these suppressed dipole modes. For this
scenario, the predictions are consistent with observations (Stello et al. 2016a, see also
Fig. 50), although it was questioned by Mosser et al. (2017a). However, the presence
of large magnetic fields in the core can currently not be tested directly, while further
theoretical elaboration of the magnetic model is required (e.g., Cantiello et al. 2016).
Hence, it is hard to confirm or reject this scenario at the moment. In this respect, it
may be interesting if other scenarios that can be confirmed/rejected or correlations
with other stellar parameters can be established.

Ages There is no observable that is sensitive to age and age only (Soderblom 2010), so
all measures of stellar ages are either empirical (with a model dependent calibration)
or model dependent. Hence, any improvement in the models and/or matching the data
with models by mitigating the surface effect will influence the age determinations of
stars. This is particularly relevant for evolved stars as uncertainties in earlier evolution
phases accumulate. Despite these limitations, it may be possible to find combinations of
(asteroseismic) observables that are more sensitive to age and to improve age estimates
using asteroseismology.

Red-clump stars Red-clump stars are both from an observational as well as from a
modelling point of view not well understood. Red-clump models carry information
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from the main-sequence stellar structure. Even a small change in the stellar struc-
ture at the main sequence can lead to significant differences in terms of effective
temperature, luminosity and internal structure after the onset of helium-core burning.
Additionally, the subflashes that are predicted to occur at the onset of helium-core
burning for low-mass stars with degenerate cores (see Sect. 2.1.3) leave sharp features
in the model internal structure. This results in a very irregular pattern of frequencies
and period spacings for stars entering the red clump (Constantino et al. 2015, see also
Sect. 4.2.5). Information on the reality and nature of the subflashes from observations
will be essential to better understand the red-clump models. This may be obtained
from stars that are descending the red-giant branch after helium ignition. However,
this is challenging as this is a very short phase in evolution, reducing the probability
that any observed star is in that phase. Additionally, stars already in the red clump may
provide the observational evidence for the presence of the flashes. However, from an
observational point of view, the combination of period spacings, rotational splittings
and noise that seems to be present in the observed power density spectra make it very
difficult to disentangle all individual oscillation modes. Hence, observational evidence
of regularity or irregularity is still awaiting for many of these stars. We anticipate that
with the long timeseries of Kepler data it will be possible to disentangle these observa-
tional features, but a detailed mining of the data with tailor-made tools will be required.

The future for asteroseismology of giant stars with solar-like oscillations looks very
promising. In addition to the wealth of archival data there are two new space missions
planned which will again provide complementary data in terms of nearly all-sky cov-
erage with TESS and brighter stars with PLATO. Additionally, the Stellar Oscillations
Network Group (SONG) has one node fully operational and one node in development.
SONG provides spectroscopic data from the ground, which will be valuable to study
higher degree modes, as well as stars with long periods. These observational data
together with improved 1-D and 3-D models are bound to improve significantly our
knowledge of stellar structure and evolution of giant stars over the next decade(s).
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Hartmann M, Hrudková M, Kamiński K, Moffat AFJ, Kuschnig R, Leto G, Matthews JM, Rowe JF,
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