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INTRODUCTION

The key theme of research on musical cognition is dis-
covering the mental representations used to organize
and interpret music (Deutsch, 1999; Krumhansl, 1990;
Lerdahl & Jackendoff, 1983; Sloboda, 1985. More re-
cently, this approach has been extended to include the
study of brain mechanisms related to such representa-
tions; that is, the cognitive neuroscience of music (Lev-
itin, 2006; Peretz & Zatorre, 2003). Artificial neural
networks are biologically inspired models of cognition
(Rumelhart & McClelland, 1986), and interpretations of
their internal structure can lead to insights about the na-
ture of representation (Dawson, 2004). Thus, given the
rise of both musical cognition and of the cognitive neu-
roscience of music, it is not surprising that artificial neu-
ral networks are frequently used to explore musical cog-
nition (Griffith & Todd, 1999; Todd & Loy, 1991).

An artificial neural network is a computer simulation
of a “brain-like” system of interconnected processing
units; it generates a desired response to an input stim-
ulus. Activities of a set of input units encode a stimu-
lus. The response of the system is represented as activ-
ities in a set of output units. The signal sent by one in-
put processor to an output unit is transmitted through a
weighted connection. At the start of a simulation, a net-
work has small, randomly assigned connection weights.
The network is then taught by presenting it a set of train-
ing patterns, each of which is associated with a known
correct response. Each pattern is presented to the net-
works input units, and on the basis of its existing con-
nection weights, the network generates a response to it.
An error term for each output unit is calculated by mea-
suring the difference between the desired response of
the unit and its actual response. A learning rule is used
to change connection weights in such a way that net-
work error is reduced. Ideally, with repeated presenta-
tion of the training patterns, the network learns to gen-
erate a correct response to each stimulus.

The current paper describes a musical investigation
involving an artificial neural network. We taught a neu-
ral network to generate the sequence of chords in a jazz
progression called the Coltrane changes. We interpreted
the internal structure of this network to reveal an elegant
and simple formalism that represents this progression in
its entirety. We also used the structure of this network to
investigate the complexity of the Coltrane changes in re-
lation to other chord progressions.

We first introduce the notion of chord progressions
by describing a particular example (the II-V-I) that is
related to the Coltrane changes. Second, we describe

the Coltrane changes using a formalism derived from
previous musical investigations with neural networks
(Yaremchuk & Dawson, 2005, 2008). Finally, we de-
scribe how we trained a neural network to generate the
Coltrane changes, how we analyzed its internal struc-
ture, and the implications of this interpretation. In par-
ticular, we discovered that a network represented tran-
sitions between chords in a fashion that could be de-
scribed in terms of a new musical formalism that we had
not envisioned. In short, this paper shows that the inter-
pretation of the internal structure of a musical network
can provide new formalisms for representing musical
regularities, and can suggest new directions for repre-
sentational research on musical cognition.

THE II-V-I CHORD PROGRESSION

Most jazz pieces are essentially song structures in
which musicians play sequences of chords called chord
progressions (Sudnow, 1978). Certain chord progres-
sions are popular because the transition from chord to
chord is musically pleasing, and because the progres-
sion permits moving from one musical key to another,
permitting flexibility (one can start the same progression
in any key) and providing musical variety.

This is illustrated in one important chord progression
called the II-V-I, a progression that is likely the most
commonly encountered in jazz (Levine, 1989). This pro-
gression starts in a particular musical key. For example,
in the key of C major this progression starts by first play-
ing the D minor seventh chord (Dm7), then by playing
the G dominant seventh chord (G7), and ends by play-
ing the C major seventh chord (Cmaj7). In the key of
C this is a II-V-I progression because D, the root note of
Dm7, is the second note of the C major scale; G, the root
note of G7, is the fifth note of the C major scale; and C,
the root note of Cmaj7, is the first note of the C major
scale.

The II-V-I progression shifts to a new musical key by
following the major seventh chord that ends the pro-
gression in one key with a minor seventh chord built on
the same root that defines the II chord of the next key.
For instance, after ending the progression above with
Cmaj7, the next chord played is C minor seventh (Cm7),
which is the II chord of a new musical key, A#. Table
1 provides a complete II-V-I progression that begins in
the key of C major, and ends by returning to this key an
octave lower.

When learning to play an instrument, students usu-
ally also learn to read musical notation, and are taught
the elements of music theory (Martineau, 2008). In
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Chord Progression For Key
Key II V I
C Dm7 G7 Cmaj7
A# Cm7 F7 A#maj7
G# A#m7 D#7 G#maj7
F# G#m7 C#7 F#maj7
E F#m7 B7 Emaj7
D Em7 A7 Dmaj7
C Dm7 G7 Cmaj7

TABLE I. The II-V-I chord progression, descending from the
key of C major. The chords in each row are played in sequence,
and after playing one row, the next row is played.

learning such elements, students typically encounter the
circle of fifths (Figure 1), if only to determine the number
of sharps or flats associated with each musical key sig-
nature. Importantly, the circle of fifths captures a great
deal of formal structure. For instance, consider a scale
written in the key of C (the top of the circle, Figure 1).
Scales written in the keys adjacent to C in the circle of
fifths (i.e., the keys of F or G) are maximally similar to
it, sharing all but one note (Krumhansl, 1990). In other
words, the circle of fifths is literally a map in which the
more related two keys are, the closer together they are
in the circle.

Interestingly, the circle of fifths also maps the root
notes of the chords in the II-V-I progression. Consider
the chord that starts the Table 1 progression, Dm7. Its
root note is D. If one finds that note on the circle of fifths
and then moves in a counterclockwise direction, then
the next note encountered is the root of the V chord, G7.
The next note encountered is C, the root of the I chord,
Cmaj7. If one starts again from this final C, the next three
notes provide the II-V-I roots for the next key in the pro-
gression A#.

Of relevance to the current paper, one can teach the
II-V-I progression to an artificial neural network. To
do this, a set of input units represents possible musical
notes (e.g., each unit represents a particular piano key).
The output units represent another set of musical notes
in a similar fashion. One presents a chord to the net-
work by turning on the input units that define its com-
ponent notes. The network is then trained with an error-
correcting learning rule (Dawson, 2004, 2005) to turn on
the output units that define the notes of the next chord
in the progression. Interestingly, an extremely simple ar-
tificial neural network called a perceptron (Rosenblatt,
1958) can learn the II-V-I progression of Table 1 (Daw-
son, 2013). This network has direct connections between
input units and output units, and has no hidden units
that are the defining property of more powerful artifi-
cial neural networks.

The purpose of the current paper is to explore a more
complicated chord progression that is an elaboration of
the II-V-I progression. This second chord progression is
the Coltrane changes, named after its creator, legendary
saxophonist John Coltrane (Turner, 1975). We investi-

gate two different questions related to training an arti-
ficial neural network to generate the Coltrane changes.
First, given that this progression is more complicated
than the II-V-I, is a more complex neural network re-
quired to generate it? Second, if a neural network can
learn to generate the Coltrane changes, then what musi-
cal regularities does it represent in its internal structure?

THE COLTRANE CHANGES

John Coltrane introduced the chord progression now
known as the Coltrane changes on his seminal 1960 al-
bum Giant Steps, where it is central to two pieces, “Gi-
ant Steps” and “Countdown”. The latter piece paid
homage to Miles Davis famous composition “Tune Up”
which uses the II-V-I. The Coltrane changes are an elab-
oration of the II-V-I; it includes the three chords of this
older progression, but adds four more chords. Two of
these are lead-in chords to the V, and the other two are
lead-in chords to the I. Adding additional chords to ex-
isting progressions reflects Coltranes evolving musical
sensitivity. In the liner notes of Giant Steps he notes, “I
feel like I cant hear but so much in the ordinary chords
we usually have going in the accompaniment.” Table 2
provides the Coltrane changes that reflect the elabora-
tion of the Table 1 progression.

In addition to the particular sequence of chords given
in Table 2, we also assumed that chord inversions were
used to minimize finger movements (assuming that the
progression is being played on a keyboard). Consider
the C major 7 tetrachord. In root position, its lowest note
is C, followed by the notes E, G, and B. To create the first

FIG. 1. The circle of fifths. Moving clockwise around the cir-
cle, adjacent notes are an interval of a perfect fifth (or seven
semitones) apart. Moving counterclockwise around the circle,
adjacent notes provide the root notes of chords in the II-V-I
progression, as explained in the text.
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Chord Progression For Key
Key II Lead-in 1 Lead-in 2 Lead-in 3 Lead-in 4 V I
C Dm7 D#7 G#maj7 B7 Emaj7 G7 Cmaj7
A# Cm7 C#7 F#maj7 A7 Dmaj7 F7 A#maj7
G# A#m7 B7 Emaj7 G7 Cmaj7 D#7 G#maj7
F# G#m7 A7 Dmaj7 F7 A#maj7 C#7 F#maj7
E F#m7 G7 Cmaj7 D#7 G#maj7 B7 Emaj7
D Em7 F7 A#maj7 C#7 F#maj7 A7 Dmaj7
C Dm7 D#7 G#maj7 B7 Emaj7 G7 Cmaj7

TABLE II. A progression of Coltrane changes, descending from the key of C major. The chords in each row are played in sequence
and after playing one row the next row is played.

inversion of the chord, the C is raised an octave, so that
E is now the lowest note. To create the second inversion
of the chord, the lowest note of the first inversion (E) is
raised an octave, so that G is now the lowest note. To
create the third inversion of the chord, the lowest note
of the second inversion (G) is raised an octave, so that B
is now the lowest note. To minimize finger movements
in the Coltrane changes, inversions were applied to the
Table 2 chords as follows: the Lead-in 1 chord is played
in root position; the II chord, the Lead-in 3 chord and
the I chord are played in the first inversion; the Lead-in
2 chord is played in the second inversion; the Lead-in 4
chord and the V chord are played in the third inversion.
The use of inversions is evident in the musical score that
is presented later as Figure 4.

It is clear that the progression in Table 2 is more com-
plex than the progression in Table 1. Furthermore, the
regularities that define the Coltrane changes are notori-
ously difficult to explain (Capuzzo, 2006; Waters, 2010).
In the Giant Steps liner notes, Coltrane describes it as
follows: “the bass line is kind of a loping one. It goes
from minor thirds to fourths, kind of a lop-sided pattern
in contrast to moving strictly in fourths or in half-steps.”
Even Coltranes accomplished band found his changes
hard to master during the rehearsal sessions for the Gi-
ant Steps album (Turner, 1975).

To build a training set for teaching the Coltrane
changes to an artificial neural network, we discovered
a graphical representation of this progression, which is
provided in Figure 3 below. This representation takes
advantage of the fact that previous interpretations of
musical neural networks (Yaremchuk & Dawson, 2008)
have revealed musical circles analogous to, but differ-
ent from, the circle of fifths in Figure 1. Some networks
encode musical knowledge using the four circles of ma-
jor thirds presented in Figure 2. In each of these circles,
adjacent notes are a major third (four semitones) apart.

We created a map of the Coltrane changes by placing
the circle of fifths in the center, and by then attaching
a circle of major thirds to each note of this inner cir-
cle, as is shown in Figure 3. (In hindsight, our ability
to do this should not have been a surprise, because in-
tervals of major thirds are crucial to the key changes in
Coltranes progressions (Waters, 2010)). A more elabo-
rate path through this figure (in comparison to the path

FIG. 2. The four circles of major thirds that Yaremchuk
and Dawson (2008) discovered when interpreting the internal
structure of an artificial neural network trained to classify mu-
sical chords.

through the circle of fifths for the II-V-I) provides the
root notes for the seven chords of the Coltrane changes
for a given key.

Consider, for example, the key of C. The Coltrane
changes begin with Dm7; the root of this chord is in the
inner circle of fifths. From this, the next root is the fur-
thest note away on the circle of major thirds attached to
the neighboring inner note (i.e. the B attached to the G).
The next root is the furthest note away on the circle of
major thirds attached to the next note on the inner cir-
cle (i.e. the E attached to the C). The progression then
returns to the neighboring inner note (the G); the next
root is the other outer note attached to it (i.e. the D#
attached to the G). Next, the progression returns to the
inner C; the next root is the other outer note attached to
it (i.e. the G# attached to the C). Finally, the progression
moves back to the inner circle of fifths and finished with
the root notes G and then C. The Coltrane changes for
the next key (A#) begins by keeping on the C, but play-
ing the Cmin7 chord, and then following the identical
path from this note to that followed from the D and that
was just described. Although this path is complex, it is
very easy to grasp when using Figure 3; Figure 3 serves
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FIG. 3. The Coltrane changes emerge from a map that com-
bines the circle of fifths on the inside with the circles of major
thirds on the outside. See text for explanation.

as a musical guide for performing the entire Coltrane
changes!

The Coltrane changes are systematic, in the sense that
its sequence of root notes lies in a map like Figure 3.
However, it seems much more complex than the II-V-I
progression described earlier. Clearly, Table 2 involves
many more chords than does Table 1, and Figure 3 (and
the path through it) is much more complicated than Fig-
ure 1 (and the path through it). Is this new progression
more complicated from the perspective of music cogni-
tion? One way to answer this question is to train a neu-
ral network to generate the Coltrane changes. If this pro-
gression is indeed more complex from an information
processing perspective, then a more complicated net-
work than a perceptron – a network that includes hid-
den units is required.

PERCEPTRONS CAN LEARN COLTRANE CHANGES

To begin to answer the complexity question, the first
obvious step is to determine whether a simple net-
work, the perceptron, is capable of learning the Coltrane
changes. We created a training set to train a perceptron
that had 22 input and 22 output unit. Each input and
output unit encoded a particular note (i.e. each unit was
analogous to a key on a piano). Each output unit used a
non-linear, Gaussian activation function, as was the case
in previous studies of this type (Yaremchuk & Dawson,
2008). We trained this network in a similar fashion to
the method used to train the II-V-I network mentioned
earlier: the network was presented a chord in the pro-
gression, and an error-correcting rule was used to teach
the network to output the next chord in the progression.
The entire sequence of chords from Table 2 defined the
training set; importantly, the chords were presented in

FIG. 4. The inverted versions of the chords used to train a
perceptron to generate the Coltrane changes.

their inverted form (i.e., the notes of the chord were re-
arranged to produce the most efficient piano fingering);
chord inversions are named in the caption of Table 2.
Musical notation for the sequence of chords used to train
the perceptron is provided in Figure 4.

Given the complexity of the Coltrane changes, we ex-
pected that a perceptron would not learn this progres-
sion, and that we would then proceed to train a more
sophisticated network. To our surprise, the perceptron
successfully learned the Coltrane changes in short or-
der. From an information processing perspective, the
Coltrane changes are not more complex than the II-V-I
progression; this is because they both can be learned by
artificial neural networks that have no hidden units (i.e.
both can be learned by a perceptron).

INTERPRETING THE INTERNAL STRUCTURE OF THE
PERCEPTRON

How is it possible for such a simple artificial neu-
ral network to represent the complicated sequence of
chords that define the Coltrane changes? To answer this
question, we carefully examined the weights of the con-
nections from each input unit to each output unit. These
weights were highly systematic, and indicated that the
network had learned to represent a particular chord as
1) a particular base note (i.e. the lowest note in the
chord) and 2) a configuration of finger positions on keys
above the base note. By changing the configuration of
finger positions (i.e. the positions of the three notes)
above the base note, the network could change the type
of chord represented along with the chords inversion.
Indeed, this makes chord changes possible even when
the base note remains the same. For instance, the base
note of both D#7 in root position and the base note of
G#maj7 in the second version is identical (D# or Eb).
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One can move from the first of these chords to the sec-
ond (as required in the first line in Table 2 above) by
keeping the same base note, and by changing the fin-
ger configuration above it. The connection weights of
the perceptron indicated that the network had literally
wired this knowledge in to the connection weights that
used input unit activity to turn particular output units
on.

The connection weights also revealed that the net-
work had learned that a key aspect of the Coltrane
changes was simply encoding the relationships between
the different base notes used in the seven chords for the
changes in any given key. These relationships only in-
volve four different musical intervals: unison, the major
second, the minor 7th, and the major 7th. Each of these
intervals was defined by a unique connection weight;
that is, the value of a connection weight could be used
to read musical interval values from the network.

Furthermore, these relationships only involve three
different base notes. Consider beginning the Coltrane
changes in the key of C major. The first base note (for the
first inversion of Dm7) is F. The next base note is Eb (for
the root position of the Lead-in 1 chord); moving from F
up to Eb is moving a musical interval of a minor 7th. In
the Coltrane changes, the next three chords keep the Eb
as the base note; as the note does not change, the musi-
cal interval moved is unison. Next, the base note moves
on from Eb to F, which is a major second. The progres-
sion in this key ends by moving from a base note of F
up to a base note of E, which is a major 7th. When the
progression begins by playing the base note of the first
chord of the next key, the base note shifts from E to Eb,
which is another major 7th.

This pattern of shifts from one base note to another,
a pattern lifted from the connection weights of the per-
ceptron, can be represented by plotting a series of tri-
angles. The three vertices of one triangle represent the
three base notes involved in the seven chords that de-
fine the Coltrane changes in a single musical key. Impor-
tantly, the triangle that represents these changes in one
key, and the triangle that represents the same changes in
the next key, share a vertex (i.e., share a base note). Thus
one can link the triangles together in a single manifold
as is shown in Figure 5.

Figure 5, like Figure 3, provides a musical map
through the various base notes of the Coltrane changes.
To begin the changes in the key of C, start at F on the
lower right of Figure 5. Move next to Eb, which will be
repeated as a base note four times. Next, move back to
F, which will be used once, and then follow the triangle
inside to find that E is the final base note. Moving from
E to Eb along the final side of the triangle takes the mu-
sician to the base note of the first chord played in the
next musical key.

Interestingly, Figure 5 links the Coltrane changes per-
ceptron to the structure of other musical networks stud-
ied in our lab (Yaremchuk & Dawson, 2005, 2008). While
Figure 5 depicts a ring of intersecting triangles, it also

FIG. 5. A map of base note transitions for the Coltrane changes
that emerges from examining the connection weights of the
trained perceptron. See text for explanation.

FIG. 6. The two circles of major seconds. The top circle defines
the notes around the interior of Figure 5, and the bottom circle
defines the notes around the exterior of Figure 5.

can be described as two circles of notes, one on the out-
side surrounding another on the inside. These two cir-
cles are the two circles of major seconds revealed in the
connection weights of networks trained to classify chord
types; for the sake of completion, the two circles of major
seconds are illustrated in Figure 6. In short, the Coltrane
changes reflect a specific relation (i.e., a specific orienta-
tion in relation to each other) between the two circles of
major seconds.
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CONCLUSION

The Coltrane changes are taken to be a more compli-
cated elaboration of the classic II-V-I chord progression.
The purpose of this paper was to explore the complexity
of the Coltrane changes by training an artificial neural
network to generate them. To our surprise, we found
that an extremely simple network a perceptron learned
the Coltrane changes, indicating that they are not more
complex than the II-V-I from an information processing
perspective. Furthermore, an analysis of the internal
structure of this perceptron provided a simple map of
base notes used in the progression. This simple map was
discovered by the perceptron; the existence of this map
permitted such a simple neural network to represent the
complexities of the Coltrane changes.
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