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ABSTRACT Metaheuristic algorithms are becoming powerful methods for solving continuous global 

optimization and engineering problems due to their flexible implementation on the given problem. Most of 

these algorithms draw their inspiration from the collective intelligence and hunting behavior of animals in 

nature. This paper proposes a novel metaheuristic algorithm called the Giant Trevally Optimizer (GTO). In 

nature, giant trevally feeds on many animals, including fish, cephalopods, and seabirds (sooty terns). In this 

work, the unique strategies of giant trevally when hunting seabirds are mathematically modeled and are 

divided into three main steps. In the first step, the foraging movement patterns of giant trevallies are 

simulated. In the second step, the giant trevallies choose the appropriate area in terms of food where they can 

hunt for prey. In the last step, the trevally starts to chase the seabird (prey). When the prey is close enough to 

the trevally, the trevally jumps out of the water and attacks the prey in the air or even snatches the prey from 

the water surface. The performance of GTO is compared against state-of-the-art metaheuristics for global 

optimization on a set of forty benchmark functions with different characteristics and five complex engineering 

problems. The comparative study, scalability analysis, statistical analysis based on the Wilcoxon rank sum 

test, and the findings suggest that the proposed GTO is an efficient optimizer for global optimization. Note 

that the MATLAB source codes for GTO will be publicly available after the acceptance of the paper.  

INDEX TERMS Giant Trevally Optimizer (GTO), optimization, metaheuristics, exploration, exploitation, 

benchmark functions. 

I. INTRODUCTION 

The aim of optimization is to define the best possible solution 

for the system parameters so that the design can be completed 

at the lowest possible cost. Real-world optimization tasks tend 

to be discrete or unrestrained by any particular constraints 

[1][2]. Consequently, it is difficult to obtain optimal solutions 

using conventional mathematical-based programming 

methods. Hence, optimization techniques have been 

developed in recent years, which can be found in almost all 

scientific domains to promote the performance of various 

systems and minimize their computational costs [3]. There are 

some drawbacks and limits to conventional optimization 

approaches, such as unknown solution space and a potential to 

become stuck at a local optimum. And indeed, they also have 

only a single solution [4].  

There have been numerous novel Metaheuristic 

Algorithms (MAs) proposed in recent years to resolve these 

concerns. These algorithms have been used in a number of 

contexts, which is because of how simple they are and how 

easy it is to use them [5][6]. Also, the main parts of these 

methods do not depend on gradient information or the 

mathematical properties of the objective landscape [7]. 

However, the problem with most MAs, though, is that they are 

often very sensitive to the way that user-defined parameters 

are tuned. Another drawback is that there is no guarantee of 

finding the global best solution due to its stochastic nature [8]. 

For the most part, MAs fall into one of two categories: 

single-solution based, and population-based. In the first 

category, an MA may employ a single solution or agent to 

perform the optimization process. This is referred to as 

trajectory methods. Tabu Search [9] and Simulated Annealing 

[10] are two examples of these methods. On the other hand, 

the majority of modern MAs are population-based or multi-

agents, as they traverse search space using a set of points or 
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individuals. The Firefly algorithm [11], cuttlefish optimization 

algorithm [12], and Lion Optimization Algorithm [13] are 

examples of this approach. This strategy is appropriate for 

global searching since it allows for both global exploration and 

local exploitation until stopping criteria are met.  

No matter how different MAs are, they all have one 

common trait: the searching steps have two phases: 

exploration (diversification) and exploitation (intensification) 

[14]. During the exploration phase, the algorithm should 

maximize and promote the use of its randomized operators in 

order to exhaustively investigate various regions of the search 

space. As a result, during the initial stages of the searching 

process, the exploratory behaviors of a well-designed 

algorithm should have an enriched-enough random character 

to effectively distribute more randomly-generated solutions to 

diverse areas of the problem topography [15]. The exploitation 

phase typically follows the exploration phase. The algorithm 

makes an effort to concentrate on the neighborhood of higher-

quality solutions inside the feature space during this phase. An 

efficient algorithm ought to be able to make a decent balance 

between exploration and exploitation. Consequently, the 

chance of becoming locked in local optima and the 

disadvantages of immature convergence rises [16]. 

As so many MAs have already been developed, the main 

question is whether or not there is still a need for more. The 

answer to this critical question is the No Free Lunch (NFL) 

theorem [17]. When it comes to solving optimization 

problems, some algorithms are more effective than others. The 

NFL theorem explains this fact because each real-world 

problem has its own unique characteristics and mathematical 

model. Therefore, there is no guarantee that a certain MA will 

solve all optimization problems in an efficient manner. 

Another important concern in the procedure for 

optimality-seeking is the randomness facility of the search 

space, which may not always produce adequate optimal 

solution. As a result, many MAs have been developed by 

researchers to provide acceptable optimal solutions, or at least 

as optimal as possible. Based on the foregoing, the authors of 

this study were inspired to propose a novel optimization 

method that can yield satisfactory results for a wide variety of 

optimization tasks.  

The novelty and contribution of this research is in the 

design of a new MA called the Giant Trevally Optimizer 

(GTO), which is based on the behavior and strategies of giant 

trevallies during hunting seabirds. Each step of the proposed 

GTO is outlined, and a mathematical model is provided. Forty 

objective functions of unimodal and multimodal types with 

different characteristics have been utilized to evaluate the 

effectiveness of the proposed GTO in optimization. 

Furthermore, GTO is applied to five complex engineering 

problems. Finally, the GTO’s performance is compared with 

other well-known optimization algorithms: Differential 

Evolution (DE) [18], Gravitational Search Algorithm (GSA) 

[19], Gray Wolf Optimization (GWO) [20], Moth Flame 

Optimization (MFO) [21], Particle Swarm Optimization 

(PSO) [22], and Whale Optimization Algorithm (WOA) [23] 

. 

The paper is organized as follows: section 2 describes the 

related works; section 3 explains the behavior of giant trevally 

with the proposed algorithm; section 4 presents the proposed 

flow chart and the pseudo code; and section 5 presents the 

results. Finally, section 6 discusses the main conclusions and 

findings. [24].  

 
II. RELATED WORKS 

In general, metaheuristics can be classified into four different 

categories: 

A. EVOLUTIONARY ALGORITHMS (EA) 

EAs are based on the principles of species evolution theory. 

The Genetic Algorithm (GA) is one of numerous EAs that fall 

within this group [24]. The concept of GA stems from 

Darwin's idea of natural selection. The main components of 

this algorithm are: selection, crossover, and mutation, which 

are used to produce new generations. Differential Evolution 

(DE) [18] is another method inspired by natural evolution. The 

DE algorithm consists of four basic steps: random 

initialization of the population, mutation, recombination, and 

finally selection. The main difference between the GA and the 

DE algorithm is in the selection process for generating the next 

generation.  

Inspired by the geographical dispersal of species, 

including patterns of movement and extinction, based on this 

occurrence, [25] came up with the Biogeography-based 

optimizer (BBO) algorithm, which is a population-based 

metaheuristic for global optimization. The Black Widow 

Optimization Algorithm (BWO) [26] is another evolutionary 

algorithm inspired by the evolution process of a spider 

population. Cannibalism is an essential part of this approach. 

Convergence occurs early in this stage because species with 

poor fitness are excluded. 

B. SWARM INTELLIGENCE (SI) ALGORITHMS 

SI refers to developing algorithms that are inspired by the 

collective behavior of diverse animal species. The most well-

known of these algorithms is Particle Swarm Optimization 

(PSO) [22] . The individual search agent is called a particle. 

Each particle has a velocity and a position vector allocated to 

it based on its social and individual experience.  

The foraging activity of real ants acts as the inspiration 

for Ant Colony Optimization (ACO) [27]. Ants conduct a 

random search for food in the direct proximity of their nest. 

Ants carry some of their food back to the nest as soon as they 

identify a food source that meets their needs. The ant leaves 

behind a chemical pheromone trail as it makes its way back. 

Depending on the amount and quality of food, the amount of 

pheromone deposited will lead other ants to the food source. 

ACO's inspiration comes from real ant foraging activity. 

Ants begin their food search by randomly scanning the area 

around their nest. As soon as an ant finds a food source, it 

examines the quantity and quality of the food and takes some 
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of it back to the nest. A chemical pheromone trail is left behind 

by the ant as it makes its way back. Depending on the amount 

and quality of food, the amount of pheromone deposited will 

guide other ants to the meal. The GTO that is proposed in this 

paper falls into this category, which mimics the hunting 

strategies of giant trevally marine fish. 

C. HUMAN-BASED-ALGORITHMS (HA) 

This category includes algorithms that are based on human 

behavior. Walking, talking, and others, as well as mental 

processes, are all incorporated into the algorithms. An 

example of this class of algorithms is the Gaining Sharing 

Knowledge based algorithm (GSK) [28], which mimics the 

process of gaining and sharing knowledge during the human 

life span. To accomplish optimization, GSK uses two 

mathematical models: a junior gaining and sharing phase and 

a senior gaining and sharing phase. Another important 

algorithm for this category is Teaching–Learning-Based 

Optimization (TLBO) [29]. TLBO takes its inspiration from 

the natural teaching-learning phenomenon of a classroom and 

is divided into two parts. The first part consists of the ‘Teacher 

Phase’ and the second part consists of the ‘Learner Phase’. 

D. SCIENCE-BASED-ALGORITHMS (SCA) 

Modeling physical occurrences or chemical rules is the focus 

of science-based algorithms (e.g., ion motion, gravity, 

electrical charges, etc.). Simulated annealing (SA) [10], 

Charged System Search (CSS) [30], gravitational search 

algorithm (GSA) [19], Galaxy-based Search Algorithm 

(GbSA) [31], heat transfer search [32], Curved Space 

Optimization [33], Gases Brownian motion optimization [34], 

and Central Force Optimization (CFO) [35] are regarded as 

the most popular SCAs. It’s worth noting here, that Table 1 

summarizes several recent MAs.  

 
III. GIANT TREVALLY OPTIMIZER (GTO) 

This section provides a description of the proposed MA, which 

derives its inspiration from nature and is called the Giant 

Trevally Optimizer (GTO). 

A. INSPIRATION AND BEHAVIOR OF GIANT TREVALLY 
DURING HUNTING: 

The giant trevally (Caranx ignobilis) is a large marine predator 

in the jack family. It is also called the giant kingfish. They are 

abundant in the Indian and Pacific oceans, such as areas 

around Australia and New Zealand. They are also found off 

the East Africa and around the Hawaiian Islands [36]. 

Giant trevally is usually silver with some dark spots. It 

can be recognized by its sharp head, strong tail scutes, and 

numerous additional anatomical details. Their height can 

reach up to 170 cm and 80 kg of weight. Their daily diet 

consists of fish, cephalopods, crustaceans, and birds [37]. 

Literature investigated the movement of giant trevallies 

within their ecosystems and between habitats as the search 

space expands. Some data suggests that adult giant trevallies 

make daily and seasonal movements of up to 9 kilometers 

within their roaming range [38]. Juveniles can migrate up to 

70 kilometers from their home atolls and reefs [39].  
In most of its habitats, the giant trevally is a top predator 

and uses intelligent ways to hunt. The Giant trevally is known 

to hunt alone and in groups (schools). According to [40], 

grouped (schooled) predators are most effective at capturing 

schooled prey. The most effective member of a group or 

school at capturing prey is the leader, or first predator. 

During the dry season, over half a million terns crowd 

onto one of the remote atolls in the Indian Ocean. It was 

reported that about fifty giant trevallies come from 

neighboring reefs, attracted by this abundance of potential 

prey where the juvenile terns start learning to fly. After 

specifying the hunting area, the giant trevally starts to stalk 

(chase) its prey, then jumps out of the water and catches the 

prey (seabird).  

These novel hunting strategies of foraging moving 

patterns, choosing the appropriate area in term of quantity of 

food and jumping out of water to attack and catch the prey 

where the main inspiration in the design of the GTO.  

B. INITIALIZATION 

Similar to other population-based MAs, GTO starts the 

optimization process by randomly generating initialization 

solutions called giant trevallies. In GTO, each giant trevally is 

a feasible or a candidate solution to the optimization problem. 

From a mathematical perspective, each member of the 

population is a vector, and these vectors constitute the 

population matrix of the algorithm. The GTO population 

members are modeled according to (1): 

𝑋 =

[
 
 
 
 
𝑋1

⋮
𝑋𝑖

⋮
𝑋𝑁]

 
 
 
 

𝑁×𝐷𝑖𝑚

=

[
 
 
 
 
𝑥1,1 … 𝑥1,𝑗 … 𝑥1,𝐷𝑖𝑚

⋮ ⋱ ⋮ ⋰ ⋮
𝑥𝑖,1 … 𝑥𝑖,𝑗 … 𝑥𝑖,𝐷𝑖𝑚

⋮ ⋰ ⋮ ⋱ ⋮
𝑥𝑁,1 … 𝑥𝑁,𝑗 … 𝑥𝑁,𝐷𝑖𝑚]

 
 
 
 

𝑁×𝐷𝑖𝑚

  (1) 

 

Where, 𝑋 is the candidate solution of GTO, 𝑋𝑖 is the 𝑖𝑡ℎ 

candidate solution of GTO, 𝐷𝑖𝑚 is the number of decision 

variables of given problem, 𝑁 is the number of GTO members, 

𝑥𝑖,𝑗 is the value of the 𝑗𝑡ℎ variable specified by the 𝑖𝑡ℎ 

candidate solution.  

Once the number of population and number of dimensions 

have been selected, they will remain the same for the duration 

of the experiment. It is necessary to randomly assign positions 

to each trevally in the problem's solution space before they can 

begin to function. This random assignment must cover all 

feasible regions in the 𝑁 × 𝐷𝑖𝑚 search space, as shown in the 

following equation: 

𝑋𝑖,𝑗 = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑗 + (𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑗 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑗) × 𝑅  (2) 

Where 𝑖 = 1,2, . . . , 𝑁 and 𝑗 = 1,2, . . . , 𝐷𝑖𝑚, 𝑅 is a random 

number in the interval [0,1]. 
𝑀𝑎𝑥𝑖𝑚𝑢𝑚𝑗 , 𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑗  represent the restrictions on the 

defined problem for the 𝑗𝑡ℎ dimension i.e., the maximum and 

minimum value that a population member can have.  

As previously stated, each population member in the 

suggested GTO is a candidate solution to the presented 
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problem. As a result, the objective function of the given 

problem can be assessed using each of the candidate solutions. 

According to (3), a vector is used to represent the set of these 

values: 

𝐹 =

[
 
 
 
 
𝐹1

⋮
𝐹𝑖

⋮
𝐹𝑁]

 
 
 
 

𝑁×1

= 

[
 
 
 
 
𝐹(𝑋1)

⋮
𝐹(𝑋𝑖)

⋮
𝐹(𝑋𝑁)]

 
 
 
 

𝑁×1

  (3) 

Where 𝐹𝑖 denotes the 𝑖𝑡ℎ member's value of the objective 

function, and 𝐹 indicates the collection of these values as the 

objective function vector. 

C. MATHEMATICAL MODEL OF THE PROPOSED GTO 

The proposed GTO algorithm mimics the behavior of giant 

trevallies during hunting seabirds. Consequently, the 

optimization procedures of the proposed GTO algorithm are 

represented in three steps: extensive search using Levy flight, 

choosing area step to determine the hunting area, and chasing 

and attacking the prey by jumping out of the water. Hence, the 

exploration phase of the GTO is represented in the first two 

steps, and the third one represents the exploitation phase of the 

GTO. The giant trevally when hunting in the nature is shown 

in Fig.1. 

FIGURE 1.  Giant trevally jumping out of the water and attacking the sooty 

tern.  

1) STEP 1: EXTENSIVE SEARCH 

If we consider the nature of giant trevallies, and as mentioned 

earlier, giant trevallies can travel long distances for their daily 

diet. Hence, in this step, foraging movement patterns of giant 

trevallies are simulated using (4): 

𝑋(𝑡 + 1) = 𝐵𝑒𝑠𝑡𝑃 × 𝑅 + ((𝑀𝑎𝑥𝑖𝑚𝑚 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚) × 𝑅 +

𝑀𝑖𝑛𝑖𝑚𝑢𝑚) × 𝐿𝑒𝑣𝑦(𝐷𝑖𝑚)    (4) 

where 𝑋(𝑡 + 1) is the next-iteration giant trevally position 

vector, 𝐵𝑒𝑠𝑡𝑃  indicates the current search space chosen by 

giant trevallies based on the best position determined during 

their last search, R is a random number that takes a value 

between 0 and 1. 𝐿𝑒𝑣𝑦(𝐷𝑖𝑚) is the Levy flight, which is a 

special class of non-Gaussian stochastic process whose step 

sizes are determined by the so-called Levy distribution [41]. 

The ability of the algorithm to perform a global search is aided 

by the occasional large steps it takes. Furthermore, the main 

advantages of using Levy flight are the avoidance of local 

optima and the improvement of the convergence rate [42]. 

In this regard, it’s worth mentioning here that many literatures 

have shown that the behavior of Levy flight is exhibited by a 

wide variety of animals, including marine predators [43] [44]. 

𝐿𝑒𝑣𝑦(𝐷𝑖𝑚) be calculated using (5): 

𝐿𝑒𝑣𝑦(𝐷𝑖𝑚) = 𝑠𝑡𝑒𝑝 ×
𝑢×𝜎

|𝑣|
1

𝛽⁄
   (5) 

Where 𝑠𝑡𝑒𝑝 is the step size and fixed to 0.01, 𝛽 is the index 

of the Levy flight distribution function that can take values 

from 0 to 2 and has been set to 1.5 in this paper, 𝑢 and 𝑣 are 

random numbers normally distributed in the range (0,1). 𝜎 is 

calculated by using (6): 

𝜎 = (
Γ(1+𝛽)×𝑠𝑖𝑛𝑒(

𝜋𝛽

2
)

Γ(
1+𝛽

2
)×𝛽×2

(
𝛽−1

2 )
)     (6) 

2) STEP 2: CHOOSING AREA 

In the choosing area step, giant trevallies identify and select 

the best area in terms of the amount of food (seabirds) within 

the selected search space where they can hunt for prey. 

Equation (7) simulates this behavior mathematically. 

𝑋(𝑡 + 1) = 𝐵𝑒𝑠𝑡𝑃 × 𝒜 × 𝑅 + 𝑀𝑒𝑎𝑛_𝐼𝑛𝑓𝑜 − 𝑋𝑖(𝑡) × 𝑅 (7) 

where 𝑋(𝑡 + 1) is the position vector of giant trevallies in the 

next iteration t, 𝒜 is a position-change-controlling parameter 

with a range from 0.3 to 0.4. 𝑋𝑖(𝑡) is the location of the giant 

trevally i, at time t (current iteration). Meanwhile, 𝑀𝑒𝑎𝑛_𝐼𝑛𝑓𝑜 

which refers to the mean, indicates that these giant trevallies 

have used up all the available information from the previous 

points and can be calculated using (8).  

𝑀𝑒𝑎𝑛_𝐼𝑛𝑓𝑜 =
1

𝑁
 ∑ 𝑋𝑖(𝑡)𝑁

𝑖=1   (8) 

The effectiveness of the choosing area step, i.e., (7), has been 

evaluated using the Sphere function with 10 solutions (search 

agents) and five iterations. Fig. 2 illustrates that using the best 

points and the mean as a basis for the choosing area step 

enhances the quality of all solutions. Fig. 2f shows that all the 

search agents are located near the best point. 
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(a)             (b)  

 

(c)             (d) 

(e)             (f) 

 
FIGURE 2.  a) Random population of 10 solutions. b) Choosing area after one iteration.  

c) Choosing area after two iterations. d) Choosing area after three iterations.  

e) Choosing area after four iterations. f) Choosing area after five iterations. 
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3) STEP 3: ATTACKING 

In the previous step and after specifying the best area for 

hunting. In this step, which represents the exploitation 

(intensification) phase of the GTO, the trevally starts to chase 

the bird (prey). Here, and finally, the trevally attacks the bird 

when it gets close enough to the bird by making an acrobatic 

jump out of the water and catching the bird.  

In order to simulate the behavior of giant trevally during 

chasing and attacking the prey, it was assumed in GTO that 

trevallies are affected by visual distortion, which is mainly 

caused by the refraction of light. Refraction of light is the 

deflection of the trajectory of a light wave as it traverses the 

interface between two media, such as water, glass, and air. As 

shown in Fig. 3, light from point A in the 1st medium enters 

the 2nd medium through the intersection point S, hence the 

refraction occurs and arrives point B at last. It should be 

mentioned here that when light moves from a rarer medium 

like air to a denser medium like water, it bends toward the 

normal as it enters the denser medium of water. According to 

Snell’s law [45], both the incident ray and the refracted ray 

must form an angle with the normal to the surface at the point 

of refraction. The medium that the light rays are traveling 

through also plays a significant role. Snell's Law makes this 

connection clear with the use of refractive indices, which are 

fixed values for certain media. 

FIGURE 3.  Principle of light refraction. 

 

In GTO, as indicated in fig. 4, the bird is behaving as an object 

and the giant trevally is acting as an observer. The visual 

distortion is represented by the dashed line in Fig. 4, which 

indicates the apparent (false) height of the bird, which is 

always seen to be higher than it is actual height due to the 

refraction of the light. 

 

 

 

 

 

 

 

 

 

FIGURE 4.  Visual Distortion in GTO. 

Here, if we know the angle of incidence, it is possible to 

predict what the angle of refraction will be, and likewise, if we 

know the angle of refraction, it is possible to predict the angle 

of incidence. The Snell’s law is demonstrated below in (9). 

𝜂1 sin 𝜃1 = 𝜂2 sin 𝜃2    (9) 

Where 𝜂1 = 1.00029 and 𝜂2 = 1.33 represents the absolute 

refractive index of air and water, respectively, whereas 𝜃1 and 

𝜃2 represents the angle of incidence and angle of refraction 

respectively. 𝜃2 is a random number in the interval [0, 360]. 
From (9), 𝜃1 can be calculated using below (10): 

sin 𝜃1 =
𝜂2

𝜂1
 sin 𝜃2    (10) 

Then, the visual distortion 𝒱 can be calculated using (11): 

𝒱 =  𝑠𝑖𝑛 (𝜃1
°) × 𝒟   (11) 

Where 𝑠𝑖𝑛 is the sine of variable in degrees, 𝒟 is the distance 

between the prey and the attacker, and can be calculated using 

(12):   

𝒟 = |(𝐵𝑒𝑠𝑡𝑃 − 𝑋𝑖(𝑡))|   (12) 

Where 𝐵𝑒𝑠𝑡𝑃  is the best-obtained solution so far; it represents 

the location of the prey.   

Then the behavior of giant trevally when chasing and jumping 

out of the water is mathematically simulated using (13).   

𝑋(𝑡 + 1) = ℒ + 𝒱 + ℋ   (13) 

Where 𝑋(𝑡 + 1) is the solution of the next iteration of 𝑡, which 

is generated by the attacking step, ℒ represents the launch 

speed to simulate chasing the bird and can be calculated using 

(14): 

ℒ = 𝑋𝑖(𝑡)  × 𝑠𝑖𝑛 (𝜃2
°) × 𝐹_𝑜𝑏𝑗(𝑋𝑖(𝑡))  (14) 

Where 𝐹_𝑜𝑏𝑗(𝑋𝑖(𝑡)) refer to the fitness value of 𝑋 at the 

current iteration 𝑡. 

The last term ℋ in (13) specifies the jumping slope function 

that enables the algorithm to adaptively perform an 

appropriate transition from the exploration phase to the 

exploitation phase and can be calculated using (15): 

ℋ = 𝑅 × (2 − 𝑡 ×
2

𝑇
)    (15) 

Where 𝑡 and 𝑇 refer to the current iteration and the maximum 

number of iterations respectively, 𝑅 is a random number and 

here refer to different motion sense of the giant trevally during 

exploitation step. 
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IV. PROPOSED FLOW CHART AND PSEUDO-CODE OF GTO 

In this section, the flowchart of GTO algorithm is illustrated in Fig. 5, Moreover, the pseudo-code of GTO is demonstrated in 

Algorithm 1. 

 

 
FIGURE 5.  The flowchart of GTO algorithm. 
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Algorithm 1: Giant Trevally Optimizer 

 

1. 𝐵𝑒𝑔𝑖𝑛 

2. Set value for 𝒜 parameter   

3. Specify the No. of giant trevallies: 𝑁   

4. Specify termination criteria, Max No. of iterations 

(𝑇) 

5. Randomly generate population of giant trevally (𝑋) 

using (2) 

6. 𝑓𝑜𝑟 𝑡 = 1: 𝑇 

7. Calculate objective function for each search agent 

𝑓(𝑋) 

8. Sort the population 

9. Determine the global best solution (𝐵𝑒𝑠𝑡𝐺)  

10. Determine 𝐵𝑒𝑠𝑡𝑃 as the location of prey (best 

location) 

11. 𝑓𝑜𝑟 𝑖 = 1:𝑁 

12. Extensive Search Step: 

13. Calculate Levy flight distribution function 𝐿𝑒𝑣𝑦 

using (5) and (6) 

14. Calculate new best position 𝐵𝑒𝑠𝑡𝑁𝑃 using (4) 

15. 𝑖𝑓 𝑓(𝐵𝑒𝑠𝑡𝑁𝑃) < 𝑓(𝑋(𝑖, : )) 

16. 𝑋(𝑖, : ) = 𝐵𝑒𝑠𝑡𝑁𝑃 

17. 𝑖𝑓 𝑓(𝐵𝑒𝑠𝑡𝑁𝑃) < 𝑓(𝐵𝑒𝑠𝑡𝑃) 

18. 𝐵𝑒𝑠𝑡𝐺 = 𝐵𝑒𝑠𝑡𝑁𝑃  

19. 𝐸𝑛𝑑 𝑖𝑓 

20. 𝐸𝑛𝑑 𝑖𝑓 

21. Choosing area step: 

22. Calculate mean of 𝑋 using (8) 

23. Calculate 𝐵𝑒𝑠𝑡𝑁𝑃 using (7) 

24. Repeat steps 15 to 20 

25. Attacking step: 

26. Calculate visual distortion 𝒱 using (11)  

27. Calculate launch speed ℒ using (14) 

28. Calculate 𝐵𝑒𝑠𝑡𝑁𝑃 using (13) 

29. Switch from exploration to exploitation using (15) 

30. Repeat steps 15 to 20 

31. 𝐸𝑛𝑑 𝑓𝑜𝑟 

32. Postprocess best solution and visualization 

33. 𝐸𝑛𝑑 

 
V. EXPERIMENTAL ANALYSIS AND RESULTS 

To appropriately validate the performance of the GTO 

algorithm, two sets of experiments are conducted, and the 

experimental results provided by GTO are assessed and 

compared to those provided by other algorithms. 

Case 1: The first experiment evaluates the performance of 

algorithms from multiple perspectives using forty benchmark 

test functions with various types of characteristics. 

Case 2: The effectiveness of the GTO algorithm is evaluated 

in the second experiment using five challenging engineering 

design optimization problems. 

 

 

 

A. BENCHMARK TEST FUNCTIONS 

Forty benchmark functions, which are presented in Appendix 

A and are fully described in [46] [47], are used in this 

experiment. The two main classes of functions are represented 

in this sizeable test suite: unimodal functions with separable 

and non-separable characteristics; and multimodal functions 

also with separable and non-separable characteristics. Since 

unimodal functions only have a single global optimum, they 

are well-suited for evaluating the exploitative (intensification) 

capabilities of algorithms, whereas multimodal functions, 

which can have many different solutions, can be used to test 

the algorithms' abilities to explore (diversification) and avoid 

local optimums. 

The separable property demonstrates that the variables 

can be decomposed into a product of functions of each 

variable, whereas the non-separable property does not allow 

for this decomposition due to the interdependence of the 

variables. The non-separable property makes it more 

challenging to identify the global optimum. It is worth noting 

here that of the 40 functions used in the case 1 experiment, 16 

functions are unimodal, 4 of them are separable, the rest are 

non-separable, and 24 functions are multimodal, 6 functions 

are separable, and 18 of them are non-separable. 

The performance of GTO is compared with those of six 

different meta-heuristic algorithms, including DE, GSA, 

GWO, MFO, PSO, and WOA. Each optimizer is run 30 times 

for each function, and the population size and number of 

iterations are each set to 30 and 1000, respectively. Table 2 

lists the parameters used by each algorithm. 

 

TABLE 2: Parameter settings for each algorithm. 

Algorithm Parameter Value 

DE Scale factor, crossover rate 0.5, 0 

PSO Social and cognitive 

parameters, inertia weight 

2, 2, decrease 

from 0.9 to 0.4 

GSA 𝐺0, 𝐴𝑙𝑝ℎ𝑎 coefficient 100, 20 

GWO Convergence parameter 𝑎 2→0 

WOA Convergence parameter 𝑎, 

constant variable 𝑏 

2 → 0, 1 

MFO Convergence parameter 𝑎, 

logarithmic factor 𝑏 

-1→ -2, 1 

GTO 𝒜, ℋ 0.4, 2→0 

 

In this experiment, we compare all of the candidate algorithms 

based on two criteria, the mean "Mean" and the standard 

deviations "Std" of the best solutions: 

𝑀𝑒𝑎𝑛 =
1

𝑅𝑢𝑛
∑ 𝐵𝑒𝑠𝑡𝐺

𝑅
𝑖=1     (16) 

𝑆𝑡𝑑 = √
1

𝑅𝑢𝑛
(𝐵𝑒𝑠𝑡𝐺 − 𝑀𝑒𝑎𝑛)2   (17) 

 

Where 𝐵𝑒𝑠𝑡𝐺  is the global solution, 𝑀𝑒𝑎𝑛 is the average 

solution obtained in the 𝑖𝑡ℎ independent run and 𝑅𝑢𝑛 is the 

number of independent runs. It's evident that the algorithm 
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can come up with more reliable and stable solutions when 

the values of the two evaluation criteria are smaller.  

Based on the data in Table 3, it is clear that the GTO 

algorithm is the most effective optimizer and produces the 

best results in terms of mean of objective functions and 

standard deviation. It was the most efficient optimizer for 8 

out of 16 benchmark functions (4, 8, 11, 12, 13, 14, 15, and 

16) and provides the best results with at least one of the 

competitive algorithms in five functions (1, 2, 3, 6, and 7). 

For the remaining three functions, GTO came in second 

place, with slightly different results. Consequently, the 

proposed GTO algorithm is sufficient to produce excellent 

exploitation. Note that throughout all the comparison tables 

in this paper, the bold type indicates the best results. 

When evaluating the exploration capability of an 

optimization algorithm, multimodal functions prove to be 

extremely helpful. Optimization of these types of functions 

(i.e., separable and non-separable multimodal functions) is 

extremely difficult because local optima can only be avoided 

through an adequate balance between diversification and 

intensification. 

GTO has a very good exploration capability, according 

to the results for functions 17–40 reported in Table 4. In fact, 

the proposed algorithm consistently ranks first or second in 

the vast majority of test problems. This is as a result of 

integrated exploration mechanisms in the proposed GTO that 

guide this algorithm in the direction of the optimum global. 

Fig. 6 displays the comparison of convergence rate 

changes on several benchmark functions, which 

demonstrates that GTO was able to find the optimal solution 

faster than the other algorithms in the early stages of the 

course of iteration. To explain this, thanks to the second step 

of GTO, which guides the search agents to the near global 

solutions as was demonstrated earlier, also the adaptive 

parameter in the third step of the algorithm make it possible 

for the search agents to exploit in an efficient manner. 

1) SCALABILITY ANALYSIS 

As the number of dimensions used in an algorithm increase, 

the algorithm's performance is subject to fluctuations, making 

scalability an essential criterion to observe. Previous section 

experimental results show that GTO converges well to low-

dimensional benchmark functions. Unfortunately, many 

algorithms struggle to deal with the complex high-

dimensional optimization problems that are common in real-

world applications. The GTO is then used to solve 16 

benchmark functions F1-F16 in dimensions (100, 500, and 

1000) to further validate the efficacy of the proposed method 

for high dimensional optimization. Tables 5, 6, and 7 detail the 

outcomes of each of the seven algorithms, with the same 

parameter settings as the previous experiments. 

The results of GTO are considerably better than those of 

the other six algorithms in dealing with high-dimensional 

functions. For functions: 1, 2, 3, 6, 7, 9, 10, 11, and 12, it was 

noticed that GTO always produces the global optima 

regardless of the number of dimensions. These findings 

demonstrate that GTO is not affected by the so-called "curse 

of dimensionality." 

The main reasons behind this stable performance and 

these outstanding results are the proper balance between 

exploration and exploitation. Additionally, the extensive 

search step, plays an important role in these kinds of problems 

and ensures that new feasible points are found in order to 

prevent stagnation in local optima.  

2) STATISTICAL ANALYSIS 

Reporting optimization results of objective functions with 

mean and standard deviation indices allows for meaningful 

comparison and evaluation of optimization algorithms. 

However, it's still possible for one algorithm to be randomly 

superior to several others, even after several separate 

executions. Hence, a Wilcoxon sum rank test [48] is presented 

in this section to statistically demonstrate the GTO's 

superiority over six competing algorithms. Two samples can 

be compared for their similarity using the Wilcoxon sum rank 

test, a non-parametric statistical test. This test establishes 

whether or not the difference between two samples is 

statistically significant.  

This analysis uses a metric known as 𝑝-value to determine 

if the corresponding algorithm is significantly better than the 

other. The results of the simulation test comparing the 

proposed GTO to all other competing algorithms are shown in 

Table 8. If the 𝑝-value < 0.05, the proposed GTO 

outperforms the competing algorithm for that set of objectives. 

As it is clear from Table 8, GTO outperforms all other 

algorithms according to the obtained pairwise 𝑝-value. 

 

 

 

 

 

 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3223388

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

VOLUME XX, 2017 1 

TABLE 8. 𝒑-values obtained from Wilcoxon sum rank test on table 

3, and 4 benchmark functions. 

Compared Algorithms Table 3 Table 4 

GTO vs DE 6.103516E-05 1.056959E-02 

GTO vs GSA 1.508582E-02 3.285842E-03 

GTO vs GWO 6.713867E-03 5.980582E-04 

GTO vs MFO 6.103516E-04 1.174976E-03 

GTO vs PSO 6.133369E-03 5.991194E-04 

GTO vs WOA 4.199219E-02 9.350911E-04 

 

The 𝑝-value obtained when comparing GTO to other state-of-

the-art algorithms with various dimensionality scales, as 

shown in Table 9, is another confirmation of the significant 

superiority of GTO. 

TABLE 9. 𝒑-values obtained from Wilcoxon sum rank test on scalability 

analysis with dimensions 100, 500, and 1000. 

Compared 

Algorithms 

Dimensions 

100 500 1000 

GTO vs DE 4.377772E-

04 

4.381111E-04 4.387772E-04 

GTO vs GSA 6.430412E-

04 

6.441412E-04 6.430414E-04 

GTO vs GWO 8.544922E-

04 

1.708984E-03 6.103516E-05 

GTO vs MFO 6.103516E-

04 

6.113716E-04 6.104517E-04 

GTO vs PSO 9.725524E-

03 

3.204586E-03 8.360654E-03 

GTO vs WOA 1.708984E-

03 

4.638672E-03 2.148438E-02 

 

3) QUALITATIVE AND QUANTITATIVE ASSESSMENT 

We have so far addressed the performance and the results in 

terms of exploration (diversification) and exploitation 

(intensification). Even though these results demonstrate 

inferentially that the GTO algorithm converges to a point in a 

problem space and enhances initial solutions, we investigate 

the convergence of the proposed optimizer in more detail in 

the following sections. Hence, four metrics are calculated and 

discussed to confirm the convergence of the GTO algorithm: 

• Search space history 

• Trajectory of the first giant trevally in its first dimension 

• Average fitness of all giant trevallies 

• Convergence rate 

The tests are repeated using 10 giant trevallies over 100 

iterations on some of the benchmark functions. Fig. 7 presents 

the findings.  

The first criterion is a qualitative indicator of change over 

time in the sampled points. In Fig. 7. The black dots represent 

the optimization samples. The giant trevallies appear to follow 

a similar pattern across all test functions, probing promising 

areas of the search space and exploiting with high precision 

close to global optimums. These outcomes the effectiveness of 

the GTO algorithm in estimating global optimums of 

optimization problems.  

The second metric displays the evolution of the initial 

giant trevally's first dimension over the course of iterations; it 

is also a qualitative metric. With the help of this metric, we 

can see if the first giant trevally (as a stand-in for all giant 

trevallies) undergoes unpredictable changes in the early 

iterations and smoother changes in the later iterations. In 

addition, the fluctuations are seen to decrease over the course 

of iteration, a behavior that ensures a smooth transition 

between diversification and intensification. 

The third metric is a quantitative average of all giant 

trevallies' fitness over the class of the iterative process. 

Certainly, the average fitness should enhance as the number of 

iterations progresses if the algorithm is successful in 

improving its candidate solutions. Based on the average fitness 

curves depicted in Fig. 7, it appears that the GTO algorithm 

has decreased fitness across the board for the test functions. 

The search agents get better and better over time, as evidenced 

by the decreasing average fitness curves, which is another fact 

worth mentioning here. Since the GTO algorithm adaptively 

switches between exploration and exploitation, the giant 

trevallies tend to converge with an increasing number of 

iterations. Also, this behavior is enabled by the powerful 

mechanism in the choosing area step of the proposed GTO.  

The convergence rate of the GTO algorithm is the final 

quantitative comparison criterion presented here. After each 

iteration, we record the fitness of the leading giant trevally and 

plot their convergence curves in Fig. 7. Consistently 

decreasing fitness indicates that the GTO algorithm is 

convergent. It is also important to note that the accelerated 

degradation can also be observed in convergence curves, due 

to the previously mentioned reason.  

In conclusion, this section provided experimental proof 

that the GTO algorithm achieves competitive results, and in 

most cases, even better performance, compared to other 

metaheuristic algorithms. Furthermore, two qualitative and 

two quantitative indicators were used to experimentally 

demonstrate the GTO algorithm's convergence. Therefore, it 

can be stated that the suggested GTO method will be effective 

in tackling real-world problems.  
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FIGURE 7.  Search history, trajectory of 1st GTO, mean fitness of all GTO, convergence analysis. 

 

B. CASE 2: ENGINEERING DESIGN OPTIMIZATION 
PROBLEMS (EDOP) 

To further investigate the applicability of GTO, five 

engineering design optimization problems (EDOP), which 

employ a wide variety of challenges, are implemented, and the 

findings are discussed here. Metaheuristic algorithms are not 

designed to solve constraint optimization problems directly 

[49], so this paper uses the straightforward death penalty 

technique to transform the original problems from their 

constrained to their unconstrained form.  

It's worth mentioning here that the number of population 

sizes is set to 30 and the maximum number of iterations is set 

to 3000. All algorithms are executed for 30 independent runs 

for all EDOP. All DEOP are described mathematically in 

Appendix B. 

1) CANTILEVER BEAM 

This challenging problem is an illustration of the 

optimization of the mass of a cantilever beam with a square 

cross section, and it arises in the field of structural 

engineering [50]. As can be seen in Fig. 8, the beam is stably 

supported at one end, and a vertical force is exerted at the 

cantilever's free node. The beam is made up of five cubes 

with a fixed thickness (2/3) in this case. Thus, the objective 

of this design is to minimize the weight of the beam. 

Table 10 presents the best solutions to this problem, as 

determined by the GTO and other meta-heuristic algorithms. 

We can see that the GTO yields a superior solution compared 

to the alternatives. In addition, Table 11 compares the 

statistical results of the GTO algorithm with those of other 

methods, demonstrating that the GTO yields a more precise 

result based on the best, mean, and the standard deviation 

indicators. 

TABLE 10. Comparison of the best results of the cantilever beam 

design. 

 GTO DE GSA GWO MFO PSO WOA 

𝒇𝒙 1.33654

1 

1.34335

6 

1.33996

6 

1.33996

2 

1.34002

5 

1.33995

6 

1.34271

0 

𝒙𝟏 5.99672

4 

5.99614

9 

5.97155

2 

6.01540

8 

6.04598

5 

6.01642

2 

6.03893

7 

𝒙𝟐 5.32276

0 

5.26084

2 

5.37482

4 

5.31406

1 

5.29555

5 

5.30972

1 

5.28223

5 

𝒙𝟑 4.49241

2 

4.53196

1 

4.48290

5 

4.49103

5 

4.45908

7 

4.49462

2 

4.29083

4 

𝒙𝟒 3.51229

7 

3.53565

2 

3.50296

1 

3.50886

8 

3.51824

1 

3.50049

6 

3.70927

9 

𝒙𝟓 2.14980

1 

2.15139 2.14380

7 

2.14723

1 

2.15588

8 

2.15239

9 

2.19109

4 
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TABLE 11. Comparison of statistical results of the cantilever 

beam design. 

 GTO DE GSA GW

O 

MFO PSO WOA 

Bes

t 

1.336

541 

1.343

356 

1.339

966 

1.339

962 

1.340

025 

1.339

956 

1.342

710 

Me

an 

1.336

675 

1.359

551 

1.340

012 

1.339

985 

1.340

549 

1.339

958 

1.393

314 

Wo

rst 

1.336

857 

1.378

276 

1.340

152 

1.340

039 

1.342

187 

1.339

975 

1.515

978 

Std. 2.446

5e-05 

0.004

2 

6.337

1e-04 

6.287

9e-04 

7.317

6e-04 

6.238

6e-04 

0.010

4 

 

2) THREE-BAR TRUSS 

Minimizing the weight of a statically loaded three-bar truss 

is the goal of this practical example. The area of bars 1 and 

3 and the area of bar 2 are the two parameters of interest as 

shown in Fig. 9. In addition, there are multiple constraints 

placed on this design problem by deflection, stresses, and 

buckling [51]. 

Table 12 displays GTO's best performance in 

comparison to other algorithms. Table 6 shows that when 

compared to other methods, GTO produces results that are 

very competitive. Also, Table 13 shows the statistical 

findings obtained using these methods. It's clear that the 

GTO offers slightly better results than competing optimizers. 

The findings demonstrate that the GTO can perform well in 

a constrained environment. 

 

TABLE 12. Comparison of the best results of the three-bar truss 

design. 

 GTO DE GSA GWO MFO PSO WOA 

𝒇𝒙 263.8

9584 

263.8

9630 

263.8

9594 

263.8

9597 

263.8

9599 

263.8

9587 

263.8

9596 

𝒙𝟏 0.788

673 

0.788

666 

0.776

897 

0.788

928 

0.788

444 

0.713

045 

0.789

227 

𝒙𝟐 0.408

253 

0.408

249 

0.442

625 

0.407

716 

0.408

903 

0.442

56 

0.407

158 

 

TABLE 13. Comparison of statistical results of the three-bar truss 

design. 

 GTO DE GSA GW

O 

MFO PSO WOA 

Bes

t 

263.8

9584 

263.8

9630 

263.8

9594 

263.8

9597 

263.8

9599 

263.8

9587 

263.8

9596 

Me

an 

263.8

9592 

263.9

1707 

263.9

2366 

263.8

9765 

263.9

5871 

265.0

601 

263.9

2441 

Wo

rst 

263.8

9607 

263.9

8920 

264.0

5357 

263.9

0476 

264.5

4097 

268.0

0685 

264.0

224 

Std

. 

2.738

6e-05 

0.003

8 

0.005

0 

2.884

7e-04 

0.011

4 

0.212

5 

0.005

2 

 

3) GEAR TRAIN DESIGN 

The goal of this engineering design is to minimize the ratio 

cost of the gear train [52] depicted in Fig. 10. The design 

variables are the numbers of teeth on the gears, specifically 

nA(= x1), nB(= x2), nC(= x3), and nD(= x4). 

Table 14 shows that the proposed GTO finds a new 

optimal design cost for this problem. From Table 15, GTO 

obtains the best results in terms of best, mean, std, and even 

the worst result obtained by GTO is better than the best 

results obtained by all other optimizers. This proves that 

GTO can be effective in solving discrete problems as well.  

 

TABLE 14. Comparison of the best results of the gear train design. 

 GTO DE GSA GWO MFO PSO WOA 

𝒇𝒙 2.42E

-18 

9.75E

-10 

2.70E

-12 

2.70E

-12 

8.89E

-10 

2.31E

-11 

2.70E

-12 

𝒙𝟏 34.65

788 

31.06

397 

52.08

308 

39.96

404 

53.97

429 

51.18

068 

42.65

045 

𝒙𝟐 12 12 18.17

396 

19.84

126 

12 26.46

333 

15.93

899 

𝒙𝟑 12 12.01

193 

21.96

011 

14.04

941 

37.11

827 

15.45

01 

18.69

951 

𝒙𝟒 28.79

761 

32.16

129 

52.70

814 

48.76

423 

57.27

61 

53.26

366 

49.38

557 

 

 

TABLE 15. Comparison of statistical results of the gear train 

design.  

 GTO DE GSA GW

O 

MFO PSO WO

A 

Best 2.42E

-18 

9.75E

-10 

2.70E

-12 

2.70E

-12 

8.89E

-10 

2.31E

-11 

2.70E

-12 

Me

an 

6.89E

-15 

8.47E

-09 

2.54E

-10 

8.06E

-11 

1.03E

-08 

0.004

429 

8.88E

-10 

Wo

rst 

2.94E

-14 

5.52E

-08 

1.18E

-09 

9.92E

-10 

2.73E

-08 

0.021

025 

3.30E

-09 

Std. 5.367

2e-15 

1.007

8e-08 

2.154

4e-10 

1.811

1e-10 

4.984

3e-09 

0.003

8 

6.024

9e-10 

 

4) PRESSURE VESSEL DESIGN 

The purpose of this problem is to minimize the 

manufacturing costs, including material, forming, and 

welding of the cylindrical pressure vessel, whose schematic 

is shown in Fig. 11. The vessel has caps on both ends, and 

the head is hemispherical in shape. This design problem has 

four constraints and four variables, including the thickness 

of the shell 𝑇𝑠(= 𝑥1), the thickness of the head 𝑇ℎ(= 𝑥2), the 
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inner radius 𝑅(= 𝑥3), and the length of the cylindrical 

section, not including the head 𝐿(= 𝑥4) [53]. 

Table 16 displays the results of the competitive 

optimizers in terms of optimal values and optimal variables. 

According to the findings, GTO discovers a remarkably 

different structure than those found by other methods, which 

can lead to the lowest possible fabrication cost. Table 17 

verifies the robustness of the proposed algorithm, showing 

that the best statistical indicators are provided by the GTO.  

 

TABLE 16. Comparison of the best results of the pressure vessel 

design. 

 GTO DE GSA GWO MFO PSO WOA 

𝒇𝒙 5889.

5 

5921.

126 

6156.

492 

6060.

177 

6059.

714 

5984.

972 

6069.

587 

𝒙𝟏 0.778

834 

0.807

383 

1.056

348 

12.85

594 

13.39

113 

0.832

568 

19.88

446 

𝒙𝟐 0.385

442 

0.399

34 

0.522

153 

7.401

851 

7.205

682 

0.411

539 

0.510

008 

𝒙𝟑 40.34

289 

41.81

368 

54.73

306 

42.09

885 

42.09

845 

43.13

826 

65.22

63 

𝒙𝟒 199.6

848 

180.2

459 

64.72

945 

176.6

336 

176.6

366 

164.1

641 

10.00

016 

 

 

 

 

TABLE 17. Comparison of statistical results of the pressure 

vessel design. 

 GTO DE GSA GW

O 

MFO PSO WOA 

Bes

t 

5889.

5 

5921.

126 

6156.

492 

6060.

177 

6059.

714 

5984.

972 

6069.

587 

Me

an 

5967.

494 

6196.

557 

6502.

55 

6343.

283 

6553.

519 

6316.

036 

7042.

849 

Wo

rst 

6175.

568 

6971.

786 

7419.

475 

7581.

062 

7412.

96 

6750.

757 

8443.

797 

Std. 14.23

97 

56.06

07 

111.9

271 

82.84

91 

121.2

327 

77.87

45 

210.5

718 

 

5) PISTON LEVER DESIGN 

The basic purpose of piston lever design is to specify the 

location of the piston elements: 𝐻(= 𝑥1), 𝐵(= 𝑥2), 𝐷(=

𝑥3), and 𝑋(= 𝑥4) by setting the volume of oil to a minimum 

while the piston lever is raised from 0° to 45°as depicted in 

Fig. 12 [54]. 

The best results for competitive algorithms are shown in 

Table 18, which indicates a very close optimal solution has 

been provided by all the methods. Looking at Table 19, 

again, we can see that GTO is able to provide the best 

average result and superior results compared to other 

methods. 

TABLE 18. Comparison of the best results of the piston lever 

design. 

 GTO DE GSA GWO MFO PSO WOA 

𝒇𝒙 8.412

70 

8.412

72 

8.453

428 

8.415

263 

8.412

698 

8.412

698 

8.449

975 

𝒙𝟏 0.05 0.05 230.6

226 

0.050

251 

0.05 0.05 0.051

874 

𝒙𝟐 2.052

859 

2.229

121 

277.9

328 

2.042

033 

2.041

514 

2.041

514 

2.045

915 

𝒙𝟑 4.089

713 

4.455

794 

73.35

033 

4.083

365 

4.083

027 

4.083

027 

4.085

849 

𝒙𝟒 119.6

391 

100.2

813 

0.895

566 

119.9

851 

120 120 119.9

579 

 

TABLE 19. Comparison of statistical results of the piston lever 

design. 

 GTO DE GSA GW

O 

MFO PSO WOA 

Bes

t 

8.412

70 

8.412

72 

8.453

428 

8.415

263 

8.412

698 

8.412

698 

8.449

975 

Me

an 

9.616

84 

150.9

143 

80.93

964 

57.76

063 

33.65

24 

151.5

667 

37.25

455 

Wo

rst 

12.92

728 

1036.

329 

635.9

648 

167.5

857 

201.5

324 

167.4

727 

184.2

112 

Std. 0.219

8 

26.01

71 

13.24

15 

9.009

7 

4.608

1 

26.13

62 

5.265

8 

 

 

 

VI. CONCLUSIONS AND FUTURE WORK 

This paper presented a novel swarm-based metaheuristic 

algorithm inspired by the hunting behavior of giant 

trevallies. The proposed algorithm (named as GTO, Giant 

Trevally Optimizer) included three steps to simulate the 

behavior of giant trevallies. The steps are: extensive search 

(exploration), choosing area (exploration), chasing and 

attacking the prey (exploitation). 

To investigate the exploration and exploitation 

capabilities of the proposed algorithm, two different sets of 

experiments were employed. The first experiment consisted 

of forty benchmark functions with a wide variety of 

characteristics, such as unimodal, multimodal, separable, 

and non-separable. The obtained results are compared with 

some other well-known MAs, and it was observed that the 

proposed GTO provides better results according to the mean, 

the standard deviation values, and the Wilcoxon sum rank 

test, which has been made to ensure that the results are not 

gained by chance. Furthermore, qualitative and quantitative 

assessment of the results using extra indicators has been 
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presented in this paper to check and confirm the convergence 

of the proposed optimizer in more detail. 

The second experiment consists of five challenging 

engineering design optimization problems, to check the 

validity of the GTO to be applied to real-world problems. 

The problems were cantilever beam design, three-bar truss 

design, gear train design, pressure vessel design, and piston 

lever design. It is worth mentioning here that GTO showed 

very powerful and reliable performance when compared to 

other well-known MAs.  

Finally, several research directions can be suggested for 

further. Firstly, a multi-objective version of GTO to deal 

with NP-hard problems such as travelling salesman person. 

Secondly, GTO can be applied to tackle further challenging 

real-world problems and a diverse range of applications such 

as feature selection, image processing, and COVID-19 

modeling. Last, but not least, the proposal for the binary 

version of the GTO. 

 

 

 

 

 

 

 

TABLE 1. Some Recent MAs. 

Category Algorithm Ref. Inspiration Objective 

EA 

Tree growth algorithm. [55] Inspired by the struggle of trees to 

obtain light and sustenance. 

Global optimization, engineering 

optimization Problems. 

Invasive tumor growth 

optimization algorithm. 

[56] Inspired by invasive tumor 

growth. 

Global optimization, support vector 

machine. 

Virus spread 

optimization. 

[57] Motivated by the contagious 

nature of viruses. 

Global optimization, real world 

applications, classification 

problems. 

SI 

Bald eagle algorithm. [58] Bald eagle hunting strategies.  Global optimization. 

Dwarf mongoose 

optimization algorithm. 

[59] The dwarf mongoose's foraging 

style. 

Global optimization, engineering 

optimization problems. 

Northern goshawk 

optimization. 

[60] Northern goshawk techniques 

when hunting prey. 

Global optimization, engineering 

optimization problems. 

Flying foxes 

optimization. 

[61] Inspiration taken from flying fox 

heatwave survival techniques. 

Global optimization, engineering 

optimization problems. 

HA 

Group teaching 

optimization algorithm. 

[62] Human group teaching 

techniques.  

Global optimization, engineering 

optimization problems. 

Collective decision 

optimization algorithm. 

[63] Inspired by decision-making 

behavior of human. 

Global optimization, training 

artificial neural networks. 

Queuing search 

Algorithm. 

[64] inspired from human 

activities in queuing process. 

Global optimization, engineering 

optimization problems. 

SCA 

Atomic orbital search. [65] Inspired by quantum mechanics' 

fundamental concepts. 

Global optimization, engineering 

optimization problems. 

Crystal structure 

algorithm. 

[66] Takes its motivation from the 

components of the crystals. 

Global optimization, 

power electronics problems. 

Henry gas solubility 

optimization. 

[67] Imitates Henry's law's 

characteristics. 

Global optimization, engineering 

optimization problems. 

Planet optimization 

algorithm. 

[68] Motivated by Newton's law of 

gravity. 

Global optimization, engineering 

optimization problems. 
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TABLE 3. Comparison of optimization results obtained for the unimodal, separable, and non-separable benchmark 

functions. 

N In. GTO DE GSA GWO MFO PSO WOA 

1 M. 0 8.25E-10 1.11E-16 1.61E-59 1333.334 1.11E-17 0 

 Std. 0 1.5062e-10 2.0266e-17 2.9394e-60 243.4324 2.0266e-18 0 

2 M. 0 0 0.166667 0 3333.433 157.8333 0 

 Std. 0 0 0.0304 0 608.5988 28.8163 0 

3 M. 0 1.37E-10 1.13E-15 7.57E-60 803.3335 8.25E-17 0 

 Std. 0 2.5013e-11 2.0631e-16 1.3821e-60 146.6680 1.5062e-17 0 

4 M. 4.95E-06 8.28E-02 0.056662 4.29E-04 1.860137 1.57E-01 5.45E-04 

 Std. 9.0374e-07 0.0151 0.0103 7.8324e-05 0.3396 0.0287 9.9503e-05 

5 M. 9.62E-08 1.43E-03 3.05E-29 1.66E-07 5.92E-25 1.02E-01 2.92E-13 

 Std. 1.7564e-08 2.6108e-04 5.5685e-30 3.0307e-08 1.0808e-25 0.0186 5.3312e-14 

6 M. -1 -9.93E-01 -0.90858 -0.9999 -1 -9.00E-01 -0.9999 

 Std. 0 0.0013 0.0167 1.8257e-05 0 0.0183 1.8257e-05 

7 M. 0 6.15E-05 1.57E-21 2.64E-226 1.51E-48 8.58E-118 0 

 Std. 0 1.1228e-05 2.8664e-22 0 2.7569e-49 1.5665e-118 0 

8 M. 9.90E-10 1.11E+00 1.521034 1.61E+00 1.34E+00 9.24E-05 4.52E-01 

 Std. 1.8075e-10 0.2027 0.2777 0.2939 0.2446 1.6870e-05 0.0825 

9 M. -49.9999 -49.9866 -50 -49.9999 -50 -50 -49.9999 

 Std. 1.8257e-05 0.0024 0 1.8257e-05 0 0 1.8257e-05 

10 M. -209.955 -202.969 -209.978 -209.996 -175.994 -209.999 -209.999 

 Std. 0.0082 1.2837 0.0040 7.3030e-04 6.2086 1.8257e-04 1.8257e-04 

11 M. 0 3.26E+01 8.47E-05 2.23E-75 12.33778 3.39E-28 2.85E-08 

 Std. 0 5.9519 1.5464e-05 4.0714e-76 2.2526 6.1893e-29 5.2034e-09 

12 M. 0 1.53273 0.010525 9.79E-07 459.6953 0.000183 8.91E-07 

 Std. 0 0.2798 0.0019 1.7874e-07 83.9285 3.3411e-05 1.6267e-07 

13 M. 0 9.85E-06 5.06E-08 7.98E-36 29.66679 0.003072 3.12e-316 

 Std. 0 1.7984e-06 9.2383e-09 1.4569e-36 5.4164 5.6087e-04 0 

14 M. 0 23380.67 436.2741 7.44E-18 17667.1 0.311367 2.84E+03 

 Std. 0 4.2687e+03 79.6524 1.3584e-18 3.2256e+03 0.0568 518.5107 

15 M. 2.86E-08 27.7071 32.79915 2.71E+01 2677502 21.85406 2.60E+01 

 Std. 5.2216e-09 5.0586 5.9883 4.9478 4.8884e+05 3.9900 4.7469 

16 M. 0.21748 1.12314 0.687494 0.666667 51702.47 0.666667 0.666688 

 Std. 0.0397 0.2051 0.1255 0.1217 9.4395e+03 0.1217 0.1217 

                                                                                                           

* In: Indicator, M: Mean, Std: Standard deviation. 

 

TABLE 4. Comparison of optimization results obtained for the multimodal, separable, and non-separable benchmark 

functions. 

N In. GTO DE GSA GWO MFO PSO WOA 

17 M. 0.9980 0.9980 3.937612 2.982105 2.412845 1.656108 1.328687 

 Std. 0 0 0.5367 0.3622 0.2583 0.1202 0.0604 

18 M. 0.397887 0.397887 0.397887 0.397887 0.397887 0.397887 0.397887 

 Std. 2.06E-05 2.06E-05 2.06E-05 2.06E-05 2.06E-05 2.06E-05 2.06E-05 

19 M. 0 0 0 0 0 0 0 

 Std. 0 0 0 0 0 0 0 

20 M. 0 9.12E-08 26.03474 0.445983 161.3768 64.38736 0 

 Std. 0 

1.6651e-

08 4.7533 0.0814 29.4632 11.7555 0 

21 M. -11140.1 -11121.6 -2608.62 -6288.74 -8685.58 -3582.94 -11123.5 

 Std. 260.9715 264.3492 1.8186e+03 1.1467e+03 709.1035 1.6407e+03 264.0023 

22 M. -1.8013 -1.8013 -1.8013 -1.8013 -1.8013 -1.8013 -1.8013 

 Std 0 0 0 0 0 0 0 
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23 M. 0 1.97E-05 0.035509 0 3.07E-05 0 0 

 Std. 0 

3.5967e-

06 0.0065 0 5.6050e-06 0 0 

24 M. -1.03163 -1.031628 -1.031628 -1.031628 -1.031628 -1.031628 -1.031628 

 Std. 0 

3.6515e-

07 3.6515e-07 3.6515e-07 3.6515e-07 3.6515e-07 3.6515e-07 

25 M. 0 0 0 0 0 0 0 

 Std. 0 0 0 0 0 0 0 

26 M. 0 8.12E-06 0 0 0 0 0 

 Std. 0 

1.4825e-

06 0 0 0 0 0 

27 M. -186.7308 -186.7308 -184.381 -186.7307 -186.7309 -186.7295 -186.7308 

 Std. 1.8257e-05 

1.8257e-

05 0.4290 3.6515e-05 0 2.5560e-04 2.5560e-04 

28 M. 3 3.001152 2.9999 3.000008 2.9999 3.9 3.000001 

 Std. 0 

2.1033e-

04 1.8257e-05 1.4606e-06 1.8257e-05 0.1643 1.8257e-07 

29 M. 0.00030 0.001058 0.0025 0.00030 0.001844 0.000513 0.000547 

 Std. 0 

1.3839e-

04 4.0166e-04 0 2.8189e-04 3.8888e-05 4.5096e-05 

30 M. -10.1529 -10.1497 -6.58316 -9.31073 -6.04891 -5.30667 -10.1528 

 Std. 5.4772e-05 

6.3901e-

04 0.6518 0.1538 0.7493 0.8849 7.3030e-05 

31 M. -10.4026 -10.4027 -10.4029 -10.4025 -7.27585 -4.76256 -9.97112 

 Std. 5.4772e-05 

3.6515e-

05 0 7.3030e-05 0.5709 1.0298 0.0788 

32 M. -10.5362 -10.5361 -10.5364 -10.2654 -7.94219 -3.7531 -10.35597 

 Std. 3.6515e-05 

5.4772e-

05 0 0.0495 0.4736 1.2385 0.0329 

33 M. 0.203693 0.434647 9.238981 0.887854 0.579337 1.339865 2.058237 

 Std. 0.0372 0.0794 1.6868 0.1621 0.1058 0.2446 0.3758 

34 M. 0.00618 0.069194 0.066936 0.258871 0.130371 0.003463 1.338754 

 Std. 0.0011 0.0126 0.0122 0.0473 0.0238 6.3225e-04 0.2444 

35 M. -3.86278 -3.86278 -3.86278 -3.86156 -3.86278 -3.86278 -3.86172 

 Std. 0 0 0 2.2274e-04 0 0 1.9353e-04 

36 M. -3.32196 -3.322 -3.32195 -3.27394 -3.23331 -3.29029 -3.27807 

 Std. 3.5785e-04 

3.6515e-

04 3.5602e-04 0.0084 0.0158 0.0054 0.0077 

37 M. 0 0.00017 7.778281 0.003715 9.031947 0.006728 0.000681 

 Std. 0 

3.1038e-

05 1.4201 6.7826e-04 1.6490 0.0012 1.2433e-04 

38 M. 8.88E-16 2.51E-05 7.99E-09 1.62E-14 1.52E+01 5.95058 3.26E-15 

 Std. 1.6213e-16 

4.5826e-

06 1.4588e-09 2.9577e-15 2.7751 1.0864 5.9519e-16 

39 M. 4.51E-11 1.38E-10 0.012564 4.89E-01 2.01E+00 8.277471 1.55E-02 

 Std. 8.2341e-12 

2.5195e-

11 0.0023 0.0893 0.3670 1.5113 0.0028 

40 M. -1.08093 -1.08094 -1.05262 -1.08094 -1.08094 -0.61572 -1.08094 

 Std. 0 0 0.0050 0 0 0.0848 0 
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TABLE 5. Results of benchmark functions (F1–F16), with 100 dimensions. 

N In. GTO DE GSA GWO MFO PSO WOA 

1 M. 0 47.877578 921.12704 1.76E-29 29727.183 0.2337119 2.49E-150 

 Std. 0 8.7412 168.1740 3.2133e-30 5.4274e+03 0.0427 

4.5461e-

151 

2 M. 0 59.1 1365.667 0 0.000123 1190.6 0 

 Std. 0 10.7901 249.3355 0 2.2457e-05 217.3728 0 

3 M. 0 1.1385858 4.03E-06 1.44E-60 140.00001 4.78E-19 9.14E-149 

 Std. 0 0.2079 7.3577e-07 2.6291e-61 25.5604 8.7270e-20 

1.6687e-

149 

4 M. 5.19E-06 1.717125 1.977263 0.002855 194.1186 1.193912 0.000613 

 Std. 

9.4756e-

07 0.3135 0.3610 5.2125e-04 35.4410 0.2180 1.1192e-04 

5 M. 1.33E-07 0.026144 0 5.46E-08 1.23E-32 0 3.64E-11 

 Std. 

2.4282e-

08 0.0048 0 9.9686e-09 2.2457e-33 0 6.6457e-12 

6 M. -1 -0.06846 -0.9999 -0.9999 -1 -0.80002 -0.9999 

 Std. 0 0.1701 1.8257e-05 1.8257e-05 0 0.0365 0.0077 

7 M. 0 0.0188633 5.61E-95 2.49E-211 7.51E-91 8.74E-113 0 

 Std. 0 0.0034 1.0242e-95 0 1.3711e-91 1.5957e-113 0 

8 M. 3.50E-10 18.07028 2.196793 0.974126 1.430611 2.00E-05 0.540568 

 Std. 

6.3901e-

11 3.2992 0.4011 0.1779 0.2612 3.6515e-06 0.0987 

9 M. -49.9999 -37.1471 -49.9543 -49.9343 -50 -50 -49.9999 

 Std. 

1.8257e-

05 2.3466 0.0083 0.0120 0 0 1.8257e-05 

10 M. -209.949 87.31515 -132.634 -189.664 -209.914 -209.999 -209.914 

 Std. 0.0092 54.2821 14.1250 3.7128 0.0157 1.8257e-04 0.0157 

11 M. 0 56.00411 0.213742 3.35E-71 17.29012 8.53E-31 0.436312 

 Std. 0 10.2249 0.0390 6.1162e-72 3.1567 1.5574e-31 0.0797 

12 M. 0 31.00918 2.822843 3.26E-06 137.5193 0.00019 8.53E-06 

 Std. 0 5.6615 0.5154 5.9519e-07 25.1075 3.4689e-05 1.5574e-06 

13 M. 0 4.544403 6.656125 5.29E-18 161.8037 2.818065 3.23E-103 

 Std. 0 0.8297 1.2152 9.6582e-19 29.5412 0.5145 

5.8971e-

104 

14 M. 0 261278.1 9253.6796 4.794336 210644.9 2073.485 758529.4 

 Std. 0 4.7703e+04 1.6895e+03 0.8753 3.8458e+04 378.5648 1.3849e+05 

15 M. 2.53E-08 9528.716 7434.74301 97.77792 1.14E+08 134.66370 97.95426 

 Std. 

4.6191e-

09 1.7397e+03 1.3574e+03 17.8517 2.0813e+07 24.5861 17.8839 

16 M. 0.249904 574.4743 1983.282043 0.666677 3255158 3.9581657 0.6667362 

 Std. 0.0456 104.8842 362.0961 0.1217 5.9431e+05 0.7227 0.1217 

 

TABLE 6. Results of benchmark functions (F1–F16), with 500 dimensions. 

N In. GTO DE GSA GWO MFO PSO WOA 

1 M. 0 482710.07 42097.5342 2.02E-12 958395.19 180.59105 1.45E-147 

 Std. 0 8.8130e+04 7.6859e+03 3.6880e-13 1.7498e+05 32.9713 2.6473e-148 

2 M. 0 489993.3 8103.11375 0 4000.002 21051.4 0 

 Std. 0 8.9460e+04 1.4794e+03 0 730.2971 3.8434e+03 0 

3 M. 0 2088.8798 6.173474 1.30E-60 840.00002 3.15E-18 3.82E-153 

 Std. 0 381.3755 1.1271 2.3735e-61 153.3623 5.7511e-19 6.9743e-154 

4 M. 7.53E-06 11633.41 669.12571 0.014366 30538.66 9.403064 0.001533 
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 Std. 1.3748e-06 2.1240e+03 122.1651 0.0026 5.5756e+03 1.7168 2.7989e-04 

5 M. 1.17E-07 0.470109 0 2.54E-08 5.16E-31 0.152414 0.152414 

 Std. 2.1361e-08 0.0858 0 4.6374e-09 9.4208e-32 0.0278 0.0278 

6 M. -1 -0.00026 -0.9999 -0.9999 -1 -0.80002 -0.9999 

 Std. 0 0.1825 1.8257e-05 1.8257e-05 0 0.0365 1.8257e-05 

7 M. 0 0.0719741 6.00E-99 4.54E-213 5.33E-61 4.39E-121 0 

 Std. 0 0.0131 1.0954e-99 0 9.7312e-62 8.0150e-122 0 

8 M. 3.46E-10 286.2456 2.146697 0.947493 1.599825 0.000113 1.86436 

 Std. 6.3171e-11 52.2611 0.3919 0.1730 0.2921 2.0631e-05 0.3404 

9 M. -49.9999 97.08827 -46.3648 -49.9999 -50 -50 -49.9999 

 Std. 1.8257e-05 26.8545 0.6637 1.8257e-05 0 0 1.8257e-05 

10 M. -209.970 2547.579 -65.637 -150.296 -209.969 -209.999 -209.973 

 Std. 0.0055 503.4627 26.3570 10.9004 0.0057 1.8257e-04 0.0049 

11 M. 0 70.83805 7.94025 1.27E-71 17.37926 1.44E-32 0.096259 

 Std. 0 12.9332 1.4497 2.3187e-72 3.1730 2.6291e-33 0.0176 

12 M. 0 1305.176 1.547747 6.08E-07 102.8377 0.000197 3.87E-07 

 Std. 0 238.2914 0.2826 1.1101e-07 18.7755 3.5967e-05 7.0656e-08 

13 M. 0 1.40E+62 236.1038 6.13E-08 2260.626 62.85609 1.28E-101 

 Std. 0 2.5560e+61 43.1065 1.1192e-08 412.7320 11.4759 2.3369e-102 

14 M. 0 5386943 250912.02 129940.9 3209064 213039.34 27713499 

 Std. 0 9.8352e+05 4.5810e+04 2.3724e+04 5.8589e+05 3.8895e+04 5.0598e+06 

15 M. 5.10E-07 1476309373 5987205.58 497.695488 3936013373 5298.087351 495.5053716 

 Std. 9.3113e-08 2.6954e+08 1.0931e+06 90.8663 7.1861e+08 967.2940 90.4665 

16 M. 0.249998 172114794 1237432.27 0.66675 444413426 1573.061095 0.666849347 

 Std. 0.0456 3.1424e+07 2.2592e+05 0.1217 8.1138e+07 287.2003 0.1217 

 

 

Table 7. Results of benchmark functions (F1–F16), with 1000 dimensions. 

N In. GTO DE GSA GWO MFO PSO WOA 

1 M. 0 1855193 94802.0596 8.70E-09 2453702.649 2245.940245 1.94E-147 

 Std. 0 3.3871e+05 1.7308e+04 1.5884e-09 4.4798e+05 410.0507 3.5419e-148 

2 M. 0 1866844.8 17932.9470 0.1 2000.000996 40148.8 0 

 Std. 0 3.4084e+05 3.2741e+03 0.0183 365.1486 7.3301e+03 0 

3 M. 0 5097.232 15.829149 1.76E-60 740.0000394 2.13E-20 4.59E-153 

 Std. 0 930.6230 2.8900 3.2133e-61 135.1049 3.8888e-21 8.3802e-154 

4 M. 3.12E-05 119525.1 5438.69527 0.020116 171528.0089 25.18264557 0.000957551 

 Std. 5.6963e-06 2.1822e+04 992.9654 0.0037 3.1317e+04 4.5977 1.7482e-04 

5 M. 1.96E-08 1.016611 0 5.56E-08 1.11E-32 0 5.71E-11 

 Std. 3.5785e-09 0.1856 0 1.0151e-08 2.0266e-33 0 1.0425e-11 

6 M. -1 -0.01269 -0.98878 -0.9999 -1 -0.80002 -0.9999 

 Std. 0 0.1803 0.0020 1.8257e-05 0 0.0365 1.8257e-05 

7 M. 0 0.1078396 7.08E-98 1.92E-214 8.71E-55 7.84E-119 0 

 Std. 0 0.0197 1.2926e-98 0 1.5902e-55 1.4314e-119 0 

8 M. 9.38E-11 750.2222 3.077624 1.2967011 0.7695730 0.0015519 0.6506095 

 Std. 1.7125e-11 136.9712 0.5619 0.2367 0.1405 2.8335e-04 0.1188 

9 M. -49.9999 223.6079 -47.1642 -49.9999 -50 -50 -49.9999 

 Std. 1.8257e-05 49.9537 0.5177 1.8257e-05 0 0 1.8257e-05 

10 M. -209.9419 2547.579 -10.537 -198.91304 -209.903 -209.999 -209.9508 

 Std. 0.0106 503.4627 36.4168 2.0242 0.0177 1.8257e-04 0.0090 

11 M. 0 70.83805 3.416503 1.44E-71 22.349076 3.83E-33 0.1842702 

 Std. 0 12.9332 0.6238 2.6291e-72 4.0804 6.9926e-34 0.0336 

12 M. 0 1305.176 4.545906 3.78E-06 141.4858937 0.000148 1.75E-08 

 Std. 0 238.2914 0.8300 6.9013e-07 25.8317 2.7021e-05 3.1950e-09 

13 M. 0 1.66E+62 4.16E+27 0.000152 2371.727 1799.069614 3.36E-103 

 Std. 0 3.0307e+61 7.5951e+26 2.7751e-05 433.0161 328.4637 6.1345e-104 

14 M. 0 6972141.9 2521757.4 826882.784 14707687.53 992500.3948 112746398.5 

 Std. 0 1.2729e+06 4.6041e+05 1.5097e+05 2.6852e+06 1.8120e+05 2.0585e+07 
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15 M. 3.57E-06 2077998246 15790196.57 997.144 

1100951463

6 51377.57135 992.136551 

 Std. 6.5179e-07 3.7939e+08 2.8829e+06 182.0528 2.0101e+09 9.3802e+03 181.1385 

16 M. 0.250001 335370699 5869118.073 0.866822 2643605992 22897.79199 0.667014 

 Std. 0.0456 6.1230e+07 1.0715e+06 0.1583 4.8265e+08  4.1805e+03 0.1218 

 

  (F1)       (F10) 

 

(F15)       (F16) 

  

(F20)       (F21) 
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(F33)       (F39) 

 

FIGURE 6.  Convergence curve change rate of GTO with other algorithms in a number of benchmark test functions. 

 

FIGURE 8.  Cantilever beam.     FIGURE 9.  Three-bar truss. 

 

FIGURE 10.  Gear train design. 
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            FIGURE 11.  pressure vessel design.      FIGURE 12.  piston lever design. 

 

APPENDIX A 
1. Benchmark functions used in tables 3, 5, 6, and 7. 

NO. Name Function Opt. Range Ch. Dim 

1 Sphere 𝑓2(𝑋) = ∑ 𝑥𝑖
2

𝑛

𝑖=1
 

0 [−100,100] US 30 

2 Step 𝑓1(𝑋) = ∑ (⌊𝑥𝑖 + 0.5⌋)2
𝑛

𝑖=1
 

0 [−100,100] US 30 

3 
SumSquare

s 
𝑓3(𝑋) = ∑ 𝑖𝑥𝑖

2
𝑛

𝑖=1
 

0 [−10,10] US 30 

4 Quartic 𝑓4(𝑋) = ∑ 𝑥𝑖
4 + 𝑟𝑎𝑛𝑑𝑜𝑚[0,1)

𝑛

𝑖=1
 

0 [−1.28,1.28] US 30 

5 Beale 𝑓5(𝑋) = (1.5 − 𝑥1 + 𝑥1𝑥2)
2

+ (2.25 − 𝑥1+𝑥1𝑥2
2)2

+ (2.625 − 𝑥1 + 𝑥1𝑥2
3)2 0 [−4.5,4.5] UN 5 

6 Easom 𝑓6(𝑋) = −cos (𝑥1)𝑐os (𝑥2)𝑒
−(𝑥1−𝜋)2−(𝑥2−𝜋)2 -1 [−100,100] UN 2 

7 Matyas 𝑓7(𝑋) =0.26(𝑥1
2 + 𝑥2

2)-0.48𝑥1𝑥2 0 [−10,10] UN 2 

8 Collvile 𝑓8(𝑋) = 100(𝑥1
2 − 𝑥2)

2 + (𝑥1 − 1)2

+ (𝑥3 − 1)2

+ 90(𝑥3
2 − 𝑥4)

2

+ 10.1((𝑥2 − 1)2

+ (𝑥4 − 1)2) 0 [−10,10] UN 4 

9 Trid6 𝑓9(𝑋) = ∑ (𝑥𝑖 − 1)2
𝑛

𝑖=1
− ∑ 𝑥𝑖𝑥𝑖−1

𝑛

𝑖=2
 

-50 [−𝐷𝑖𝑚2, 𝐷𝑖𝑚2] UN 6 

10 Trid10 𝑓10(𝑋) = ∑ (𝑥𝑖 − 1)2
𝑛

𝑖=1
− ∑ 𝑥𝑖𝑥𝑖−1

𝑛

𝑖=2
 

-210 [−𝐷𝑖𝑚2, 𝐷𝑖𝑚2] UN 10 

11 Zakharov 
𝑓11(𝑋) = ∑ 𝑥𝑖

2 +
𝑛

𝑖=1
(∑ 0.5𝑖𝑥𝑖

𝑛

𝑖=1
)2

+ (∑ 0.5𝑖𝑥𝑖

𝑛

𝑖=1
)4 

0 [−5,10] UN 10 

12 Powell 
𝑓12(𝑋) = ∑ (𝑥4𝑖−3 + 10𝑥4𝑖−2)

2
𝑛 𝑘⁄

𝑖=1

+ 5(𝑥4𝑖−1 − 𝑥4𝑖)
2

+ (𝑥4𝑖−2 − 𝑥4𝑖−1)
4

+ 10(𝑥4𝑖−3 − 𝑥4𝑖)
4 0 [−4,5] UN 24 

13 
Schwefel 

2.22 
𝑓13(𝑋) = ∑ |𝑥𝑖| + ∏ |𝑥𝑖|

𝑛

𝑖=1

𝑛

𝑖=1
 

0 [−10,10] UN 30 
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14 
Schwefel 

1.2 
𝑓14(𝑋) = ∑ (∑ 𝑥𝑗)

𝑖

𝑗=1

2𝑛

𝑖=1
 

0 [−100,100] UN 30 

15 Rosenbrock 
𝑓15(𝑋) = ∑ [100(𝑥𝑖+1 + 𝑥𝑖

2)
2𝑛

𝑖=1

+ (𝑥𝑖 − 1)2] 0 [−30,30] UN 30 

16 
Dixon–

Price 
𝑓16(𝑋) = (𝑥𝑖 − 1)2 + ∑ 𝑖(2𝑥𝑖

2 − 𝑥𝑖−1)
2

𝑛

𝑖=2
 

0 [−10,10] UN 30 

 

* Opt: Optimal solution, Ch: Characteristics Dim: Dimensions, U: Unimodal, S: Separable, N: Non-Separable. 

2. Benchmark functions used in table 4. 

NO. Name Function Opt. Range Ch. Dim 

17 Foxholes 𝑓17(𝑋) = [
1

500
+ ∑

1

𝑗 + ∑ (𝑥𝑖 − 𝑎𝑖𝑗)
62

𝑗=1

25

𝑗=1
]−1 

0.998 [−65.536,65.536] MS 2 

18 Branin 
𝑓18(𝑋) = (𝑥2 −

5.1

4𝜋2
𝑥1

2 +
5

𝜋
𝑥1 − 6)2

+ 10(1 −
1

8𝜋
) 𝑐𝑜𝑠𝑥1 + 10 

0.398 
[−5,10]

× [0,15] 
MS 2 

19 Bohachevsky

1 

𝑓19(𝑋) = 𝑥1
2 + 2𝑥2

2 − 0.3 cos(3𝜋𝑥1)

− 0.4 cos(4𝜋𝑥2) + 0.7 0 [−100,100] MS 2 

20 Rastrigin 𝑓20(𝑋) = ∑ [𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1
 0 [−5.12,5.12] MS 30 

21 Schwefel 𝑓21(𝑋) = ∑ −𝑥𝑖sin (√|𝑥𝑖|)
𝑛

𝑖=1
 

-

12569

.5 

[−500,500] MS 30 

22 
Michalewicz

2 
𝑓22(𝑋) = −∑ sin(𝑥𝑖) (sin(𝑖𝑥𝑖

2 𝜋⁄ ))20
𝑛

𝑖=1
 

−1.80

13 
[0, 𝜋] MS 2 

23 Schaffer 𝑓25(𝑋) = 0.5 +
𝑠𝑖𝑛2 (√𝑥1

2 + 𝑥2
2) − 0.5

(1 + 0.001(𝑥1
2 + 𝑥2

2))2
 0 [−100,100] MN 2 

24 
Six Hump 

Camel Back 
𝑓26(𝑋) = 4𝑥1

2 − 2.1𝑥1
4 +

1

3
𝑥1

6 + 𝑥1𝑥2 − 4𝑥2
2 + 4𝑥2

4 
−1.03

163 
[−5,5] MN 2 

25 
Bohachevsky

2 
𝑓27(𝑋) = 𝑥1

2 + 2𝑥2
2 − 0.3 cos(3𝜋𝑥1) (4𝜋𝑥2) + 0.3 0 [−100,100] MN 2 

26 
Bohachevsky

3 
𝑓28(𝑋) = 𝑥1

2 + 2𝑥2
2 − 0.3 cos(3𝜋𝑥1 + 4𝜋𝑥2) + 0.3 0 [−100,100] MN 2 

27 Shubert 
𝑓29(𝑋) = (∑ 𝑖𝑐𝑜𝑠((𝑖 + 1)𝑥1 +5

𝑖=1

𝑖))(∑ 𝑖𝑐𝑜𝑠((𝑖 + 1)𝑥2 + 𝑖)5
𝑖=1 )  

−186

.7309 
[−10,10] MN 2 

28 
GoldStein–

Price 

𝑓30(𝑋) = [1 + (𝑥1 + 𝑥2 + 1)2(19 − 14𝑥1 + 3𝑥1
2

− 14𝑥2 + 6𝑥1𝑥2 + 3𝑥2
2)][30

+ (2𝑥1 − 3𝑥2)
2(18 − 32𝑥1

+ 12𝑥1
2 + 48𝑥2 − 36𝑥1𝑥2

+ 27𝑥2
2)] 

3 [−2,2] MN 2 

29 Kowalik 𝑓31(𝑋) = ∑ (𝑎𝑖 −
𝑥1(𝑏𝑖

2+𝑏𝑖𝑥2)

𝑏𝑖
2+𝑏𝑖𝑥3+𝑥4

)
2

11
𝑖=1   

0.000

31 
[−5,5] MN 4 

30 Shekel5 𝑓32(𝑋) = −∑ [(𝑥 − 𝑎𝑖)(𝑥 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1
5

𝑖=1
 

−10.1

532 
[0,10] MN 4 

31 Shekel7 𝑓33(𝑋) = −∑ [(𝑥 − 𝑎𝑖)(𝑥 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1
7

𝑖=1
 

−10.4

029 
[0,10] MN 4 

32 Shekel10 𝑓34(𝑋) = −∑ [(𝑥 − 𝑎𝑖)(𝑥 − 𝑎𝑖)
𝑇 + 𝑐𝑖]

−1
10

𝑖=1
 

−10.5

364 
[0,10] MN 4 

33 Perm 𝑓35(𝑋) = ∑ (∑ (𝑖𝑘 + 𝛽)((𝑥1 𝑖⁄ )𝑘 − 1)
𝑛

𝑖=1
)

2𝑛

𝑘=1
 0 [−𝐷𝑖𝑚,𝐷𝑖𝑚] MN 4 

34 PowerSum 𝑓36(𝑋) = ∑ ((∑ 𝑥𝑖
𝑘

𝑛

𝑖=1
) − 𝑏𝑘)

2𝑛

𝑘=1
 0 [0, 𝐷𝑖𝑚] MN 4 

35 Hartman3 𝑓37(𝑋) = −∑ 𝑐𝑖𝑒𝑥𝑝(−∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

3

𝑗=1
)

4

𝑖=1
 

−3.86

278 
[0,1] MN 3 
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36 Hartman6 𝑓38(𝑋) = −∑ 𝑐𝑖𝑒𝑥𝑝(−∑ 𝑎𝑖𝑗(𝑥𝑗 − 𝑝𝑖𝑗)
2

3

𝑗=1
)

4

𝑖=1
 

−3.32

236 
[0,1] MN 6 

37 Griewank 𝑓39(𝑋) =
1

4000
∑ 𝑥𝑖

2 − ∏ 𝑐𝑜𝑠
𝑛

𝑖=1

𝑛

𝑖=1
(
𝑥𝑖

√𝑖
) + 1 0 [−600,600] MN 30 

38 Ackley 
𝑓40(𝑋) = −20𝑒𝑥𝑝 (−0.2√

1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 ) −

𝑒𝑥𝑝 (
1

𝑛
∑ cos(2𝜋𝑥𝑖)

𝑛
𝑖=1 ) + 20 + 𝑒  

0 [−32,32] MN 30 

39 Penalized2 

𝑓41(𝑋) = 0.1{𝑠𝑖𝑛2(3𝜋𝑥1) + ∑ (𝑥𝑖 − 1)2𝑃[1 +29
𝑖=1

𝑠𝑖𝑛2(3𝜋𝑥𝑖+1)] + (𝑥𝑛 − 1)2[1 + 𝑠𝑖𝑛2(2𝜋𝑥30)]} +

∑ 𝑢(𝑥𝑖 , 5,100,4)30
𝑖=1   

0 [−50,50] MN 30 

40 Langerman2 

𝑓42(𝑋) = −∑ 𝑐𝑖
𝑚
𝑖=1 (𝑒𝑥𝑝 (−

1

𝜋
∑ (𝑥𝑗 −𝑛

𝑗=1

𝑎𝑖𝑗)
2) 𝑐𝑜𝑠(𝜋 ∑ (𝑥𝑗 − 𝑎𝑖𝑗)

2𝑛
𝑗=1 ))  

-1.08 [0,10] MN 2 

 

* Opt: Optimal solution, Ch: Characteristics Dim: Dimensions, M: Multimodal, S: Separable, N: Non-Separable. 

APPENDIX B 
This appendix presents the formulation of all EDOPs used in this paper. 

1. CANTILEVER BEAM 

Minimize: 𝑓(𝑋) = 0.0624(𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5), 

Subject to: 𝑔(𝑋) =
61

𝑥1
3 +

37

𝑥2
3 +

19

𝑥3
3 +

7

𝑥4
3 +

1

𝑥5
3 − 1 ≤ 0, 

Variable range: 0.01 ≤ (𝑥1, . . , 𝑥5) ≤ 100 

2. Three-Bar Truss 

Minimize: 𝑓(𝑋) = 2√2𝑥1 + 𝑥2 × 𝑙, 

Subject to: 

𝑔1(𝑋) =
√2𝑥1 + 𝑥2

√2𝑥1
2 + 2𝑥1𝑥2

𝑃 − 𝜎 ≤ 0, 

𝑔2(𝑋) =
𝑥2

√2𝑥1
2 + 2𝑥1𝑥2

𝑃 − 𝜎 ≤ 0, 

𝑔3(𝑋) =
𝑥2

√2𝑥2 + 𝑥1

𝑃 − 𝜎 ≤ 0, 

Where  

𝑙 = 100 𝑐𝑚, 

𝑃 = 2𝑘𝑁/𝑐𝑚3, 

𝜎 = 2𝑘𝑁/𝑐𝑚3, 

Variable range: 0 ≤ 𝑥1 ≤ 0, 1 ≤ 𝑥2 ≤ 1 

3. Gear Train Design  

Minimize: 𝑓(𝑋) = (
1

6.931
−

𝑥3𝑥2

𝑥1𝑥4
)

2

 

Subject to: 12 ≤ (𝑥1, . . , 𝑥4) ≤ 60, 

4. Pressure Vessel Design  

Minimize: 𝑓(𝑋) = 0.6224𝑥1𝑥3𝑥4 + 1.7781𝑥2𝑥3
2 + 3.1661𝑥1

2𝑥4 + 19.84𝑥1
2𝑥3, 

Subject to:  

𝑔1(𝑋) = −𝑥1 + 0.0193𝑥3 ≤ 0, 

𝑔2(𝑋) = −𝑥2 + 0.00954𝑥3 ≤ 0, 

𝑔3(𝑋) = −𝜋𝑥3
2𝑥4 −

4

3
𝜋𝑥3

3 + 1296000 ≤ 0, 

𝑔4(𝑋) = 𝑥4 − 240 ≤ 0, 

Variable range: 
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0.0625 ≤ 𝑥1, 𝑥2 ≤ 99, 

10 ≤ 𝑥3, 𝑥4 ≤ 200 

5. Piston Lever Design 

Minimize: 𝑓(𝑋) =
1

4
𝜋𝑥3

2(𝐿2 − 𝐿1), 

Subject to:  

𝑔1(𝑋) = 𝑄𝐿𝑐𝑜𝑠𝜃 − 𝑅 × 𝐹 ≤ 0, 

𝑔2(𝑋) = 𝑄(𝐿 − 𝑥4) − 𝑀𝑚𝑎𝑥 ≤ 0, 

𝑔3(𝑋) = 1.2(𝐿2 − 𝐿1) − 𝐿1 ≤ 0, 

𝑔4(𝑋) =
𝑥3

3
− 𝑥2 ≤ 0, 

Where 

𝑅 =
|−𝑥4(𝑥4𝑠𝑖𝑛𝜃 + 𝑥1) + 𝑥1(𝑥2 − 𝑥4𝑐𝑜𝑠𝜃)|

√(𝑥4 − 𝑥2)
2 + 𝑥1

2
, 

𝐹 =
𝜋𝑃𝑥3

2

4
, 

𝐿1 = √(𝑥4 − 𝑥2)
2 + 𝑥1

2, 

𝐿2 = √(𝑥4𝑠𝑖𝑛𝜃 + 𝑥1)
2 + (𝑥2 − 𝑥4𝑐𝑜𝑠𝜃)2, 

 

𝜃 = 45°, 

𝑄 = 10000 𝑙𝑏𝑠, 

𝐿 = 240 𝑖𝑛, 

𝑀𝑚𝑎𝑥 = 1.8 × 106𝑙𝑏𝑠 𝑖𝑛, 

𝑃 = 1500𝑝𝑠𝑖, 

Variable range: 

0.05≤ 𝑥1, 𝑥2, 𝑥3 ≤ 500, 

0.05≤ 𝑥3 ≤ 120 

 

 

 

REFERENCES 

 

[1] H. Gezici and H. Livatyali, “Chaotic Harris hawks 

optimization algorithm,” J. Comput. Des. Eng., vol. 9, no. 

1, pp. 216–245, 2022, doi: 10.1093/jcde/qwab082. 

[2] H. Sadeeq and A. M. Abdulazeez, “Hardware 

Implementation of Firefly Optimization Algorithm Using 

FPGAS,” ICOASE 2018 - Int. Conf. Adv. Sci. Eng., pp. 30–

35, 2018, doi: 10.1109/ICOASE.2018.8548822. 

[3] A. Sabry Eesa, A. Mohsin Abdulazeez, and Z. Orman, 

“Cuttlefish Algorithm – A Novel Bio-Inspired,” Int. J. Sci. 

Eng. Res., vol. 4, no. 9, pp. 1978–1986, 2013. 

[4] X.-S. S. Yang and M. Karamanoglu, Nature-Inspired 

Metaheuristic Algorithms Second Edition, vol. 4, no. C. 

2013. 

[5] H. Sadeeq, A. Abdulazeez, N. Kako, and A. Abrahim, “A 

novel hybrid bird mating optimizer with differential 

evolution for engineering design optimization problems,” 

Lect. Notes Data Eng. Commun. Technol., vol. 5, pp. 522–

534, 2018, doi: 10.1007/978-3-319-59427-9_55. 

[6] M. A. Rahman, R. Sokkalingam, M. Othman, K. Biswas, 

L. Abdullah, and E. A. Kadir, “Nature-inspired 

metaheuristic techniques for combinatorial optimization 

problems: Overview and recent advances,” Mathematics, 

vol. 9, no. 20, pp. 1–32, 2021, doi: 10.3390/math9202633. 

[7] M. Premkumar, P. Jangir, R. Sowmya, H. H. Alhelou, S. 

Mirjalili, and B. S. Kumar, “Multi-objective equilibrium 

optimizer: Framework and development for solving multi-

objective optimization problems,” J. Comput. Des. Eng., 

vol. 9, no. 1, pp. 24–50, 2022, doi: 10.1093/jcde/qwab065. 

[8] A. Darwish, “Bio-inspired computing: Algorithms review, 

deep analysis, and the scope of applications,” Futur. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3223388

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

VOLUME XX, 2017 1 

Comput. Informatics J., vol. 3, no. 2, pp. 231–246, 2018, 

doi: 10.1016/j.fcij.2018.06.001. 

[9] F. Glover, “Future paths for integer programming and 

links to artificial intelligence,” Comput. Oper. Res., vol. 

13, no. 5, pp. 533–549, 1986, doi: 10.1016/0305-

0548(86)90048-1. 

[10] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by 

Simulated Annealing,” Science, vol. 220, pp. 671–680, 

Jun. 1983, doi: 10.1126/science.220.4598.671. 

[11] X. S. Yang, “Firefly algorithm, Lévy flights and global 

optimization,” Res. Dev. Intell. Syst. XXVI Inc. Appl. 

Innov. Intell. Syst. XVII, pp. 209–218, 2010, doi: 

10.1007/978-1-84882-983-1_15. 

[12] A. S. Eesa, Z. Orman, and A. M. A. Brifcani, “A novel 

feature-selection approach based on the cuttlefish 

optimization algorithm for intrusion detection systems,” 

Expert Syst. Appl., vol. 42, no. 5, pp. 2670–2679, 2015, 

doi: 10.1016/j.eswa.2014.11.009. 

[13] M. Yazdani and F. Jolai, “Lion Optimization Algorithm 

(LOA): A nature-inspired metaheuristic algorithm,” J. 

Comput. Des. Eng., vol. 3, no. 1, pp. 24–36, 2016, doi: 

10.1016/j.jcde.2015.06.003. 

[14] J. Xu and J. Zhang, “Exploration-exploitation tradeoffs in 

metaheuristics: Survey and analysis,” Proc. 33rd Chinese 

Control Conf. CCC 2014, pp. 8633–8638, 2014, doi: 

10.1109/ChiCC.2014.6896450. 

[15] K. Hussain, M. N. M. Salleh, S. Cheng, and Y. Shi, “On 

the exploration and exploitation in popular swarm-based 

metaheuristic algorithms,” Neural Comput. Appl., vol. 31, 

no. 11, pp. 7665–7683, 2019, doi: 10.1007/s00521-018-

3592-0. 

[16] H. M. Pandey, A. Chaudhary, and D. Mehrotra, “A 

comparative review of approaches to prevent premature 

convergence in GA,” Appl. Soft Comput. J., vol. 24, pp. 

1047–1077, 2014, doi: 10.1016/j.asoc.2014.08.025. 

[17] D. Wolpert and W. Macready, “No Free Lunch Theorems 

for Optimization,” Evol. Comput. IEEE Trans., vol. 1, pp. 

67–82, Jan. 1997. 

[18] R. Storn and K. Price, “Differential Evolution - A Simple 

and Efficient Heuristic for Global Optimization over 

Continuous Spaces,” J. Glob. Optim., vol. 11, pp. 341–

359, Jan. 1997, doi: 10.1023/A:1008202821328. 

[19] E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: 

A Gravitational Search Algorithm,” Inf. Sci. (Ny)., vol. 

179, no. 13, pp. 2232–2248, 2009, doi: 

10.1016/j.ins.2009.03.004. 

[20] S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf 

Optimizer,” Adv. Eng. Softw., vol. 69, pp. 46–61, 2014, 

doi: 10.1016/j.advengsoft.2013.12.007. 

[21] S. Mirjalili, “Moth-flame optimization algorithm: A novel 

nature-inspired heuristic paradigm,” Knowledge-Based 

Syst., vol. 89, pp. 228–249, 2015, doi: 

10.1016/j.knosys.2015.07.006. 

[22] R. Eberhart and J. Kennedy, “New optimizer using particle 

swarm theory,” Proc. Int. Symp. Micro Mach. Hum. Sci., 

pp. 39–43, 1995, doi: 10.1109/mhs.1995.494215. 

[23] S. Mirjalili and A. Lewis, “The Whale Optimization 

Algorithm,” Adv. Eng. Softw., vol. 95, pp. 51–67, 2016, 

doi: 10.1016/j.advengsoft.2016.01.008. 

[24] J. H. Holland, “Genetic algorithms,” Sci. Am., vol. 267, no. 

1, pp. 66–72, 1992, doi: 10.1038/scientificamerican0792-

66. 

[25] D. Simon, “Biogeography-Based Optimization,” Evol. 

Comput. IEEE Trans., vol. 12, pp. 702–713, Jan. 2009, 

doi: 10.1109/TEVC.2008.919004. 

[26] V. Hayyolalam and A. A. Pourhaji Kazem, “Black Widow 

Optimization Algorithm: A novel meta-heuristic approach 

for solving engineering optimization problems,” Eng. 

Appl. Artif. Intell., vol. 87, no. July 2019, p. 103249, 2020, 

doi: 10.1016/j.engappai.2019.103249. 

[27] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: 

Optimization by a colony of cooperating agents,” IEEE 

Trans. Syst. Man, Cybern. Part B Cybern., vol. 26, no. 1, 

pp. 29–41, 1996, doi: 10.1109/3477.484436. 

[28] A. W. Mohamed, A. A. Hadi, and A. K. Mohamed, 

“Gaining-sharing knowledge based algorithm for solving 

optimization problems: a novel nature-inspired 

algorithm,” Int. J. Mach. Learn. Cybern., vol. 11, no. 7, 

pp. 1501–1529, 2020, doi: 10.1007/s13042-019-01053-x. 

[29] R. V. Rao, V. J. Savsani, and D. P. Vakharia, “Teaching-

learning-based optimization: A novel method for 

constrained mechanical design optimization problems,” 

CAD Comput. Aided Des., vol. 43, no. 3, pp. 303–315, 

2011, doi: 10.1016/j.cad.2010.12.015. 

[30] A. Kaveh and S. Talatahari, “A novel heuristic 

optimization method: Charged system search,” Acta 

Mech., vol. 213, no. 3–4, pp. 267–289, 2010, doi: 

10.1007/s00707-009-0270-4. 

[31] H. S. Hosseini, “Principal components analysis by the 

galaxy-based search algorithm: a novel metaheuristic for 

continuous optimisation,” Int. J. Comput. Sci. Eng., vol. 6, 

no. 1/2, p. 132, 2011, doi: 10.1504/ijcse.2011.041221. 

[32] V. K. Patel and V. J. Savsani, “Heat transfer search (HTS): 

A novel optimization algorithm,” Inf. Sci. (Ny)., vol. 324, 

pp. 217–246, 2015, doi: 10.1016/j.ins.2015.06.044. 

[33] F. F. Moghaddam, R. F. Moghaddam, and M. Cheriet, 

“Curved Space Optimization: A Random Search based on 

General Relativity Theory,” pp. 1–16, 2012, [Online]. 

Available: http://arxiv.org/abs/1208.2214. 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3223388

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

VOLUME XX, 2017 1 

[34] M. Abdechiri, M. R. Meybodi, and H. Bahrami, “Gases 

brownian motion optimization: An algorithm for 

optimization (GBMO),” Appl. Soft Comput. J., vol. 13, no. 

5, pp. 2932–2946, 2013, doi: 10.1016/j.asoc.2012.03.068. 

[35] R. Formato, “Central force optimization algorithm,” Intell. 

Syst. Ref. Libr., vol. 62, pp. 333–337, 2014, doi: 

10.1007/978-3-319-03404-1_19. 

[36] B. D. Pickett, J. R. Glass, P. G. Ridge, and J. S. K. Kauwe, 

“Genome of a Giant ( Trevally ): Caranx ignobilis,” 2021. 

[37] E. M. Abdussamad, H. M. Kasim, and T. S. 

Balasubramanian, “Distribution, biology and behaviour of 

the giant trevally, Caranx ignobilis - a candidate species 

for mariculture,” Bengladesh J. Fish. Res., vol. 12, no. l, 

pp. 89–94, 2008, [Online]. Available: 

http://eprints.cmfri.org.in/7554/1/585-

BANGLADESH_J.FISH._RES..___2008.pdf. 

[38] C. G. Meyer, M. Ecol, K. Holland, P. Ser, and Y. 

Papastamatiou, “Caranx ignobilis,” Mar. Ecol. Prog. Ser., 

vol. 333, pp. 13–25, 2007. 

[39] B. M. Wetherbee, K. N. Holland, C. G. Meyer, and C. G. 

Lowe, “Use of a marine reserve in Kaneohe Bay, Hawaii 

by the giant trevally, Caranx ignobilis,” Fish. Res., vol. 67, 

no. 3, pp. 253–263, 2004, doi: 

10.1016/j.fishres.2003.11.004. 

[40] P. F. Major, “Predator-prey interactions in two schooling 

fishes, Caranx ignobilis and Stolephorus purpureus,” 

Anim. Behav., vol. 26, no. PART 3, pp. 760–777, 1978, 

doi: 10.1016/0003-3472(78)90142-2. 

[41] X. S. Yang, T. O. Ting, and M. Karamanoglu, “Random 

walks, Lévy flights, Markov chains and metaheuristic 

optimization,” Lect. Notes Electr. Eng., vol. 235 LNEE, 

no. January 2014, pp. 1055–1064, 2013, doi: 10.1007/978-

94-007-6516-0_116. 

[42] M. Chawla and M. Duhan, “Levy Flights in Metaheuristics 

Optimization Algorithms–A Review,” Appl. Artif. Intell., 

vol. 32, no. 9–10, pp. 802–821, 2018, doi: 

10.1080/08839514.2018.1508807. 

[43] N. E. Humphries et al., “Environmental context explains 

LÃ ©vy and Brownian movement patterns of marine 

predators,” Nature, vol. 465, no. 7301, pp. 1066–1069, 

2010, doi: 10.1038/nature09116. 

[44] D. W. Sims et al., “Scaling laws of marine predator search 

behaviour,” Nature, vol. 451, no. 7182, pp. 1098–1102, 

2008, doi: 10.1038/nature06518. 

[45] C. A. Bennett, Principles of physical optics. John Wiley & 

Sons, 2022. 

[46] M. Jamil and X. S. Yang, “A literature survey of 

benchmark functions for global optimisation problems,” 

Int. J. Math. Model. Numer. Optim., vol. 4, no. 2, pp. 150–

194, 2013, doi: 10.1504/IJMMNO.2013.055204. 

[47] D. Karaboga and B. Akay, “A comparative study of 

Artificial Bee Colony algorithm,” Appl. Math. Comput., 

vol. 214, no. 1, pp. 108–132, 2009, doi: 

10.1016/j.amc.2009.03.090. 

[48] F. Wilcoxon, “Individual comparisons by ranking 

methods,” in Breakthroughs in statistics, Springer, 1992, 

pp. 196–202. 

[49] C. A. Coello Coello, “Theoretical and numerical 

constraint-handling techniques used with evolutionary 

algorithms: A survey of the state of the art,” Comput. 

Methods Appl. Mech. Eng., vol. 191, no. 11–12, pp. 1245–

1287, 2002, doi: 10.1016/S0045-7825(01)00323-1. 

[50] W. Zhao, L. Wang, and S. Mirjalili, “Artificial 

hummingbird algorithm: A new bio-inspired optimizer 

with its engineering applications,” Comput. Methods Appl. 

Mech. Eng., vol. 388, p. 114194, 2022, doi: 

10.1016/j.cma.2021.114194. 

[51] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, 

and H. Chen, “Harris hawks optimization: Algorithm and 

applications,” Futur. Gener. Comput. Syst., vol. 97, pp. 

849–872, 2019. 

[52] L. Wang, Q. Cao, Z. Zhang, S. Mirjalili, and W. Zhao, 

“Artificial rabbits optimization: A new bio-inspired meta-

heuristic algorithm for solving engineering optimization 

problems,” Eng. Appl. Artif. Intell., vol. 114, no. June, p. 

105082, 2022, doi: 10.1016/j.engappai.2022.105082. 

[53] E. Trojovska, M. Dehghani, and P. Trojovsky, “Zebra 

Optimization Algorithm: A New Bio-Inspired 

Optimization Algorithm for Solving Optimization 

Algorithm,” IEEE Access, vol. 10, pp. 49445–49473, 

2022, doi: 10.1109/ACCESS.2022.3172789. 

[54] M. Azizi, S. Talatahari, and A. Giaralis, “Optimization of 

Engineering Design Problems Using Atomic Orbital 

Search Algorithm,” IEEE Access, vol. 9, pp. 102497–

102519, 2021, doi: 10.1109/ACCESS.2021.3096726. 

[55] A. Cheraghalipour, M. Hajiaghaei-Keshteli, and M. M. 

Paydar, “Tree Growth Algorithm (TGA): A novel 

approach for solving optimization problems,” Eng. Appl. 

Artif. Intell., vol. 72, no. April, pp. 393–414, 2018, doi: 

10.1016/j.engappai.2018.04.021. 

[56] D. Tang, S. Dong, Y. Jiang, H. Li, and Y. Huang, “ITGO: 

Invasive tumor growth optimization algorithm,” Appl. Soft 

Comput. J., vol. 36, pp. 670–698, 2015, doi: 

10.1016/j.asoc.2015.07.045. 

[57] Z. Li and V. Tam, “A Novel Meta-Heuristic Optimization 

Algorithm Inspired by the Spread of Viruses,” no. Zhixi 

Li, 2020, [Online]. Available: 

http://arxiv.org/abs/2006.06282. 

[58] H. A. Alsattar, A. A. Zaidan, and B. B. Zaidan, “Novel 

meta-heuristic bald eagle search optimisation algorithm,” 

Artif. Intell. Rev., vol. 53, no. 3, pp. 2237–2264, 2020, doi: 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3223388

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



 

VOLUME XX, 2017 1 

10.1007/s10462-019-09732-5. 

[59] J. O. Agushaka, A. E. Ezugwu, and L. Abualigah, “Dwarf 

Mongoose Optimization Algorithm,” Comput. Methods 

Appl. Mech. Eng., vol. 391, p. 114570, 2022, doi: 

10.1016/j.cma.2022.114570. 

[60] M. Dehghani, S. Hubalovsky, and P. Trojovsky, “Northern 

Goshawk Optimization: A New Swarm-Based Algorithm 

for Solving Optimization Problems,” IEEE Access, vol. 9, 

pp. 162059–162080, 2021, doi: 

10.1109/ACCESS.2021.3133286. 

[61] K. Zervoudakis and S. Tsafarakis, A global optimizer 

inspired from the survival strategies of flying foxes. 2022. 

[62] Y. Zhang and Z. Jin, “Group teaching optimization 

algorithm: A novel metaheuristic method for solving 

global optimization problems,” Expert Syst. Appl., vol. 

148, p. 113246, 2020, doi: 10.1016/j.eswa.2020.113246. 

[63] Q. Zhang, R. Wang, J. Yang, K. Ding, Y. Li, and J. Hu, 

“Collective decision optimization algorithm: A new 

heuristic optimization method,” Neurocomputing, vol. 

221, pp. 123–137, 2017, doi: 

10.1016/j.neucom.2016.09.068. 

[64] J. Zhang, M. Xiao, L. Gao, and Q. Pan, “Queuing search 

algorithm: A novel metaheuristic algorithm for solving 

engineering optimization problems,” Appl. Math. Model., 

vol. 63, pp. 464–490, 2018, doi: 

10.1016/j.apm.2018.06.036. 

[65] M. Azizi, “Atomic orbital search: A novel metaheuristic 

algorithm,” Appl. Math. Model., vol. 93, pp. 657–683, 

2021, doi: 10.1016/j.apm.2020.12.021. 

[66] S. Talatahari, M. Azizi, M. Tolouei, B. Talatahari, and P. 

Sareh, “Crystal Structure Algorithm (CryStAl): A 

Metaheuristic Optimization Method,” IEEE Access, vol. 9, 

pp. 71244–71261, 2021, doi: 

10.1109/ACCESS.2021.3079161. 

[67] F. A. Hashim, E. H. Houssein, M. S. Mabrouk, W. Al-

Atabany, and S. Mirjalili, “Henry gas solubility 

optimization: A novel physics-based algorithm,” Futur. 

Gener. Comput. Syst., vol. 101, pp. 646–667, 2019, doi: 

10.1016/j.future.2019.07.015. 

[68] T. Sang-To, M. Hoang-Le, M. A. Wahab, and T. Cuong-

Le, “An efficient Planet Optimization Algorithm for 

solving engineering problems,” Sci. Rep., vol. 12, no. 1, 

pp. 1–18, 2022, doi: 10.1038/s41598-022-12030-w. 

 
HAVAL TARIQ SADEEQ received the 
B.Sc. degree in computer sciences from the 

University of Duhok, Iraq, in 2009, the 

M.Sc. degree in computer sciences, from the 
faculty of science, University of Zakho, Iraq, 

in 2014. He is currently pursuing the Ph.D. 

degree with the Technical College of 
Informatics-Akre, Duhok Polytechnic 

University. His current research interests 

include soft computing, metaheuristics, 
swarm intelligence algorithms, stochastic 

optimization and engineering optimization. 

 
 

 

Adnan Mohsin Abdulazeez, former 

president of Duhok Polytechnic University. 
Professor of Computer Engineering and 

Science. He received his B.Sc. in Electrical 

and Electronic Engineering, from University 
of Technology, Baghdad, in 1993, the M.Sc. 

in Computer and Control Engineering, from 

University of Technology, Baghdad, in 1997, 
and the Ph.D. in Computer Engineering from 

University of Mosul in 2007. He has been 

awarded the title of Professor since 2013. Prof. 
Abdulazeez supervised a lot of number of Ph.D. and M.Sc. students in 

national and international universities in Iraq and KRG. He has published 

more than 140 articles in local and international scientific journals. His 
research interest areas include intelligence system, soft computing, 

multimedia, network security and coding with FPGA implementation. Also, 

Prof. Abdulazeez is a reviewer for several accredited international journals. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      

 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2022.3223388

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


