| Title | Giant tunneling magnetoresistance in epitaxial Co2MnSi/MgO/Co2MnSi magnetic tunnel junctions by half-metallicity of Co2MnSi and coherent tunneling | | | |------------------|--|--|--| | Author(s) | Liu, Hong-xi; Honda, Yusuke; Taira, Tomoyuki; Matsuda, Ken-ichi; Arita, Masashi; Uemura, Tetsuya; Yamamoto, Masafumi | | | | Citation | Applied Physics Letters, 101(13), 132418
https://doi.org/10.1063/1.4755773 | | | | Issue Date | 2012-09-24 | | | | Doc URL | http://hdl.handle.net/2115/50424 | | | | Rights | Copyright 2012 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in Appl. Phys. Lett. 101, 132418 (2012) and may be found at https://dx.doi.org/10.1063/1.4755773 | | | | Туре | article | | | | File Information | APL101-13_132418.pdf | | | # Giant tunneling magnetoresistance in epitaxial Co2MnSi/MgO/Co2MnSi magnetic tunnel junctions by half-metallicity of Co2MnSi and coherent tunneling Hong-xi Liu, Yusuke Honda, Tomoyuki Taira, Ken-ichi Matsuda, Masashi Arita et al. Citation: Appl. Phys. Lett. 101, 132418 (2012); doi: 10.1063/1.4755773 View online: http://dx.doi.org/10.1063/1.4755773 View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v101/i13 Published by the American Institute of Physics. ### **Related Articles** Angular-dependences of giant in-plane and interlayer magnetoresistances in Bi2Te3 bulk single crystals Appl. Phys. Lett. 101, 152107 (2012) Magnetic field-dependent effective microwave properties of microwire-epoxy composites Appl. Phys. Lett. 101, 152905 (2012) Giant magnetoresistance effect in graphene with asymmetrical magnetic superlattices Appl. Phys. Lett. 101, 152404 (2012) Giant magneto-resistance estimated from direct observation of nanoscale ferromagnetic domain evolution in La0.325Pr0.3Ca0.375MnO3 J. Appl. Phys. 112, 053924 (2012) Electrical determination of relative chirality direction in a Co/Cu/Co ferromagnetic ring Appl. Phys. Lett. 101, 062409 (2012) ### Additional information on Appl. Phys. Lett. Journal Homepage: http://apl.aip.org/ Journal Information: http://apl.aip.org/about/about_the_journal Top downloads: http://apl.aip.org/features/most_downloaded Information for Authors: http://apl.aip.org/authors ## **ADVERTISEMENT** # Giant tunneling magnetoresistance in epitaxial Co₂MnSi/MgO/Co₂MnSi magnetic tunnel junctions by half-metallicity of Co₂MnSi and coherent tunneling Hong-xi Liu, Yusuke Honda, Tomoyuki Taira, Ken-ichi Matsuda, Masashi Arita, Tetsuya Uemura, and Masafumi Yamamoto^{a)} Division of Electronics for Informatics, Graduate School of Information Science and Technology, Hokkaido University, Sapporo 060-0814, Japan (Received 3 August 2012; accepted 13 September 2012; published online 26 September 2012) Giant tunnel magnetoresistance (TMR) ratios of up to 1995% at 4.2 K and up to 354% at 290 K were obtained for epitaxial $Co_2MnSi/MgO/Co_2MnSi$ magnetic tunnel junctions (MTJs) featuring a reduced lattice mismatch in the MTJ trilayer by introducing a thin Co_2MnSi lower electrode deposited on a $Co_{50}Fe_{50}$ buffer layer. The obtained giant TMR ratios can be explained by the enhanced contribution of coherent tunneling originating from the increased misfit dislocation spacing at the lower and upper interfaces with a MgO barrier along with the half-metallicity of Co_2MnSi electrodes. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4755773] Spintronic devices, which manipulate the spin degree of freedom in addition to the charge of the electron, have attracted much interest as promising future electron devices because they are expected to provide nonvolatility, reconfigurable logic functions, and ultralow power consumption. 1,2 For spintronic devices, the creation of a highly spinpolarized current is essential. One of the most suitable types of spin source materials for spintronic devices is halfmetallic ferromagnets³ because of their complete spin polarization at the Fermi level $(E_{\rm F})$. Co-based Heusler alloys (Co_2YZ) , where Y is usually a transition metal and Z is a main group element) have attracted much interest as highly spinpolarized materials. 4-14 This is because of the half-metallic nature theoretically predicted for many of these alloys 15-17 and because of their high Curie temperatures, which are well above room temperature (RT). ¹⁸ Co₂YZ thin films have been widely applied to magnetic tunnel junctions (MTJs), in particular, in combination with a MgO barrier.^{7–10} In epitaxial single-crystalline magnetic tunnel junctions, coherent tunneling—in which the transversal crystal momentum of a tunneling electron is conserved—results in a tunneling probability that depends on the symmetry of the wave functions of the tunneling electrons. The importance of enhanced tunneling probability for electrons in specific Bloch states (Δ_1 states in for example, Fe, $Co_{1-x}Fe_x$, and CoFeB) in epitaxial MgO-based MTJs due to coherent tunneling has been revealed theoretically and experimentally. Indeed, due to the coherent tunneling effect, tunnel magnetoresistance (TMR) ratios of up to 1144% at 5 K and up to 604% at 300 K have been demonstrated for CoFeB/MgO/CoFeB MTJs. Co₂MnSi is one of the most extensively studied Heusler alloys^{5–7,12–14} because of its theoretically predicted half metallic nature^{15–17} and because of its high Curie temperature of 985 K. ¹⁸ Epitaxial heterostructures consisting of Co₂MnSi, which has Δ_1 states at E_F for the majority-spin band, and a MgO barrier are advantageous as spin sources for spintronic devices. This is because Co₂MnSi/MgO heterostructures fea- ture both intrinsically high spin polarization arising from the half-metallic nature of Co_2MnSi and enhanced tunneling spin polarization due to coherent tunneling of electrons having Δ_1 states for the majority-spin band.²⁵ We have recently investigated the effect of defects in Co_2MnSi thin films on spin-dependent tunneling characteristics. 26,27 We obtained higher TMR ratios for $\text{Co}_2\text{MnSi}/\text{MgO}/\text{Co}_2\text{MnSi}$ MTJs with Mn-rich Co_2MnSi electrodes and we observed high TMR ratios of 1135% at 4.2 K and 236% at RT. 26 The observed higher TMR ratios for MTJs with Mn-rich Co_2MnSi electrodes suggested that detrimental Co_{Mn} antisites 13 can be suppressed by preparing Co_2MnSi films with a Mn-rich composition. 26,27 On the other hand, epitaxial interfaces between the electrodes and the MgO barrier are essential for coherent tunneling for which the electron momentum parallel to the plane is conserved: coherent tunneling does not occur for a region of the interface where a misfit dislocation exists. Yuasa *et al.* noted that a reduced misfit dislocation density at the MgO barrier/upper Fe layer interface in epitaxial Fe/MgO/Fe MTJs resulted in an increased TMR ratio. Bonell *et al.* investigated how the TMR ratio of epitaxial Fe/MgO/Fe MTJs depended on the misfit dislocation density at the interface by replacing the Fe lower electrode by Fe-V alloy films and showed that the TMR ratio was enhanced by better structural coherency. Electrodes Our purpose in the present study was to clarify the contributions from coherent tunneling and the half-metallicity of Co₂MnSi thin films to the TMR characteristics in fully epitaxial MTJs with Co₂MnSi films as both lower and upper electrodes and a MgO barrier. To do this, we investigated how improved interfacial structural properties affect the TMR characteristics of Co₂MnSi/MgO/Co₂MnSi MTJs (Co₂MnSi MTJs). In our previous studies of Co₂MnSi-based MTJs, we used a thick (typically 30-nm) Co₂MnSi lower electrode grown on MgO-buffered MgO(001) substrates. ^{7,26} This thick Co₂MnSi layer was relaxed on the MgO-buffered MgO(001) substrate, causing a relatively large lattice mismatch of -5.1% between the fully relaxed Co₂MnSi layer and the MgO barrier with a 45° in-plane rotation. To improve the interfacial structural properties, we considered a) Author to whom correspondence should be addressed. Electronic mail: yamamoto@nano.ist.hokudai.ac.jp. the facts that the lattice mismatch between Co_2MnSi and $Co_{50}Fe_{50}$ (CoFe) is very small (-0.8%) and that the lattice mismatch of -4.3% between CoFe and MgO with a 45° inplane rotation is smaller than -5.1%, which is the lattice mismatch between a fully relaxed Co_2MnSi lower electrode and MgO. On the basis of these considerations, we introduced a thin (typically 3-nm) Co_2MnSi lower electrode grown on a CoFe-buffered MgO(001) substrate instead of the previously used thick Co_2MnSi lower electrode grown on a MgO-buffered MgO(001) substrate. The fabricated MTJ layer structures were as follows: (from the substrate side) MgO buffer (10 nm)/CoFe buffer (30 nm)/Co₂MnSi lower electrode (3 nm)/MgO barrier (1.4–3.2 nm)/Co₂MnSi upper electrode (3 nm)/layers for exchange biasing/Ru cap (5 nm), grown on MgO(001) single-crystal substrates. Compared with our previous work,²⁶ we introduced a CoFe buffer instead of depositing the MTJ trilayer onto the MgO buffer and we also reduced the Co₂MnSi lower electrode thickness from 30 to 3 nm. To fully investigate structural properties and spin-dependent tunneling characteristics, we prepared three series of CoFebuffered Co₂MnSi MTJs having Co₂Mn_αSi_ν electrodes with slightly different Si compositions γ with respect to Co₂: these were $Co_2Mn_{1.29}Si_{1.0}$ (MTJ-A), $Co_2Mn_{1.35}Si_{0.88}$ (MTJ-B), and Co₂Mn_αSi_{0.96} (MTJs of series C with various values of α). The layer structures for exchange biasing for these MTJ series were (above the Co₂MnSi upper electrode) Ru $(0.8 \text{ nm})/\text{Co}_{90}\text{Fe}_{10} (2 \text{ nm})/\text{Ir}_{22}\text{Mn}_{78} (10 \text{ nm})$ for MTJ-A and $Co_{50}Fe_{50}$ (1.1 nm)/ $Ir_{22}Mn_{78}$ (10 nm) for MTJ-B and MTJs of series C. (The slightly different layer structures for exchange biasing were not critical for TMR characteristics.) The fabrication procedure for these MTJ layer structures was the same as for MgO-buffered Co₂MnSi MTJs, ²⁶ except for the abovementioned changes. Briefly, we prepared Co₂MnSi electrodes by co-sputtering from a nearly stoichiometric Co₂MnSi target and a Mn target.²⁶ The CoFe buffer, Co₂MnSi lower electrode, MgO barrier, Co₂MnSi upper electrode, IrMn layer were all deposited at RT. The MTJ layer structure was annealed in situ at 500 °C just after deposition of the CoFe buffer and at 550 °C both just after deposition of the Co₂MnSi lower electrode and fairly soon after deposition of the Co₂MnSi upper electrode. We fabricated MTJs with these layer structures by photolithography and Ar ion milling. The fabricated junction size was $10 \times 10 \,\mu\text{m}^2$. After the microfabrication, MTJs were annealed ex situ at 350 °C in a vacuum of 5×10^{-2} Pa under a magnetic field of 5 kOe to enable exchange biasing on the upper Co₂MnSi electrode. We defined the TMR ratio as $(R_{AP}-R_P)/R_P$, where R_{AP} and R_P are the resistances for the antiparallel and parallel magnetization configurations between the upper and lower electrodes. We now describe the structural properties of the prepared Co_2MnSi MTJ layer structures. For structural characterization, cross-sectional HRTEM lattice images and two-beam bright-field TEM images of an as-prepared Co_2MnSi MTJ layer structure having a Mn-rich film composition of $\text{Co}_2\text{Mn}_{1.29}\text{Si}$ (MTJ-A) were obtained. Figure 1(a) shows a cross-sectional HRTEM lattice image of an as-prepared CoFe-buffered Co₂MnSi MTJ layer structure consisting of (from the lower side) CoFe buffer/lower Co₂MnSi (3 nm)/MgO barrier (~2.5 nm)/upper Co_2MnSi (3 nm)/Ru (0.8 nm)/ $Co_{90}Fe_{10}$ (2 nm)/ $Ir_{22}Mn_{78}$ (10 nm)/Ru cap (5 nm) with Mn-rich Co₂Mn_{1,29}Si electrodes (MTJ-A); it was taken along the [1-10] direction of the Co₂MnSi layers. This image clearly shows that all these layers were grown epitaxially and were single-crystalline. It was also confirmed that atomically flat and abrupt interfaces were formed. Importantly, there were no lattice misfit dislocations between the CoFe buffer and the Co₂MnSi lower electrode. This indicates that the Co₂MnSi lower electrode was lattice-matched to the CoFe buffer. Figures 1(b) and 1(c) show nano-beam electron diffraction patterns (beam diameter: 2 nm) for the Co₂MnSi lower and upper electrodes, where 111 spots specific to the L2₁ structure were observed in addition to 002 spots specific to the B2 and L2₁ structures, indicating that both the Mn-rich Co₂Mn_{1,29}Si lower and upper electrodes had the L2₁ structure. Simultaneously with the HRTEM and electron diffraction observations, energy dispersive x-ray spectroscopy (EDS) line analysis (beam diameter: 0.7 nm) was performed for the same sample as in Fig. 1. This analysis indicated no appreciable diffusion of Mn from the Co₂MnSi lower and upper electrodes to the Co₂MnSi electrode/MgO barrier interfaces or into the MgO barrier. (Note that the IrMn layer had not yet been deposited when the MTJ layer structure was *in-situ* annealed twice at 550 °C.) It also indicated that the diffusion of Fe from the CoFe buffer layer into the Co₂MnSi lower electrode was not appreciable. To further characterize the interfacial structural quality of CoFe-buffered Co₂MnSi MTJs, we investigated misfit FIG. 1. (a) Cross-sectional HRTEM lattice image of a CoFe-buffered Co₂MnSi MTJ layer structure consisting of (from the lower side) Co₅₀Fe₅₀ (CoFe) buffer/lower Co₂MnSi (3 nm)/MgO barrier (~2.5 nm)/upper Co₂MnSi (3 nm)/Ru (0.8 nm)/Co₉₀Fe₁₀ (2 nm)/Ir₂₂Mn₇₈ (10 nm)/Ru cap (5 nm) with Mn-rich Co₂Mn_{1.29}Si electrodes (MTJ-A); it was taken along the [1-10] direction of the Co₂MnSi. (b) and (c) Nano-beam electron diffraction patterns for the lower (b) and upper (c) Co₂MnSi electrodes; the beam diameter was 2 nm. (d) Two-beam bright-field TEM image of a CoFe-buffered Co₂MnSi MTJ layer structure with Mn-rich Co₂Mn_{1.29}Si electrodes (the same sample as shown in Figs. 1(a)–1(c)) excited with reciprocal vectors parallel to the plane ($g = [200]_{\text{MgO}}$ and $[220]_{\text{Co2MnSi}}$). The arrows provide a guide to show the misfit dislocation contrasts. dislocation densities at the interfaces with the MgO barrier through two-beam bright-field TEM images. Figure 1(d) shows a two-beam bright-field TEM image of a CoFebuffered Co₂MnSi MTJ layer structure with Mn-rich Co₂Mn_{1,29}Si electrodes (the same sample shown in Figs. 1(a)-1(c)) excited with reciprocal vectors parallel to the plane ($g = [200]_{MgO}$ and $[220]_{Co2MnSi}$). The image shows the strain contrasts that arose from the periodically spaced misfit dislocations at the lower and upper interfaces with the MgO barrier. It also shows that the spacing of the misfit dislocations is almost constant. The dislocation spacing values at the lower and upper interfaces were 6.4 (1.0) and 6.2 (1.4) nm for the lower and upper interfaces, respectively, where the values in parentheses are the standard deviations. These values of the misfit dislocation spacing at the lower and upper interfaces of the CoFe-buffered Co₂MnSi MTJ were significantly larger than the value of 4.3 ± 0.1 nm observed for the lower and upper interfaces in an identically fabricated MgO-buffered Co₂MnSi MTJ.²⁹ Thus, the structural properties in both the lower and upper interfacial regions between the electrodes and the MgO barrier were improved in CoFebuffered Co₂MnSi MTJs in the sense of the increased misfit dislocation spacing compared with MgO-buffered Co₂MnSi MTJs. This improvement can be explained as follows: the introduction of the CoFe buffer (which has a smaller lattice mismatch of -4.3% with MgO) and the thin (3-nm-thick) Co₂MnSi lower electrode resulted in the Co₂MnSi lower electrode lattice-matched to the CoFe buffer, leading to a reduction in the lattice mismatch in the MTJ trilayer. We now describe the TMR characteristics of fabricated $Co_2MnSi\ MTJs$ grown on CoFe-buffered MgO(001) substrates. Typical TMR curves at 4.2 K and 290 K for a fabricated fully epitaxial $Co_2MnSi\ MTJ$ having Mn-rich $Co_2Mn_{1.35}Si_{0.88}$ elec- FIG. 2. Typical TMR curves at 4.2 K and 290 K for a Co₂MnSi MTJ consisting of (from the lower side) Co₂MnSi lower electrode (3 nm)/MgO barrier (2.4 nm)/Co₂MnSi upper electrode (3 nm) grown on a CoFe-buffered MgO(001) substrate with Mn-rich Co₂Mn_{1.35}Si_{0.88} electrodes (MTJ-B). The magnetoresistance was measured with a magnetic field applied along the [1-10] axis of the Co₂MnSi film using a dc four-probe method. The bias voltages were 1 mV at 4.2 K and 5 mV at 290 K. TABLE I. Typical TMR ratios at 4.2 K and 290 K for a MTJ from each MTJ series MTJ-A to MTJ-C, which had slightly different Si compositions γ with respect to Co_2 in $\text{Co}_2\text{Mn}_\alpha\text{Si}_\gamma$ electrodes, and the respective film compositions of $\text{Co}_2\text{Mn}_\alpha\text{Si}_\gamma$ electrodes for each MTJ. | MTJ series | Film composition of a MTJ from each MTJ series | Typical TMR ratios | | |------------|------------------------------------------------------|--------------------|----------| | | | at 4.2 K | at 290 K | | MTJ-A | Co ₂ Mn _{1.29} Si _{1.0} | 1804% | 344% | | MTJ-B | $Co_2Mn_{1.35}Si_{0.88}$ | 1995% | 330% | | MTJ-C | $Co_2Mn_{1.37}Si_{0.96}$ | 1910% | 354% | trodes (MTJ-B) are shown in Fig. 2. The MTJ exhibited clear exchange-biased TMR characteristics with giant TMR ratios of 1995% at 4.2 K and 330% at 290 K. These values are significantly higher than the 1135% at 4.2 K and 236% at 290 K previously obtained for Co₂MnSi MTJs grown on MgO-buffered MgO(001) substrates. We confirmed these considerably enhanced TMR ratios by introducing a thin Co₂MnSi lower electrode deposited on a CoFe buffer layer for the three different series of CoFe-buffered Co₂MnSi MTJs. As summarized in Table I, all three series of the CoFe-buffered Co₂MnSi MTJs showed almost identical giant TMR ratios of up to 1995% at 4.2 K and up to 354% at 290 K. We investigated how the TMR ratios of CoFe-buffered Co₂MnSi MTJs depended on the Mn composition in Co₂MnSi electrodes in MTJs of series C, which had Co₂Mn $_{\alpha}$ Si_{0.96} electrodes with various values of α . Figures 3(a) and 3(b) show the TMR ratios at 4.2 K and 290 K, respectively, for CoFebuffered Co₂MnSi MTJs of series C as a function of Mn composition α ranging from 0.72 (Mn-deficient Co₂MnSi) to 1.57 (Mn-rich Co₂MnSi) in Co₂Mn $_{\alpha}$ Si_{0.96} electrodes, in comparison with those of MgO-buffered Co₂MnSi MTJs as a function of Mn composition α ranging from 0.69 (Mn-deficient Co₂MnSi) to 1.43 (Mn-rich Co₂MnSi) in Co₂Mn $_{\alpha}$ Si electrodes previously reported in Ref. 26. The TMR ratios at both 4.2 K FIG. 3. TMR ratios at (a) 4.2 K and (b) 290 K for fully epitaxial CoFe-buffered $Co_2Mn_{\alpha}Si_{0.96}$ (3 nm)/MgO/Co₂Mn_{α}Si_{0.96} (3 nm) MTJs of series C (blue solid and open circles are for $4.2\,\mathrm{K}$ and $290\,\mathrm{K}$, respectively) as a function of Mn composition α ranging from 0.72 (Mn-deficient Co₂MnSi) to 1.57 (Mn-rich Co₂MnSi). The MgO tunnel barrier layer was deposited by electron beam evaporation using a linearly moving shutter with the nominal thickness (t_{MeO}) ranging from 1.4 to 3.2 nm on each $20 \times 20 \text{ mm}^2$ substrate. The TMR ratio showed a slight increase with an increase in t_{MgO} for a t_{MgO} range from 1.8 to 3.0 nm. A typical TMR ratio in this t_{MgO} range for each Mn composition is plotted. For comparison, those of MgO-buffered Co₂Mn_{\u03b2}Si (30 nm)/MgO/Co₂Mn_{\u03b2}Si (3 nm) MTJs (red solid and open circles are for 4.2 K and 290 K, respectively) as a function of Mn composition α ranging from 0.69 (Mn-deficient Co₂MnSi) to 1.43 (Mn-rich Co₂MnSi) reported in Ref. 26 are plotted. The bias voltage was 1 mV at 4.2 K and 5 mV at 290 K. The Si compositions γ in the expression of Co₂Mn_αSi_γ are 0.96 for CoFe-buffered Co₂MnSi MTJs of series C and 1.0 for MgO-buffered Co₂MnSi MTJs. and 290 K were found to increase systematically with increasing α for the range from $\alpha = 0.72$ to 1.37. Indeed, the TMR ratio at 4.2 K increased significantly from 640% for Mndeficient $\alpha = 0.72$ to 1910% for Mn-rich $\alpha = 1.37$. The TMR ratio at 290 K also notably increased with increasing α: from 179% for $\alpha = 0.72$ to 354% for $\alpha = 1.37$. Thus, we obtained higher TMR ratios of 1910% at 4.2 K and 354% at 290 K for MTJs with Mn-rich Co₂Mn_{1.37}Si_{0.96} electrodes than for those having Mn-deficient or almost stoichiometric Co₂MnSi electrodes in MTJs of series C. This confirms our previous observations^{26,27,30} and can be explained by the higher halfmetallicity enhanced through suppression of harmful Co_{Mn} antisites by using Mn-rich Co₂MnSi electrodes. We have proposed a site-specific formula unit composition model for Mnrich $Co_2Mn_\alpha Si$ ($\alpha > 1$) that is based on the L2₁ structure, as confirmed by the structural analysis, and on the assumption of antisite formation rather than vacancy formation, ^{26,27} where this assumption was introduced by taking into account that the theoretically calculated formation energies for vacant sites are higher than those for antisites for Co₂MnSi. ^{13,14} According to this model, the nominal composition of Co₂Mn_{1.37}Si_{0.96} (used in MTJs of series C) have the site-specific formula unit composition of $[Co_{1.85}Mn_{0.15}]Mn[Si_{0.89}Mn_{0.11}]$, in which Co_{Mn} antisites detrimental to the half-metallicity are suppressed. Importantly, CoFe-buffered Co₂MnSi MTJs showed markedly higher TMR ratios at 4.2 K and 290 K than the previously reported TMR ratios of MgO-buffered Co₂MnSi MTJs for a wide α range from $\alpha = 0.72$ to 1.57, as shown in Figs. 3(a) and 3(b). To discuss a possible origin of the significantly enhanced TMR ratios of up to 1995% at 4.2 K and up to 354% at 290 K for CoFe-buffered Co₂MnSi MTJs with Mn-rich Co₂MnSi electrodes from the 1135% at 4.2 K and 236% at 290 K previously reported for MgO-buffered Co₂MnSi MTJs with Mn-rich Co₂MnSi electrodes, ²⁶ we plotted how the TMR ratios at 4.2 K and 290 K of these two kinds of MTJ depended on the average misfit dislocation spacing at the interfaces with a MgO barrier in Figs. 4(a) and 4(b), where we classified the CoFe-buffered and MgO-buffered Co₂MnSi MTJs into group 1; these group-1 MTJs are characterized as FIG. 4. Dependence of the TMR ratios at (a) 4.2 K and (b) 290 K on the average misfit dislocation spacing at the lower and upper interfaces with a MgO barrier for MTJs of group 1, including the CoFe-buffered Co₂MnSi/MgO/Co₂MnSi MTJ (blue solid circles) and MgO-buffered Co₂MnSi/MgO/Co₂MnSi MTJ (red solid circles). The TMR ratios and the misfit dislocation spacing for the latter are taken from Refs. 26 and 29, respectively. For comparison, similar dependences at 4.2 K for MTJs of group 2 (Ref. 30), including (from the lower side) MgO buffer/Co₂MnSi/MgO/CoFe MTJs (black open triangle), CoFe buffer/Co₂MnSi/MgO/CoFe MTJs (blue open square), and CoFe/MgO/Co₂MnSi MTJs (red open circle) having Mn-rich Co₂Mn_{1.29}Si_{1.0}, Co₂Mn_{1.35}Si_{0.88}, and Co₂Mn_{1.29}Si_{1.0} electrodes, respectively, are also plotted in (a). having Co₂MnSi thin films as both the lower and upper electrodes. As shown in Fig. 4, the CoFe-buffered Co₂MnSi MTJs that had the larger average misfit dislocation spacing than the MgO-buffered Co₂MnSi MTJs showed significantly higher TMR ratios at both 4.2 K and 290 K. This can be ascribed to the enhanced coherent tunneling contribution in the CoFebuffered Co₂MnSi MTJs arising from the increased area of epitaxial interfaces without a misfit dislocation because epitaxial interfaces are essential for conservation of the electron transverse momentum for tunneling. As recently reported elsewhere, ³⁰ similar dependences of the TMR ratios at both 4.2 K and 290 K on the misfit dislocation spacing were also clearly observed for Co₂MnSi/MgO-based MTJs that had a Co₂MnSi film as either the lower or the upper electrode and a CoFe film as the other electrode (classified into group 2), including (from the lower side) (1) MgO buffer/Co₂MnSi/MgO/CoFe MTJs, (2) CoFe buffer/thin Co₂MnSi/MgO/CoFe MTJs, and (3) CoFe/MgO/Co₂MnSi MTJs, all having Mn-rich Co₂MnSi electrodes. Thus, it was commonly observed that the larger misfit dislocation spacing at the interfaces with a MgO barrier resulted in the larger TMR ratios at both 4.2 K and 290 K for both Co₂MnSi/MgO/Co₂MnSi MTJs (group 1) and MgO-based MTJs having a Co₂MnSi electrode and a CoFe electrode (group 2). At low temperatures where thermally excited magnons can be ignored, the tunneling spin polarization and coherent tunneling contribution are the key factors that determine the TMR ratios of epitaxial MTJs. For comparison, we also plotted in Fig. 4(a) how the TMR ratio at 4.2 K depended on the average misfit dislocation spacing at the interfaces for the MTJs with a Co₂MnSi electrode and a CoFe electrode (group 2) from Ref. 30. It can be clearly seen from the comparison in Fig. 4(a) that MTJs having Co₂MnSi as both the lower and upper electrodes (group 1) showed significantly higher TMR ratios at 4.2 K of up to 1995% than the 1049% of MTJs having a Co₂MnSi electrode and a CoFe electrode (group 2).³⁰ This clearly demonstrates the significantly higher tunneling spin polarization of Co₂MnSi than CoFe and the halfmetallic nature of Co₂MnSi as the origin of its high tunneling spin polarization. Furthermore, the much higher TMR ratios of up to 1995% at 4.2 K obtained for Co₂MnSi MTJs than the 1144% at 5 K reported for CoFeB/MgO/CoFeB MTJs²⁴ also definitely indicate the high spin polarization at $E_{\rm F}$ of Co₂MnSi electrodes as arising from the half-metallicity of Co₂MnSi because the high TMR ratio observed for the CoFeB/MgO/CoFeB MTJs is due solely to the coherent tunneling contribution of Δ_1 band electrons. In summary, we demonstrated giant TMR ratios of up to 1995% at 4.2 K and up to 354% at 290 K for fully epitaxial Co₂MnSi/MgO/Co₂MnSi MTJs (Co₂MnSi MTJs) having Mn-rich Co₂MnSi electrodes. From the systematic study of the dependence of the TMR ratio of Co₂MnSi MTJs on the Mn composition in Co₂MnSi electrodes and on the misfit dislocation spacing at the interfaces with a MgO barrier, we conclude that the obtained giant TMR ratios can be ascribed to the half-metallicity of Co₂MnSi electrodes and coherent tunneling contribution in epitaxial MTJs. This work was partly supported by a Grant-in-Aid for Scientific Research (A) (Grant No. 23246055) from MEXT, Japan. - ¹S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. von Molnár, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger, Science **294**, 1488 (2001). - ²I. Žutić, J. Fabian, and S. Das Sarmar, Rev. Mod. Phys. 76, 323 (2004). - ³R. A. de Groot, F. M. Mueller, P. G. van Engen, and K. H. J. Buschow, Phys. Rev. Lett. **50**, 2024 (1983). - ⁴C. Felser, G. H. Fecher, and B. Balke, Angew. Chem., Int. Ed. 46, 668 (2007). ⁵S. Kämmerer, A. Thomas, A. Hütten, and G. Reiss, Appl. Phys. Lett. 85, - 79 (2004). - ⁶Y. Sakuraba, M. Hattori, M. Oogane, Y. Ando, H. Kato, A. Sakuma, T. Miyazaki, and H. Kubota, Appl. Phys. Lett. **88**, 192508 (2006). - ⁷T. Ishikawa, T. Marukame, H. Kijima, K.-i. Matsuda, T. Uemura, M. Arita, and M. Yamamoto, Appl. Phys. Lett. 89, 192505 (2006). - ⁸M. Yamamoto, T. Marukame, T. Ishikawa, K.-i. Matsuda, T. Uemura, and M. Arita, J. Phys. D: Appl. Phys. 39, 824 (2006). - ⁹N. Tezuka, N. Ikeda, F. Mitsuhashi, and S. Sugimoto, Appl. Phys. Lett. **94**, 162504 (2009). - ¹⁰W. Wang, E. Liu, M. Kodzuka, H. Sukegawa, M. Wojcik, E. Jedryka, G. H. Wu, K. Inomata, S. Mitani, and K. Hono, Phys. Rev. B 81, 140402(R) (2010). - ¹¹T. Furubayashi, K. Kodama, H. Sukegawa, Y. K. Takahashi, K. Inomata, and K. Hono, Appl. Phys. Lett. **93**, 122507 (2008). - ¹²Y. Sakuraba, K. Izumi, T. Iwase, S. Bosu, K. Saito, K. Takanashi, Y. Miura, K. Futatsukawa, K. Abe, and M. Shirai, Phys. Rev. B 82, 094444 (2010). - ¹³S. Picozzi, A. Continenza, and A. J. Freeman, Phys. Rev. B 69, 094423 (2004). - ¹⁴B. Hülsen, M. Scheffler, and P. Kratzer, Phys. Rev. B **79**, 094407 (2009). - ¹⁵S. Ishida, S. Fujii, S. Kashiwagi, and S. Asano, J. Phys. Soc. Jpn **64**, 2152 (1995). - ¹⁶S. Picozzi, A. Continenza, and A. J. Freeman, Phys. Rev. B 66, 094421 (2002) - ¹⁷I. Galanakis, P. H. Dederichs, and N. Papanikolaou, Phys. Rev. B 66, 174429 (2002). - ¹⁸P. J. Webster, J. Phys. Chem. Solids **32**, 1221 (1971). - ¹⁹W. H. Butler, X.-G. Zhang, T. C. Schulthess, and J. M. MacLaren, Phys. Rev. B 63, 054416 (2001). - ²⁰J. Mathon and A. Umerski, Phys. Rev. B **63**, 220403(R) (2001). - ²¹S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, Nature Mater. 3, 868 (2004). - ²²S. S. Parkin, C. Kaiser, A. Panchula, P. M. Rice, B. Hughes, M. Samant, and S.-H. Yang, Nature Mater. 3, 862 (2004). - ²³D. D. Djayaprawira, K. Tsunekawa, M. Nagai, H. Maehara, S. Yamagata, N. Watanabe, S. Yuasa, Y. Suzuki, and K. Ando, Appl. Phys. Lett. 86, 092502 (2005). - ²⁴S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura, and H. Ohno, Appl. Phys. Lett. **93**, 082508 (2008). - ²⁵Y. Miura, H. Uchida, Y. Oba, K. Nagao, and M. Shirai, J. Phys.: Condens. Matter 19, 365228 (2007). - ²⁶T. Ishikawa, H.-x. Liu, T. Taira, K.-i. Matsuda, T. Uemura, and M. Yamamoto, Appl. Phys. Lett. **95**, 232512 (2009). - ²⁷M. Yamamoto, T. Ishikawa, T. Taira, G.-f. Li, K.-i. Matsuda, and T. Uemura, J. Phys.: Condens. Matter 22, 164212 (2010). - ²⁸F. Bonell, S. Audrieu, C. Tiusan, F. Montaigne, E. Snoeck, B. Belhadji, L. Calmels, F. Bertran, P. Le Fèvre, and A. Taleb-Ibrahimi, Phys. Rev. B 82, 092405 (2010). - ²⁹T. M. Nakatani, Y. K. Takahashi, T. Ishikawa, M. Yamamoto, and K. Hono, J. Magn. Magn. Mater. 322, 357 (2010). - ³⁰H.-x. Liu, Y. Honda, K.-i. Matsuda, M. Arita, T. Uemura, and M. Yamamoto, Jpn. J. Appl. Phys. **51**, 093004 (2012).