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ABSTRACT: The structural validation problem using quan-
tum chemistry approaches (confirm or reject a candidate
structure) has been tackled with artificial neural network
(ANN) mediated multidimensional pattern recognition from
experimental and calculated 2D C−H COSY. In order to
identify subtle errors (such as regio- or stereochemical), more
than 400 ANNs have been built and trained, and the most
efficient in terms of classification ability were successfully
validated in challenging real examples of natural product
misassignments.

■ INTRODUCTION

Nuclear magnetic resonance spectroscopy has revolutionized
structural elucidation of natural products since the last half of
the past century. An extraordinary improvement in NMR
hardware and methodology has occurred over time,1 though
the structural or stereochemical misassignments were not
completely inhibited by such evolution. This is evidenced by
the hundreds of structural revisions published in the last two
decades, many of them detected after the total synthesis of the
originally proposed (wrong) structure.2 The contribution of
computational chemistry to prevent these painful and
frustrating situations has been substantial, as accurate
predictions of NMR parameters can be made with most
quantum chemistry packages.3 Good correlation between
experimental and calculated NMR data provides confidence
in the structural assignment. This has been facilitated and
improved by sophisticated statistical methods introduced by
Smith and Goodman to assign two sets of experimental data to
two possible candidates (CP3)4 or one set of experimental data
to two or more plausible structures (DP4).5

All of the current approaches are “comparison-based” as they
share a basic underlying principle: the correct structure shows
the best correlation between calculated and experimental data
among the candidates taken into consideration. While their
importance in the structural elucidation field is unquestionable,
it is essential to recognize the weak points. First, they are
intended to point out the structure that, among the chosen
candidates, correlates better with the experimental data, which
could bring to a successful conclusion only if the correct
structure was included as candidate. Second, they cannot be

used in structural validation problems (confirmation of a
putative structure), as the intrinsic absence of a second
candidate structure makes impossible any comparison.
To sort these limitations, we recently demonstrated that

NMR shift calculations in conjunction with artificial neural
networks (ANNs) provided an efficient method for the
detection of structural mistakes using one set of experimental
and calculated data.6 The proof-of-principle of this new
approach, developed exclusively on the pattern recognition of
13C data, showed excellent results mainly in the identification of
connectivity errors. However, it tends to fail (vide infra) where
the source of error is more subtle (i.e., stereochemical).
In order to take this approach a step further, we envisaged

the development of powerful ANNs with enhanced classi-
fication ability refined enough to detect slight errors typically
found in regio- or stereochemical missasignments. We
considered that adding extra dimensions of data would increase
the network ability to differentiate between right and wrong
structures. Thus, 2D C−H COSY (commonly known as
HSQC) experiments were introduced as templates for
multilevel pattern recognition analysis. The inclusion of one-
dimensional 1H NMR (and its corresponding correlation with
13C NMR) was thought of particular importance as it was found
that proton data makes the most decisive contribution in
structural elucidation problems.7
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■ RESULTS AND DISCUSSION

Briefly, ANNs are mathematical models in which intercon-
nected artificial neurons emulate a biological brain. Among
several interesting properties, the ability of ANNs to learn from
the data makes them convenient tools in pattern recognition,
classification, and clustering analysis.8 As in our previous study,
herein we used two-layered feed-forward networks. As depicted
in Figure 1, the input, hidden, and output layers (the three

main components) are fully connected, meaning that each
neuron is linked to every neuron in the precedent layer. In
analogy with the biological neuron, the synapse (strength of the
connection between two neurons) is measured by a weight
number (w). Each connection carries an assigned weight, and
activation functions (also known as transfer functions, f)
control the output value. In this work, we used sigmoid transfer
functions both in the hidden and output layers, as this
architecture can classify vectors arbitrarily well.9 A more
detailed mathematical explanation of the net architecture is
given in the Supporting Information.
Under supervised network training, a large number of data

are given (input and output values) to train the ANN. A scaled
conjugate gradient back-propagation algorithm was used to set
the optimal weights and bias values for each connection.8 Once
trained, the network can then be used to make further
predictions. The set of data used during the training step are
statistical parameters of correlation between experimental and
calculated NMR shifts from correct and incorrect molecules.

For the correct test set, 100 known compounds (for which the
13C and HSQC (heteronuclear single quantum correlation)
NMR spectra are confidently assigned)10 were taken to ensure
functional groups diversity and molecular complexity. The set
of incorrect structures was built by introducing slight
modifications to some of the compounds used in the correct
set by inverting a stereocenter or changing the position of few
atoms. The calculated NMR shifts of the resulting stereo- and
regioisomers (82 examples) were correlated with the
experimental data corresponding to its precursor structure
(Figure 2 shows some representative examples; for the
complete set of structures see the Supporting Information).
In addition, because some of the compounds of the correct set
are diastereoisomers we could make 26 additional correlations
between there experimental data computed for one isomer with
the calculated data for the other isomer.11 The resulting 182
structures were optimized at the B3LYP/6-31G* level,12 and
the NMR shielding tensors were calculated using the GIAO
(gauge including atomic orbitals) method13 at the
mPW1PW91/6-31G* (gas phase)14 and mPW1PW91/6-
31G** (solution) levels of theory.
Once the NMR shifts were calculated at the two levels of

theory, and using two different reference standards (TMS and
MSTD, see Computational Methods), we proceeded to
compute the statistical parameters that are employed to set
the goodness of fit between experimental and calculated shifts
that in turn serve as input layers to train the ANNs. There are
two main procedures to do so: using assigned or unassigned
data.
The first case entails knowing which simulated shift is linked

to which experimental resonance. However, even after
exhaustive NMR experiments, the misassignment of at least
some signals can often occur, giving potential problems in the
data correlation. Moreover, if the proposed structure is wrong
any assignment of the experimental signals would be probably
incorrect. For those reasons, we used unassigned data; that is,
the experimental (δexp) and calculated (δcalc) chemical shifts
were arranged in descending order of size for both 1H and 13C
signals. The systematic errors from the NMR calculations were
eliminated by an empirical scaling procedure as δscaled = (δcalc −
b)/m, where m and b are the slope and the intercept,
respectively, resulting from a linear regression calculation on a
plot of δcalc against δexp.

3 Apart from m, b, and R2 (the
correlation coefficient), we computed the mean absolute error
(MAE, defined as Σn|δcalc − δexp|/n), the corrected mean

Figure 1. Two-layer feed-forward ANN.

Figure 2. Eight representative examples of the molecules used in the correct test set (top) and the incorrect test set (bottom, data for precursor
compound whose NMR was employed is shown in parentheses). The structural and/or stereochemical modification is framed in gray and
highlighted in red.
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absolute error (CMAE, defined as Σn|δscaled − δexp|/n), the
standard deviation (σ, defined as [Σn(|δcalc − δexp| − MAE)2/(n
− 1)]1/2), the corrected standard deviation (Cσ, defined as
[Σn(|δscaled − δexp|−CMAE)2/(n − 1)]1/2), the maximum error
(MaxErr, defined as max|δcalc − δexp|), and the corrected
maximum error (CMaxErr, defined as max|δscaled − δexp|).
Furthermore, 18 extra parameters were computed from the
correlation between experimental and calculated HSQC data. It
is important to point out that the lack of importance of
knowing which shift corresponds to which nucleus (unassigned
data) should not be extrapolated into the C−H correlation. In
the two-dimensional experiment, each cross-peak indicates
directly bonded carbon−proton nuclei, while in the calculated
analogue this information is obtained by considering the atom
labels during the shift calculation procedure.11 As depicted in
Figure 3A, each error was defined as a distance from center to

center of the experimental and calculated cross-peaks (h =
[Δδ(13C)2 + Δδ(1H)2]1/2) and the corresponding angle α,
defined as α = arctan[Δδ(13C)/Δδ(1H)]. The averaged values
of h and α (M-h and M-α, respectively), the maximum value
and standard deviation of h (Max-h and σ-h, respectively),
along with the corresponding corrected values (CM-h, CM-α,
CMax-h, and Cσ-h) represent 8 C−H terms. We also
considered the quadrant distribution (Q1, Q2, Q3, and Q4)

as a potential measure of the randomness of the correlations.
This can be done by (hypothetically) placing all the
experimental cross-peaks in a common origin of coordinates
and computing the percentage of calculated cross-peaks that fall
in each quadrant. Figure 3B illustrates this by a representative
example of the distribution of calculated cross-peaks of 22
(correct, green dots) and 128 (incorrect, red triangles) using
scaled chemical shifts computed at the mPW1PW91/6-31G*//
B3LYP/6-31G* with MSTD as reference standard. Note that in
this particular case the Q1, Q2, Q3, and Q4 values of 22 are
0%, 59%, 41%, and 0%, respectively, while for 128 the
distribution changes to 41%, 36%, 9%, and 14%, respectively.
The Q1-Q4 terms, along with the averaged value (MQ) can be
computed from scaled and unscaled shifts, leading to 10
additional parameters.
In summary, for each reference standard (TMS and MSTD),

18 parameters are taken from the 1D correlations (9 from 1H
and 9 from 13C) and 18 from 2D correlations to give a full
matrix of 72 elements.
With the data in hand, we next explored the optimal

combination of input and hidden layers to afford the best
classification with the 208 examples of the training set.
Regarding the size of the input layer, we used diverse arrays
of statistical descriptors: the full matrix of 72 elements, the half
matrices of 36 parameters from TMS or MSTD, and other
submatrices (such as those containing only 1D data, 2D data,
1H data, 13C data, using TMS, MSTD, or both reference
standards). For each input layer, different sizes of the hidden
layer were investigated, ranging from 10 to 100 neurons. After
several trials (in average, we generated and trained more than
400 different ANNs), we identified two networks that
performed particularly well after the training, namely: ANN-
TMSvac and ANN-MSTDsol. The first one was built using the
36 parameters computed at the mPW1PW91/6-31G* in gas
phase with TMS as reference standard and 10 neurons in the
hidden layer, and the second one was built with the 36
parameters computed at the mPW1PW91/6-31G** in solution
with MSTD as standard and 20 neurons in the hidden layer.
The percentage of correct classification achieved by both
networks after the training was high (97% and 92%,
respectively). From the collected results two main conclusions
could be drawn:

(a) The best classification was achieved with all the data
provided by the 1H, 13C, and C−H correlations, and
removing any subset of statistical parameters resulted in a
decrease of the pattern recognition ability of the network.

(b) Mixing the 36 parameters from TMS with the 36
parameters from MSTD (both in gas phase or in
solution) did not improve the results (in fact, it declined
the classification capacity of the ANNs). We speculated
that this could be due, at least in part, to misleading data.
In general, MSTD performs better than TMS when
computing unscaled chemical shifts, though TMS can
afford better correlation after scaling.15 As the improve-
ment of MSTD over TMS is much higher when
including the solvent effects (in particular, for 1H
NMR), it is clearly the best performance of TMS-derived
parameters in gas-phase calculations and MSTD-derived
parameters computed in solution.

At this point, we speculated that mixing the input layers of
ANN-TMSvac and ANN-MSTDsol would allow to take the best
of both worlds. In fact, the new network (called ANN-mix)

Figure 3. (A) Schematic representation of the correlation between
experimental and calculated C−H cross-peaks. (B) Distribution of
cross-peaks of compound 22 (correct, green dots) and its incorrect
analogue (128, red triangles), computed using scaled chemical shifts at
the mPW1PW91/6-31G*//B3LYP/6-31G* level with MSTD as the
reference standard. All the experimental cross-peaks are merged in the
center of coordinates.
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constructed with an input layer of 72 elements (36 parameters
derived from gas phase calculations using TMS as standard and
36 parameters derived from solution calculations using MSTD
as standard) and 14 neurons in the hidden layer performed very
good after the training (94% of correct classification).
To examine whether adding extra dimensions of information

indeed resulted in a significant improvement of the ANNs, we
next evaluated the classification ability of the three selected
trained networks (ANN-TMSvac, ANN-MSTDsol and ANN-
mix) in 25 challenging real cases of structural misassignments
(Figure 4). The differences between the originally proposed
and the revised structures (Figure 5) are mainly regio- and/or
stereochemical, though we include some difficult examples of
constitutional isomerism.
After extensive conformational searches, the shielding tensors

of all structures shown in Figure 4 were computed at the
mPW1PW91/6-31G*//B3LYP/6-31G* and PCM/
mPW1PW91/6-31G**//B3LYP/6-31G* levels of theory, and
the resulting chemical shifts were correlated with the
experimental NMR values originally reported for those
compounds using our trained networks.

To our delight, ANN-TMSvac, ANN-MSTDsol, and ANN-mix
successfully detected the misassignments of the originally
proposed structures in 85%, 94%, and 100% of the cases,
respectively (Figure 4).11 Such classification performance gains
additional importance when considering the 25% correct
identification achieved by of our best previously reported
ANN-HF-18 (that was conceived to find patterns only in the
13C NMR data).6

On the other hand, when dealing with the revised (correct)
structures (Figure 5), ANN-TMSvac and ANN-MSTDsol failed
in only one and two cases, respectively, whereas ANN-mix
correctly classified all examples, clearly indicating its superior
pattern recognition ability.11

In order to further validate our networks, we selected the
three diastereoisomeric pairs 221−222, 227−228, and 230−

231 (Table 1) and created “ex professo” errors by correlating
the experimental data of one isomer with the calculated data for
the other isomer (for example, 228calc−227exp and 227calc−

228exp). Again, the results were highly satisfactory in terms of
pattern recognition ability.

Figure 4. Natural products originally misassigned and classification results of the three optimal ANNs.
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Case Study. To illustrate the usefulness of our method-
ology, the recent case of the structural revision of mandelalide
A (original structure: 323, Figure 4; revised structure: 223,
Figure 5) is discussed. This complex glycosylated macrolide was
isolated in 2012 from new species of Lissoclinum ascidian
(collected from South Africa), and its planar structure was
elucidated by extensive 1D and 2D NMR data, whereas the
relative configuration was assigned from homonuclear and
heteronuclear coupling constants analysis and ROESY exper-
iments.33a Hydrolysis and GC−MS identification of the
resulting monosaccharide (2-O-methyl-α-L-rhamnose) allowed
the unequivocal determination of the absolute configuration of
the southern region of the molecule and, by extrapolation, of
the northern region as well. The initial screenings suggested
remarkable cytotoxic activity against human NCI-H460 lung
cancer (IC50 = 12 nM) and mouse Neuro-2A neuroblastoma
cell lines (IC50 = 44 nM), though further investigation had to
be suspended due to the limited amount of isolated sample (0.8
mg).33a This motivated synthetic organic groups to pursue the
total synthesis of mandelalide A, and it was not long before the
first results appeared.33b,41 In 2014, Willwacher and Fürstner
accomplished the first total synthesis of the putative structure of

mandelalide A (323) and found that the NMR data of the
synthesized compound showed small by indisputable differ-
ences with the natural product.41a The preparation of the C-11
epimer did not solve the correct architecture of mandelalide A,
which was finally unraveled the same year by Xu and Ye (and
co-workers) after total synthesis of the proposed structure and
two more stereoisomers (one of them, the revised mandelalide
A, 223).33b The origin of the mistake was the stereochemistry
of the upper side of the molecule, with all the corresponding
stereocenters inverted, that had been originally determined on
the basis or the relative stereochemistry between the
tetrahydrofuran and tetrahydropyran fragments, though the
assignment of two separated stereoclusters can be challenging.3e

To analyze how the present methodology could have been
useful in preventing such frustrating situation (as stated by
Fürstner),41a it is important to begin pointing out that
computed chemical shifts of compound 323 showed good
agreement with the experimental data. For example, at the
mPW1PW91/6-31G* level the CMAE was 1.6 ppm (13C) and
0.15 ppm (1H), with maximum outliers (CMaxErr) of 6.8 ppm
(13C) and 0.50 ppm (1H).42 These representative values do not
indicate the presence of any structural error as they fall in the

Figure 5. Revised structures of the natural products shown in Figure 4 and classification results of the three optimal ANNs.
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typical range of correct structures (CMAE 13C: 0.2−2.2 ppm;
CMAE 1H: 0.03−0.23 ppm; CMaxErr 13C: 0.4−9.5 ppm;
CMaxErr 1H: 0.05−0.72 ppm). Interestingly, it is the
combination of these parameters (and many other as well)
which defines the pattern that allows our trained ANNs to
correctly classify the originally proposed structure (323) as
incorrect (Figure 4). This alarm could have triggered a more
thorough revision (for example, considering all plausible
isomers and computing the DP4 probability,5 additional
NMR experiments, etc.).
Quoting Fürsner’s concluding remark after his total synthesis

of the putative mandelalide A, “somewhat ironically, they remind
us that contemporary natural product total synthesis does not only
serve the supply management alluded to in the introduction; all too
of ten it is needed, even in the age of ever more sophisticated
spectroscopy, to decide on structural issues”.41a We hope that the
method herein presented will provide a helpful tool in making
structural decisions faster, simpler, and cheaper than by total
synthesis of the incorrectly assigned compound.

■ CONCLUSION

In summary, we have shown that using ANN-mediated
multidimensional pattern recognition from experimental and
calculated 2D C−H COSY allows the identification of subtle
structural misassignments, such as regio- or stereochemical.
The best results were obtained by mixing the statistical
descriptors computed at the mPW1PW91/6-31G* level (in
gas phase) with TMS as reference standard with those obtained

at the mPW1PW91/6-31G** level (in solution) with the
MSTD approach, and this approach is recommended to obtain
the most reliable results. Moreover, in an effort to bring this
methodology to the organic chemistry community, an Excel file
that facilitates the calculation procedure is available from the
authors in the Supporting Information.
One final reflection should be discussed. When analyzing the

right and wrong pair of a given molecule (for instance, those
shown in Figures 4 and 5 and Table 1), comparing the
calculated data for both with the experimental values might be
the instinctive reflex to determine which is the incorrect
example. However, such an impulse must be dismissed as the
decision making should not lie on any comparison; the
challenge here is to decide if a given (only one) putative
structure is correct based on the experimental data and the
computed NMRs for that candidate. Having clarified this issue,
the fact that the trained ANNs could actually identify structural
errors as subtle as the inversion of one stereocenter can be
represents a remarkable feature.

■ EXPERIMENTAL SECTION

Computational Methods. All of the quantum mechanical
calculations were performed using Gaussian 09.43 In the case of
conformationally flexible compounds, the conformational search was
done in the gas phase using the MM+ force field44 (implemented in
Hyperchem),45 with the number of steps large enough to find all low-
energy conformers at least 10 times. All conformers within 5 kcal/mol
of the lowest energy conformer were subjected to further
reoptimization at the B3LYP/6-31G* level of theory. All conformers
within 2 kcal/mol from the B3LYP/6-31G* global minima were
subjected to further NMR calculations. The magnetic shielding
constants (σ) were computed using the gauge including atomic
orbitals (GIAO) method, the method of choice among the different
approaches to solve the gauge origin problem, with the mPW1PW91
functional (one of the most reliable DFT functionals for NMR
calculations).3 Single-point NMR calculations were carried out in the
gas phase (with the 6-31G* basis set) and in solution (with the 6-
31G** basis set) using the polarizable continuum model (PCM) with
chloroform as solvent.46 The NMR shielding constants were subjected
to Boltzmann averaging over all conformers according to eq 1

σ
σ

=
∑ −

∑ −

E RT

E RT

exp( / )

exp( / )
x i

x

i i

i i (1)

where σ
x is the Boltzmann-averaged shielding constant for nucleus x,

σ
x
i is the shielding constant for nucleus x in conformer i, R is the molar

gas constant (8.3145 J K−1 mol−1), T is the temperature (298 K), and
Ei is the energy of conformer i (relative to the lowest energy
conormer) obtained from the single-point NMR calculations
(mPW1PW91/6-31G* in gas phase or mPW1PW91/6-31G** in
solution). The chemical shifts were calculated according to eq 2

δ σ σ δ= − +x x

calc ref ref (2)

where σref is the NMR isotropic magnetic shielding values for the
reference compound and δref is the experimental chemical shift of the
reference compound in deuterated chloroform. In this study, two
different methods to calculate the NMR chemical shifts were used,
namely TMS and MSTD.15 In the TMS method, all chemical shifts are
calculated using tetramethylsilane (TMS) as reference standard (δref =
0.00 ppm), while in the multistandard approach (MSTD), methanol
(δref = 50.41 ppm for 13C and δref = 3.49 ppm for 1H) and benzene
(δref = 128.37 for 13C and δref = 7.36 ppm for 1H) were used as
reference standards for sp3 and sp−sp2-hybridized carbon atoms (or
proton attached to sp3- and sp−sp2-hybridized carbon atoms),
respectively. Sarotti and Pellegrinet have recently found that this
simple modification allowed much better accuracy and lower

Table 1. Performance of the Trained ANNs in Additional
Validation Examples
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dependence on the theory level employed, both for 13C and 1H NMR
shift calculation procedures.15

The ANN training was done using the Neural Network Toolbox
incorporated in MATLAB 7.0.22.9
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