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About 10 years ago, a protein family was shown for the first time to contain
allergenic members, gibberellin-regulated protein (GRP). The first reported
member was from peach, Pru p 7. One can hypothesize that it was not
detected before because its physicochemical characteristics overlap with
those of lipid transfer protein (LTP), a well-known allergen, or because the
exposure to GRP increased due to an increase in the gibberellin
phythormone level in plant food, either exogenous or endogenous. Like
LTPs, GRPs are small cationic proteins with disulfide bridges, are resistant to
heat and proteolytic cleavage, and are involved in the defense of the plant.
Besides peach, GRP allergens have been described in Japanese apricot (Pru
m 7), sweet cherry (Pru av 7), orange (Cit s 7), pomegranate (Pun g 7), bell
pepper (Cap a 7), strawberry (Fra a GRP), and also in pollen with a restriction
to Cupressaceae tree family (Cup s 7, Cry j 7, and Jun a 7). IgE cross-
reactivities were described between GRPs, and the reported peach/cypress
and citrus/cypress syndromes may therefore be explained because of these
GRP cross-reactivities. GRPs are clinically relevant, and severe adverse
reactions may sometimes occur in association with cofactors. More than
60% and up to 95% sequence identities are calculated between various
allergenic GRPs, and three-dimensional models show a cleft in the molecule
and predict at least three epitopic regions. The structure of the protein and
its properties and the matrix effect in the original allergenic source should
be unraveled to understand why, despite the ubiquity of the protein family in
plants, only a few members are able to sensitize patients.
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Introduction

Since the characterization, in 2013, of Pru p 7 (formerly peamaclein), a member of

the gibberellin-regulated protein (GRP) family, only a few other members were

characterized as allergens although these plant proteins are ubiquitous and share

conserved amino-acid sequences. Therefore, allergenicity parameters of GRPs are

intriguing and remain to be deciphered. This perspective/review will discuss different

factors such as cross-reactivity, epitope prediction, and ligand/cofactor interactions.
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The name of the allergen family GRP appeared for the first

time in a publication of Inomata et al. in 2016 that described

some clinical symptoms associated to Pru p 7 sensitization

(1). Pru p 7 was the first described allergen belonging to GRP

(2). The family name “gibberellin-regulated protein,” while

now well accepted in the field of allergy, might not be the

most appropriate and rather should be snakin. Indeed,

gibberellin is a plant hormone that regulates very diverse

proteins in plants, nonallergenic and allergenic ones, such as,

besides snakin, superoxide dismutase, β-1,3-glucanase,

calmodulin, or oleosin (3). The protein family was also named

snakin/GASA (Gibberellic Acid Stimulated in Arabidopsis)

when snakin-like proteins were described in Arabidopsis

thaliana (4).

GRP will be used for allergen family in the rest of the

manuscript and snakin-1 will refer to the nonallergenic potato

GRP. The name snakin has been given to the protein from

potato because of some similarities with a protein from the

snake venom, kirstin, a disintegrin protein with hemotoxic

properties (5).
The plant hormone

Gibberellin (or gibberellic acid: GA) was described for the

first time by the phytopathologist Eiichi Kurosawa in 1926 in

the Ascomycete parasite of the rice Gibberella fujikuroi, which

results in a dramatic length increase of the rice stems,

defining the so-called foolish seedling rice disease or Bakanae

(6). Between the years 1935 and 1938, Teijiro Yabuta isolated

and purified the hormone in the foolish seedling rice disease

(7). Finally, in the years 1954–1955, the tetracyclic diterpenoid

chemical structure of GA1, GA2, and GA3 was determined (8)

(Figure 1).

Among more than 130 gibberellins identified in plants,

fungi, and bacteria, only GA1, GA3, GA4, and GA7 are

thought to function as bioactive hormones playing a role in
FIGURE 1

Gibberellin acid (GA3), one of the active phythormone in plants. The
commercially available GA3 is one of the most used active
gibberellin for plant treatment.
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plant growth and breaking dormancy (9). Gibberellin and

GRP have an important role in plant development, host

defense, and redox homeostasis. Furthermore, both biotic

(bacteria, viruses, fungi, parasites) and abiotic (drought,

temperature, salt content, wounding, flooding) stresses have

an impact on endogenous gibberellin and GRP levels (10–13).

It was reported, for instance, that a small increase in

temperature was able to increase the concentration of

endogenous gibberellin (14). Many studies evaluating the

impact of environmental modifications on plant hormone,

including gibberellins, are published in relation to climate

change. Nowadays, synthetic exogenous gibberellins are widely

used to increase the yield and/or quality of plant food in

modern agriculture (15–17). Several plant foods are submitted

to an exogenous gibberellin treatment. These plant foods

include grape, cherry, strawberry, pear, tangerine, plum,

orange, blueberry, pineapple, tomato, potato, wheat, rice,

barley, hop, sunflower, alfalfa (Medicago), chili/red pepper,

zucchini, salad, spinach, celery, tobacco, or cotton. No data

are available on the effect of such treatments on the GRP

content and particularly on the snakin protein family, the one

shown to contain allergens and, therefore, able to increase the

allergenicity of the fruit or vegetable.
The protein family

GRPs are nonglycosylated, cationic, monomeric proteins with

a molecular weight (MW) around 7–8 kDa (63 amino acids) and

an isoelectric point (pI) around 9. The protein is hydrosoluble,

with hydrophobic patches and a compact very folded globular

structure, sometimes leading to overevaluation of its MW in

different bio- and physicochemical analytical methods such as

analytical ultracentrifugation or unreduced sodium dodecyl

sulfate - poly acrylamide gel electrophoresis (SDS-PAGE). GRPs,

and more specifically the snakin protein family, belong to the

cysteine-rich plant antimicrobial peptide families involved in

plant growth and resistance to bacteria, virus, or other

microorganisms responsible of plant diseases (18, 19). Twelve

cysteines at conserved positions involved in six disulfide bridges

confer the protein stability and resistance to heat and proteolysis

(2, 20). Because the protein is highly folded, it exhibits

conformational IgE epitopes abrogated after reduction of

disulfide bonds (20, 21) corresponding to a drastic modification

of the original conformation of the protein as shown with Cry j

7 (22). This characteristic may be beneficially used in case of

induction of tolerance to this family of allergens. Indeed, since

allergen-specific immunotherapy can be hazardous due to

difficulties in predicting specific IgE-mediated side effects,

reduced form of GRP, devoid of IgE reactivity, could be safely

used in specific allergen immunotherapy protocols as previously

proposed for pollen and house dust mite allergy as soon as 1998

[reviewed in (23)].
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Snakin-1: the prototypic GRP

The very first snakin GRP described was the snakin-1 from

potato (Solanum tuberosum) in 1999. The expression of the

snakin-1 gene has been detected in tubers, stems, axillary

buds, and young floral buds. Expression levels in petals and

carpels from fully developed flowers were much higher than in

sepals and stamens (5). Structural and functional (antimicrobial

activity) characteristics were thoroughly evaluated (11) including

the three dimensional structure by x-ray crystallography (24).

The protein is folded in three alpha-helices and exhibits a cleft

in which one or more, as yet undetermined, ligands could bind

(Figure 2). Allergy to potato is rare and snakin-1 is not yet

described as an allergen in potato.
Plant food GRP allergens

The very first GRP allergen described in 2013 was Pru p 7 in

peach (Prunus persica) (2). Peach allergic patients selected to

unravel Pru p 7 had no IgE against the other allergens from

peach and specially no anti-Pru p 3 IgEs. Interestingly Pru p

3, like Pru p 7, has a low MW and a basic pI resulting

sometimes in contamination of Pru p 3 purifications with Pru

p 7. The characterization of Pru p 7 was refined and

confirmed in 2014 (25, 26). Pun g 7 the GRP from

pomegranate (Punica granatum) was then reported (27) as

well as Pru m 7, the GRP from Japanese apricot (Prunus

mume) (28). Japanese people are exposed to Japanese apricots

traditionally consumed marinated in salt and called umeboshi.

More fruits were suspected to contain allergenic GRP (29–31)

and orange (Citrus sinensis) Cit s 7 (32) and sweet cherry

(Prunus avium) Pru av 7 (Inomata N. IUIS/WHO Pru av 7
FIGURE 2

Three-dimensional structure of snakin-1 (PDB 5E5Q). Ribbon
representation with surface obtained from crystallography data
show three α-helices colored in blue (S2–C13), green (L18–K34),
and orange (N43–E46 and C47–K53). The cleft is indicated where
a putative ligand could bind. The six disulfide bridges are shown in
gray/yellow small bars. C: C-terminal end of the protein. N-
terminal is masked by the first α-helix (dark blue).
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description. http://wwwallergenorg/searchphp?allergensource=

sweet+cherry&searchsource=Search.2019) were characterized.

Other citrus species like grapefruit (Citrus maxima), tangerine

(Citrus reticulata), and lemon (Citrus limon) contain cross-

reactive GRP with orange (33), and a clementine (Citrus

clementina) GRP is described in the databank Uniprot KB

(accession number V4T144) with 100% sequence identity with

orange GRP. Very recently, a strawberry GRP, Fra a GRP, was

suggested to be sensitizing for one patient also allergic to Japanese

cedar pollen, peach, and apple. Symptoms after consumption of

strawberries occurred only after physical exercise (34). The

sequence is not known and no recombinant was produced.

In contrast to LTP, which is more present in fruit peel than

pulp, GRPs are present in peel and in pulp. The amount of Pru

p 7, quantified using specific monoclonal antibodies or by

qPCR, was reported to be slightly higher in pulp than in peel,

higher in ripe fruit, and to vary depending on the cultivar

(35, 36). These quantitative variations were also reported for

Pun g 7, the pomegranate GRP (27).

Clinical relevance of plant food GRP was assessed using

basophil activation test performed with pure GRP either

natural or recombinant and also using skin prick test. This was

clearly established for Pru p 7, Cit s 7, Pru m 7, Fra a GRP, and

Pru av 7 (2, 26, 34, 37) and (Inomata N. IUIS/WHO Pru av 7

description. http://wwwallergenorg/searchphp?allergensource=

sweet+cherry&searchsource=Search.2019). Anaphylaxis is often

associated with GRP allergies with clinical symptoms such as

face and eyelid edemas, or generalized urticaria (1, 38). Severe

adverse reactions to GRPs may sometimes occur when cofactors,

such as physical exercise, nonsteroidal anti-inflammatory drugs

(NSAID), alcohol, proton pump inhibitors, stress, concomitant

infections, or menstruations are associated, similarly to other

PFAS (32, 38–43).

GRPs are produced in recombinant form either in Escherichia

coli or Pichia pastoris (44, 45), and because of the six disulfide

bonds, the correct folding should be carefully checked at

structural level using proper physicochemical methods such as

circular dichroism, nuclear magnetic resonance, and mass

spectrometry and also at functional level using assays to assess

the antimicrobial activity of the protein. Figure 3 depicts the

results of antimicrobial activities against bacteria and fungi of a

correctly folded recombinant Pru p 7 as compared to the well-

known cysteine-rich antimicrobial protein snakin-2 from potato

(46). Prototypic Gram-negative and Gram-positive bacteria and

the fungi Candida parapsilosis are killed by Pru p 7.
GRP and PFAS

In parallel, in 2018, an allergen from cypress pollen

(Cupressus sempervirens), formerly known as BP14 since 2010

(20, 47, 48), was shown to belong to the GRP family (21).

Only Cupressaceae pollen were shown to express allergenic
frontiersin.org
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FIGURE 3

Antimicrobial activity of recombinant Pru p 7 (blue circles) in comparison with snakin-2 (red triangles), a cysteine-rich protein from potato reported to
exhibit antimicrobial properties and thus considered as a positive control in the experiment. Various concentrations of recombinant Pru p 7 and
snakin-2 were mixed with cell suspension in potassium phosphate buffer (10 mM, pH 6.0) and incubated at 37°C for bacteria (E. coli and S.
aureus) and 30°C for fungi (C. parapsilosis) for 1 h. After incubation, the reaction mixture was diluted and plated on agar plates. Tryptic soy broth
plates were used for bacteria and Sabouraud agar plates for fungi. After incubation, colonies were counted for calculating the survival rates. A
representative experiment is shown and each point was performed in simplicate.
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GRP more abundantly in C. sempervirens, Juniperus ashei, and

Cryptomeria japonica than in Hesperocyparis arizonica

(formerly Cupressus arizonica) (20, 49). A cross-reactivity was

demonstrated between BP14 and Pru p 7 and, in

consequence, BP14 could be considered as the missing link

(50–52) to explain the pollen/food allergy syndrome (PFAS)

described in 2006 between peach and cypress pollen (53).

Also, the citrus/cypress pollen PFAS (54) was shown to rely

on a cross-reactivity between BP14 (future Cup s 7) and a

cationic low MW allergen from citrus fruit (33). The cationic

LMW allergen was characterized as Cit s 7 (32) and the cross-

reactivity between Cup s 7/Cry j 7 and Cit s 7 was confirmed

and published by studying Japanese cedar allergic patients

(22, 55). The gene coding for BP14 was fully sequenced from

common cypress (C. sempervirens) strobili by next-generation

sequencing and the protein named Cup s 7 [Poncet P, Aizawa

T. IUIS/WHO description of Cup s 7, http://wwwallergenorg/

searchphp?Species=Cupressus%20sempervirens, 2019 and (56)].

A homologous allergen, Cry j 7, with similar fruit cross-

reactivities was then described in Japanese cedar pollen (C.

japonica). The study of a cohort of young Japanese patients

allergic to Japanese cedar pollen and to fruit showed that 46%

are sensitized to Cry j 7 (22). Also, Jun a 7, was also

characterized in mountain cedar pollen (J. ashei) (49, 57), but

no data are available on Jun a 7-dependent PFAS in mountain

cedar allergic patients living in area where the trees are growing,

mainly in south of USA. We can expect that other trees from

the Cupressaceae family such as the Japanese cypress

(Chamaecyparis obtusa) or the bald cypress (Taxodium

distichum) also express a pollen allergenic GRP. Purified native

Cup s 7 or recombinant Cry j 7 was shown to activate

basophils of Cupressaceae allergic patients strongly suggesting a

clinical relevance of pollen GRPs (22, 51, 55).
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Finally, another GRP allergen was described in 2022 from

bell pepper (Capsicum annuum), Cap a 7, by studying a

Japanese patient allergic to several GRPs, from bell/chili

pepper (Cap a 7), peach (Pru p 7), orange (Cit s 7), and from

Japanese cedar pollen (Cry j 7). The allergen is present in pulp

and skin and in soft and hot C. annuum and in Capsicum

chinense. Like Cry j 7 and Pru p 7, Cap a 7 is able to activate

patient’s basophils suggesting a clinical relevance (55).
Are GRPs panallergens?

Panallergens are widely distributed proteins eliciting IgE

reactivity and expressed in different sources with low

structural variations in amino-acid sequence and/or structure

allowing IgE cross-reactivity. For instance, profilins found in

143 plant species, polcalcins in 51, or LTPs in 92 are

considered panallergens (58) (www.allergen.org and www.

allergome.org). GRPs fulfill the criteria of wide distribution of

the protein; the low structural variations but not the

allergenicity in the plant where the proteins are reported since

only nine plant species were reported to contain allergenic

GRPs up to now (Table 1). We think that, for the moment,

the denomination panallergen cannot be assigned to GRPs.

Three related issues may be mentioned in that respect: IgE

cross-reactivities, conformational epitopes, and requirement

for cofactor regulating allergenicity.
Involvement of cross-reactivities

Fruit GRP sensitization is very often associated to

Cupressaceae pollen sensitization, which was observed for
frontiersin.org
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TABLE 1 Characteristics of nine GRP allergens and one non allergenic GRP (potato snakin-1a).

Protein English name Latin name Family Exposure Accession number

Cup s 7 Common cypress Cupressus sempervirens Cupressaceae Pollen LC511610

Jun a 7 Mountain cedar Juniperus ashei Cupressaceae Pollen C0HLQ0

Cry j 7 Japanese cedar Cryptomeria japonica Cupressaceae Pollen CJC05531_1

Pru p 7 Peach Prunus persica Rosaceae Food P86888

Pru m 7 Japanese apricot Prunus mume Rosaceae Food XP_016649029.1

Pru av 7 Sweet cherry Prunus avium Rosaceae Food A0A6P5SVH6

Cit s 7 Sweet orange Citrus sinensis Rutaceae Food A0A067D4T6

Pun g 7 Pomegranate Punica granatum Lythraceae Food A0A218X6T8

Cap a 7 Bell pepper Capsicum annuum Solanaceae Food A0A2G2ZRH2

Snakin-1a Potato Solanum tuberosum Solanaceae Food Q948Z4

aNot reported as allergen.

Other accession numbers for Cup s 7: C0HLL6 (56) and C0HLQ2 (57), and for Cry j 7: C0HLQ1 (57).

GRP, gibberellin-regulated protein.
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common cypress in Europe (37, 52) and for Japanese cedar in

Japan (22). The explanation of this association is not known

as yet, and the primary sensitizer cannot be attributed with

certainty to pollen grains or to fruit for the moment. Cross-

reactivities might be an explanation of this associated

sensitization because percent sequence identities within

Cupressaceae are about 90% and 60% with fruits and

vegetables. Among plant food, more than 80% sequence

identities are found. Therefore, all GRPs should theoretically

be cross-reactive and indeed this is confirmed experimentally

using recombinant GRPs in direct binding assays (21, 51, 52,

55). However, the cross-reactivities observed in direct binding

assays are not systematically retrieved in competitive

inhibition assays or in basophil activation test. For instance,

despite a positive direct IgE binding, the GRP prototype

snakin-1 from potato is unable to inhibit the binding between

Cup s 7 and anti-Cup s 7 IgE while Pru p 7 is an efficient

inhibitor, and snakin-1 is not able to activate basophils from

Cup s 7/Pru p 7 or Cry j 7/Pru p 7 sensitized patients in

agreement with the tolerance or partial tolerance of potato

consumption by these patients (21, 50, 51, 55). Differences in

antibody affinity probably play a role.

Another key issue is the fact that already sequenced GRPs

are present in many plants and a BLAST search revealed 250

proteins with 100% sequence identity with the core sequence

RCLKYCGICCEK as query. Some of them have been

published in a table in (59). Furthermore, 2,450 GASA-related

sequences are reported (http://pfam.xfam.org/family/

PF02704#tabview=tab7) in 148 species in the PFAM data

bank. However, up to now, GRPs from only nine allergenic

sources have been described as allergens: five from fruits, one

from vegetable, and three from pollen trees, all belonging to

the Cupressaceae family (Table 1). In consequence, despite

the ubiquitous nature of GRP and the degree of structural

similarities, cross-reactivity is not systematically observed. This
Frontiers in Allergy 05
may rely on the discrete changes in amino-acid sequences

displayed in the different plant families. These changes are

located at both extremities of the polypeptide chains, and

because of the rigid folding of the molecule, a single point

mutation may result in a drastic change of the epitopic regions.

According to the amino-acid sequence similarities, 72 GRPs

cluster in distinct but rather closely related groups of proteins in

the unrooted phylogenetic tree built from their amino-acid

sequence alignment, as shown in Figure 4.

IgE reactivity without symptoms was recently exemplified in

the case of apple GRP. The apple GRP was studied because

apple is a prevalent fruit allergenic source (60). Out of 37

patients mono sensitized to the apple GRP and clinically

documented, only one (3%) was allergic to apple with, in

addition to the IgE reactivity against apple GRP, specific IgE

directed against Mal d 3 (apple LTP) and 29 (78%) had no

symptom upon consumption of apple. Therefore, the authors

could not conclude on the clinical relevance of apple GRP. It

is well known that sensitization (IgE binding) is not always

synonymous of allergy. This is reminiscent of what is said

about plant cross-reactive carbohydrate determinants although

the question is still debated (61).

In summary, GRPs are mainly cross-reactive but not

systematically and sensitization may not be clinically relevant.

To confer clinical relevance, a cofactor might be required (see

below).
Epitope prediction

Three-dimensional models based on the snakin-1 structure

revealed very similar conformations of the nine allergenic GRPs

as expected given the similarities in amino-acid sequences

(Figure 5A). A cleft, more or less open, that might

accommodate a ligand (see discussion below) can be observed
frontiersin.org
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FIGURE 4

Unrooted tree built up from the multiple alignment of plant food GRPs using the neighboring joining method, showing the phylogenetic relationships
among the GRPs of different plant families. GRPs with similar amino-acid sequences are grouped in closely related clusters. Plant food with red frame
contains studied GRPs.

Iizuka et al. 10.3389/falgy.2022.877553
in the different molecules with Pun g 7 being the most open

one. Running the software DiscoTope 2.0 can predict at least

three epitopic regions. These candidate epitopic regions are

predicted based on the 3D structure, thus the predicted results
Frontiers in Allergy 06
differ even if the amino-acid sequence is conserved

(Figure 5B). While those predicted in the not folded loop in

the C-terminal region (around K57, lower right part of the

molecules in 3D models) are found in all molecules, those on
frontiersin.org

https://doi.org/10.3389/falgy.2022.877553
https://www.frontiersin.org/journals/allergy
https://www.frontiersin.org/


FIGURE 5

(A) Three-dimensional structure modeling of allergenic GRPs inferred by homology modeling using snakin-1 (5E5Q from PDB) as a template with
SWISS-MODEL. At least three conformational epitopic regions are predicted using the software DiscoTope 2.0. They are colored yellow and
orange. (B) GRP allergen sequences with predicted AA involved in epitopic regions. The color codes correspond to DiscoTope propensity scores
(62). The highest the score is the highest the propensity to be an epitope is. In ascending order: blue (−20 or less), light blue (−20 to −15), gray
(−15 to −12.5), yellow (−12.5 to −5), and orange (greater than −5).
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top of the molecules (around AA positions K15 to E20/D20) are

not systematically conserved. In this respect, again, Pun g 7

seems different from other fruit GRPs and pollen.
Ligand or cofactor or both

Another hypothesis to explain the absence of symptoms

despite a genuine sensitization might be the absolute

requirement of a cofactor to confer a clinical relevance to

GRP sensitization and regulate allergenicity of GRPs. Two

types of cofactors/regulators can be distinguished: those

affecting systemically the host metabolism and subsequently
Frontiers in Allergy 07
favoring the allergic response and those intrinsically and

structurally affecting the molecule by up- or down-regulating

its allergenicity.

The first type corresponds to physical exercise, NSAID,

alcohol, proton pump inhibitor, stress, concomitant infections,

menstruation, or other unknown cofactors. As mentioned

above, some of these cofactors were shown to play a role in

case of GRP sensitization (32, 38–43). The second type

corresponds to the impact, on the allergenicity, of the binding

of a specific ligand to the allergen. These interactions were

mainly studied with the allergens LTPs and PR10. Lipid

binding to LTP can result either in up- or down-regulation of

allergenicity by acting on the conformation of the allergen
frontiersin.org
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and subsequently on the digestibility and thermostability (63).

Also for the PR10 allergen, the allergenicity is differentially

affected depending on the ligand, increased with E1-

phytoprostane (64), decreased with iron (65), or no effect

with quercetin (66).

Besides the small molecule ligands, interactions between

macromolecules allergens, while less studied, have also been

reported. For instance, Alt a 1, the major allergen from the

mold Alternaria, and Act d 2, the thaumatin-like protein from

kiwi, are able to bind together. These physicochemical results

might explain what was clinically reported, i.e., in patients

sensitized to Act d 2, 85% are cosensitized to Alternaria (67,

68). Also, it was reported that the prevalence of sensitization

to Ole e 12, the isoflavone reductase from olive pollen, is 4%–

10% in patients with olive pollinosis and rises to 33% when

the olive pollen allergic patients are also sensitized to peach

(69). This means that interactive sensitizations and challenges

might occur. Analyzing the interactions between proteins may

therefore bring some new information to understand

conditional sensitizations that results in pollen food allergy

syndrome. In the case of cypress pollen and peach, at least

GRPs are involved, but polygalacturonase or thaumatin-like

proteins would deserve to be studied.

With regard to protein–protein interaction including GRP,

some data are available for snakin-1 since its exact structure

has been resolved by crystallography studies. From the

protein–protein interaction database STRING (https://string-

db.org/network/ 4113.PGSC0003 DMT400055426), eight

proteins were suggested to be able to interact with the potato
FIGURE 6

(A) Ribbon diagram of the endopolygalacturonase of F. moniliforme. The N
indicate the N-terminal and C-terminal ends of the polypeptide chain, resp
the catalytic cleft, delineated by yellow lines. (C) Docking of Pru p 7 (colore
orange). The amino-acid residues involved in the catalytic cleavage of pol
(R267, K269), respectively. Docking experiments of the modeled Pru p 7 to
used as a target, were performed with GRAMM_X (74, 75) and displayed with
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snakin-1, a defensin, a subtilisin-like protease, an osmotin-like

protein, an uncharacterized protein GASA4, a glycolate/

glycerate translocator, a ribosomal protein L27, an iron

transporter, and a dihydroorotase. Interestingly, the three first

proteins were also shown to be allergens: defensin in mugwort

and ragweed pollen, peanut, soybean, bell pepper and celery

(70); subtilisin-like protease in mold, melon, and Japanese

cedar pollen (71); and osmotin (thaumatin-like protein, PR5

protein) in bell pepper, tobacco, and nettle pollen (72).

Experimental approaches of such putative ligand binding are,

however, missing for the moment with regard to allergenic

GRP, but the results obtained with snakin-1 can give some

clues to understand potential molecular complexes involved in

conditional sensitization, i.e., the sensitization to an allergen

which is potentialized by an allergen from a different

allergenic source. Whether ligand binding would impact the

allergenicity of GRP allergens is still to be explored. In case of

an impact on allergenicity, mechanisms might be either the

modulation of affinity of the specific IgE to the allergen or the

generation of molecular complexes resulting in a “super

allergen” able to increase mediator release from the basophils

or mast cells. In silico docking experiments suggested that Pru

p 7 is indeed able to recognize an electronegatively charged

patch located at the surface of the polygalacturonases either

from the mold Ascomycete Fusarium moniliforme (Figure 6)

or even from the cypress pollen corresponding to the group 2

allergens (Cup s 2 for C. sempervirens for instance).

Interestingly, the anchorage of Pru p 7 on the polygalacturonase

partially covers the catalytic cleft, thus hampering the
-glycan chain linked to the β-prism backbone is indicated. N and C
ectively. (B) Molecular surface of the endopolygalacturonase showing
d light blue) to the endopolygalacturonase of F. moniliforme (colored
ygalacturonase chains, are colored red (D191, D212, D213) and blue
the endopolygalacturonase of F. moniliforme (PDB code 1HG8) (73)
Chimera.
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accessibility of the potential substrates, e.g. the host

Polygalacturonase, to the catalytic residues of the enzyme.

Polygalacturonases are expressed in plants and have a role to

soften and sweeten fruits during the ripening process.

Gibberellin treatment is a strategy to slow down the ripening of

the fruits, and the gibberellin-induced excess of GRP might be

involved in this process by inhibiting the enzymatic activity of

polygalacturonases. These enzymes are allergens described in

many plant foods and also in pollen and were reported, for

instance, to be at the molecular basis of the cross-reactivity

between Cupressaceae pollen and tomato (59). However, such

in silico speculative docking calculations require experimental

validation especially with GRP able to bind to many proteins

displaying a protruding electronegative patch.
Conclusion

In conclusion, many questions on GRPs remain with no

response for the moment. Why are GRPs sensitizing allergens

in only a few plant foods and only Cupressaceae pollen

although they are ubiquitous? One trivial hypothesis could be

that the natural in vivo extraction of allergens is more or less

easily performed from the food or pollen matrix when

ingested or inhaled and that the immune system is

subsequently differentially exposed. In consequence, for the

moment, we cannot say that GRPs are panallergens. The

mechanism of the association between food and Cupressaceae

pollen GRP sensitization remains also to be understood.

Another question is the impact of an exogenous gibberellin

treatment used essentially in spray in modern agriculture on

the GRP content of plant food and neighboring trees.

However, the information of such a treatment is often

missing. Also, gibberellin is expressed in the plant in response

to a stress but no data are available up to now on the effect
Frontiers in Allergy 09
of gaseous or particulate stressful pollution on the content of

endogenous gibberellin and subsequently GRPs. Whatever is

the origin of the gibberellin phythormone increase, exogenous

and/or endogenous, this would result in higher numbers or

levels of allergenic GRP in the future. GRPs are involved in

PFAS and this clinical expression of allergy is now reported to

follow a rising trend (76, 77). Obviously more experimental

and observational studies are needed to solve these crucial

questions.
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