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Summary
The plant hormone gibberellin (GA) regulates major aspects of
plant growth and development. The role of GA in determining
plant stature had major impacts on agriculture in the 1960s, and
the development of semi-dwarf varieties that show altered GA
responses contributed to a huge increase in grain yields during
the ‘green revolution’. The past decade has brought great
progress in understanding the molecular basis of GA action, with
the cloning and characterization of GA signaling components.
Here, we review the molecular basis of the GA signaling pathway,
from the perception of GA to the regulation of downstream
genes.
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Introduction
Gibberellins (GAs) are plant hormones that are essential for many
developmental processes in plants, including seed germination, stem
elongation, leaf expansion, trichome development, pollen maturation
and the induction of flowering (Achard and Genschik, 2009). Hence,
mutant plants that are deficient in GA exhibit a dwarf and late-
flowering phenotype, and treating these plants with GA restores
normal growth. Historically, GA was first identified in the pathogenic
fungus Gibberella fujikuroi, the causal agent of the ‘foolish-seedling’
disease of rice, causing excessive elongation of infected plants
(Yabuta and Sumiki, 1938). Since its original discovery, >130 GAs
have been identified in plants, fungi and bacteria, although only a few
GAs have biological activity (Yamaguchi, 2008); many non-bioactive
GAs exist in plants, and these act as precursors for the bioactive forms
or are de-activated metabolites. The major bioactive GAs, which
include GA1, GA3, GA4 and GA7, are derived from a basic
diterpenoid carboxylic acid skeleton, and commonly have a C3-
hydroxyl group (Yamaguchi, 2008). During the past decade, most of
the components of the GA signaling pathway have been identified
from genetic screens in rice and Arabidopsis. Key components
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include the GA receptor GIBBERELLIN INSENSITIVE DWARF1
(GID1), the DELLA growth inhibitors (DELLAs) and the F-box
proteins SLEEPY1 (SLY1) and SNEEZY (SNZ) in Arabidopsis and
GIBBERELLIN INSENSITIVE DWARF2 (GID2) in rice (Achard
and Genschik, 2009). The current model of GA action proposes that
DELLA proteins restrain plant growth whereas the GA signal
promotes growth by overcoming DELLA-mediated growth restraint
(Harberd, 2003; Achard and Genschik, 2009). Here, and in the
accompanying poster, we provide an overview of the GA signaling
cascade, highlighting the molecular events occurring from GA
perception through to the activation of transcriptional networks that
regulate plant development.

GA-response mutant categories
Physiological and biochemical analyses of GA response mutants
with altered stem heights played a crucial role in the identification
of early GA signaling components (Harberd et al., 2009). In contrast
to GA-deficient mutants that have led to considerable insights into
GA biosynthetic routes, GA-response mutants display altered
response to GA and include mutants with alterations in both GA
perception and GA signal transduction. Hence, GA-insensitive
mutants display a similar dwarf phenotype to GA-deficient mutants,
except that they fail to respond to exogenous GA. By contrast,
mutants with constitutively active GA responses have taller stems,
paler green leaves and lower fertility than do wild-type plants,
irrespective of bioactive GA content. Genetic analysis of the GA-
response mutant categories led to the current model that GA acts as
an ‘inhibitor of an inhibitor’ (Harberd et al., 2009).

DELLA proteins: central repressors of GA-
dependent processes
DELLAs, a subset of the plant-specific GRAS family of putative
transcription regulators, are key intracellular repressors of GA
responses (Peng et al., 1997; Silverstone et al., 1998; Ogawa et al.,
2000; Ikeda et al., 2001; Chandler et al., 2002). DELLAs repress
seed germination, growth and almost all known GA-dependent
processes, whereas GA relieves their repressive activity (Achard
and Genschik, 2009). Hence, lack of DELLA function confers
complete suppression of GA-deficient phenotypes (Dill and Sun,
2001; King et al., 2001; Lee et al., 2002; Cheng et al., 2004; Tyler
et al., 2004). Like all GRAS proteins, DELLAs share a conserved
C-terminal GRAS domain that is involved in transcriptional
regulation and is characterized by two leucine heptad repeats (LHRI
and LHRII) and three conserved motifs, VHIID, PFYRE and SAW
(Bolle, 2004). DELLAs are distinguished from the rest of the GRAS
family by a specific N-terminal sequence containing two conserved
domains: the DELLA domain (which gives them their name) and
the TVHYNP domain. DELLAs are highly conserved among
different species, including Arabidopsis, wheat, maize, rice and
barley (Peng et al., 1997; Peng et al., 1999; Ikeda et al., 2001;
Chandler et al., 2002). The Arabidopsis genome encodes five
DELLAs (GA-INSENSITIVE, GAI; REPRESSOR OF GA1-3,
RGA; RGA-LIKE1, RGL1; RGL2 and RGL3) that play distinct but
also overlapping functions in repressing GA responses (Peng et al.,
1997; Ikeda et al., 2001; Silverstone et al., 2001; Lee et al., 2002;
Wen and Chang, 2002; Tyler et al., 2004). Hence, RGA and GAI
repress vegetative growth and floral induction (Dill and Sun, 2001;
King et al., 2001), RGL2 inhibits seed germination (Lee et al.,
2002), RGA, RGL1 and RGL2 together modulate floral
development (Cheng et al., 2004; Tyler et al., 2004), and RGL3
contributes to plant fitness during environmental stress (Achard et
al., 2008; Wild et al., 2012).

Perception of the GA signal: formation of the GA-
GID1-DELLA complex
Previous biochemical studies on oat aleurone cells suggested that
the GA signal was perceived by a plasma membrane receptor
(Lovegrove et al., 1998). More recently, the characterization of
the GA-insensitive dwarfism gid1-1 mutant allele in rice led to
the discovery of the GA receptor, GID1 (Ueguchi-Tanaka et al.,
2005). Unexpectedly, GID1 encodes a soluble nuclear GA receptor
with homology to human hormone-sensitive lipases (Ueguchi-
Tanaka et al., 2005). Whereas the rice genome contains a single
GID1 gene, there are three orthologs in Arabidopsis (GID1A,
GID1B and GID1C) that display some overlapping functions
(Nakajima et al., 2006). Crystal structure data revealed that GID1
contains a GA-binding pocket and a flexible N-terminal extension
(Murase et al., 2008; Shimada et al., 2008). Upon the binding of
bioactive GA, the C3-hydroxyl group of the GA molecule
becomes hydrogen-bound to the Tyr31 residue of GID1, inducing
a conformational change in the N-terminal extension to cover the
GA pocket (Murase et al., 2008; Shimada et al., 2008). Once the
pocket is closed, the upper surface of the lid binds with the
DELLA and TVHYNP regions of DELLAs to form the GA-GID1-
DELLA complex (Griffiths et al., 2006; Ueguchi-Tanaka et al.,
2007; Willige et al., 2007). It is noteworthy that DELLA and
TVHYNP regions are essential for the interaction because their
deletion results in an inability of DELLAs to interact with GID1,
despite the presence of GA (Griffiths et al., 2006; Willige et al.,
2007).

GA promotes proteasome-dependent degradation
of DELLAs
As discussed above, GA binding to GID1 stimulates the formation
of the GA-GID1-DELLA complex. How then does GA suppress
the repressive activity of DELLAs? A major breakthrough came
from the discovery that GA stimulates the disappearance of
DELLAs (Silverstone et al., 2001). Whereas in absence of GA,
DELLAs accumulate and repress GA responses, the formation of
the GA-GID1-DELLA complex stimulates the degradation of the
DELLAs. The second step in furthering our understanding of GA
signaling was the characterization of the rice GID2 and
Arabidopsis SLY1 F-box proteins, based on analysis of the GA-
insensitive dwarf phenotype of the loss-of-function mutants gid2-
1 and sly1-10, respectively (Sasaki et al., 2003; McGinnis et al.,
2003). F-box proteins are components of the SCF (SKP1,
CULLIN, F-BOX) E3 ubiquitin-ligase complexes, which catalyze
the attachment of polyubiquitin chains to target proteins for their
subsequent degradation by the 26S proteasome (Lechner et al.,
2006). Based on yeast-interaction assays, the formation of the
GA-GID1-DELLA complex has been proposed to induce
conformational changes in the GRAS domain of DELLA that
enhance recognition between the VHIID and LHRII motifs of
DELLA and the F-box protein SLY1/GID2 (Hirano et al., 2010).
In turn, the SCFSLY1/GID2 complex promotes the ubiquitylation and
subsequent destruction of DELLAs by the 26S proteasome,
thereby relieving their growth-restraining effects (McGinnis et
al., 2003; Sasaki et al., 2003; Dill et al., 2004; Fu et al., 2004).
Thus, GA promotes growth by mediating the proteasome-
dependent destabilization of DELLA proteins. Interestingly,
recent evidence indicates that GA-mediated removal of DELLA
proteins is required in a cell type-specific manner to ensure
normal organ growth. For example, endodermis represents the
primary GA-responsive tissue in roots (Ubeda-Tomás et al.,
2008).
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DELLAs interact with key regulatory proteins to
modulate plant development
The mechanism by which DELLAs repress GA responses remained
unclear until recently. An important function of DELLAs relies on
their ability to interact with diverse classes of regulatory proteins.
For example, DELLAs regulate hypocotyl elongation by interacting
with PHYTOCHROME INTERACTING FACTORS (PIFs) (de
Lucas et al., 2008; Feng et al., 2008; Gallego-Bartolomé et al., 2010)
and BRASSINAZOLE RESISTANT1 (BZR1) (Bai et al., 2012;
Gallego-Bartolomé et al., 2012), they control floral transition and
fruit patterning by respectively interacting with SQUAMOSA
PROMOTER BINDING-LIKE (SPL) and ALCATRAZ (ALC)
factors (Yu et al., 2012; Arnaud et al., 2010), and they contribute to
plant defense by interacting with JASMONATE ZIM-DOMAIN
(JAZ) proteins (Hou et al., 2010; Yang et al., 2012; Wild et al.,
2012). Through these interactions, DELLAs block the DNA-
binding capacity of transcription factors (such as with PIFs) (de
Lucas et al., 2008; Feng et al., 2008) or inhibit the activity of
transcriptional regulators (such as with JAZs) (Hou et al., 2010).
Meanwhile, GA relieves the repression of the DELLAs by
promoting their degradation via the 26S proteasome pathway. More
recently, DELLAs have been shown to interact with and inhibit the
activity of numerous transcription regulators (Cheminant et al.,
2011; Feurtado et al., 2011; Josse et al., 2011; Hong et al., 2012; An
et al., 2012; Zhang et al., 2011). By doing so, GA signaling controls
the expression of a multitude of target genes functioning in distinct
pathways.

DELLAs can also function as transactivation
factors
DELLAs are nuclear-localized repressors and are also likely to
function as transcription factors (Ogawa et al., 2000). This is
consistent with recent findings of RGA being able to associate with
DNA (Zentella et al., 2007; Zhang et al., 2011). However, the
moderate enrichment of promoter targets determined by chromatin
immunoprecipitation and the lack of typical DNA-binding domains
in DELLAs suggest that the association of DELLAs with gene
promoters might involve additional factors. Further advances in
understanding how DELLAs exert their transcriptional activity
came from recent studies in rice. First, expression of the rice
DELLA protein SLR1 fused to the activation domain of the herpes
simplex virus protein VP16 severely compromises plant growth
(but not when SLR1 is fused to a repressor domain), thus
suggesting that DELLAs repress GA responses by also directly
activating the transcription of downstream genes (Hirano et al.,
2012). Second, experiments in yeast and rice revealed that GID1-
SLR1 interaction suppresses the transactivation activity of SLR1
(Hirano et al., 2012). This observation is consistent with previous
data showing that DELLA activity may be regulated by a
proteolysis-independent mechanism, involving protein interaction
with GA-GID1 (Ariizumi et al., 2008; Ueguchi-Tanaka et al.,
2008). Third, mutations in the LHRI and SAW motifs alter the
repressive effects of SLR1 without affecting its transactivation
activity (Hirano et al., 2012), thus suggesting that the LHRI/SAW
motifs might be involved in direct association with gene promoters
or, most likely, with other transcription factors bound to DNA.
Altogether, these results indicate that DELLA proteins function as
transactivation factors and that GA represses their activity by a dual
mechanism: in the absence of SCFSLY1/GID2 activity, the GA-GID1
complex bound to DELLAs suppresses their transcriptional
activity, whereas the presence of SCFSLY1/GID2 stimulates the
degradation of DELLAs.

The ‘green revolution’ dwarfing genes
The introduction of dwarfing genes into cereal crops was a major
factor in breeding higher-yielding varieties during the ‘green
revolution’, as they allowed more nitrogen fertilizer to be applied
without leading to excessive stem elongation and subsequent lodging
(Hedden, 2003). For example, the introduction of wheat mutant
dwarfing alleles at Reduced height-1 (Rht-B1 and Rht-D1) loci led to
large increases in worldwide grain yields during the 1960s, owing to
improvements in both harvest index and lodging resistance (Hedden,
2003). Since then, Rht-1 dwarfing alleles are still widely used in
modern wheat cultivars. The wheat Rht-B1b and Rht-D1b alleles
encode a mutant DELLA protein that confers semi-dominant GA-
insensitive dwarfism (Peng et al., 1999). As with the Arabidopsis gai
mutation (Peng et al., 1997), the GA-insensitivity of these mutants is
conferred by the expression of a functional DELLA protein that lacks
the DELLA-domain involved in the DELLA-GID1 interaction,
resulting in a more stable DELLA protein (Peng et al., 1999; Dill et
al., 2001; Griffiths et al., 2006; Ueguchi-Tanaka et al., 2007; Willige
et al., 2007; Pearce et al., 2011). The importance of this trait was
further emphasized by the identification of a wild array of GA-
insensitive dwarf mutants in maize, rice and barley, all exhibiting a
deletion or a missense mutation in the conserved N-terminus of
DELLA or TVHYNP regions of DELLA, rendering the protein
resistant to GA-induced degradation (Peng et al., 1999; Chandler et
al., 2002; Asano et al., 2009).

Perspectives
Our knowledge of the GA signaling pathway has been considerably
improved during this past decade, although a number of questions
remain to be answered. In particular, previous studies have
suggested the existence of additional GA-independent factors
modulating the function of DELLAs. One such factor is the O-
Linked N-acetylglucosaminyltransferase (OGT) encoded by
SPYNDLY (SPY) (Jacobsen and Olszewski, 1993; Silverstone et al.,
2007). OGTs catalyze O-linked N-acetylglucosamine (O-GlcNac)
modification of target Ser/Thr residues of regulatory proteins. Loss-
of-function spy alleles partially suppress the dwarf phenotype of
GA-deficient mutants despite the accumulation of DELLAs
(Shimada et al., 2006; Silverstone et al., 2007). Although it has not
been demonstrated at the biochemical level, one plausible
explanation for this phenotype is that O-GlcNac modification
directly increases DELLA activity. Other studies have suggested
that phosphorylation/dephosphorylation mechanisms might also
play a crucial role in the regulation of DELLA protein activity
and/or turnover (Fu et al., 2002; Sasaki et al., 2003; Gomi et al.,
2004; Itoh et al., 2005; Hussain et al., 2005; Hussain et al., 2007).
Recently, the casein kinase EARLY FLOWERING1 (EL1) was
shown to phosphorylate SLR1 and to negatively regulate gibberellin
signaling in rice (Dai and Xue, 2010). Although it becomes clear
that post-translational modifications on DELLAs are important, the
effects of O-GlcNAc activity and phosphorylation on DELLA
function will require further investigation. Furthermore, using
mathematical models, two recent studies revealed the importance
of the transcriptional feedback in GA signaling and of the GA
dilution mechanism for the dynamics of root cell elongation (Band
et al., 2012; Middleton et al., 2012). Additional biochemical and
system biology approaches will undoubtedly be crucial for gaining
clearer insights into the GA signaling network.
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