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Introduction

C alculations of the equilibrium distribution of
matter in a system consisting of more than one

phase provide the foundation for understanding
mass transfer in natural and synthetic chemical sys-
tems. This is true even in nonequilibrium processes,
such as those limited by diffusion or kinetics, where
the driving forces of irreversible processes can fre-
quently be parameterized in terms of departures of
systems from thermodynamic equilibrium. Chemi-
cal equilibrium calculations have been an important
minimization problem since before the advent of the
digital computer.1, 2 Previous applications include
rocket fuel combustion,3 condensation of solids in
solar nebula gas,4 and more recent treatments of
gas + solid + liquid equilibria in solar gas.5, 6

Progress in this area has increasingly been driven by
the recognition that nonideal solid and liquid solu-
tions are important reservoirs of the most abundant
elements in natural systems.7

The standard technique applied to the conden-
sation problem5, 8 – 10 uses Lagrange multipliers and
first-derivatives of the Gibbs energy, as described
amply elsewhere.1, 9 We will describe a quadratic
method for finding the minimum in the total Gibbs
free energy in systems where matter is distributed
among multiple highly nonideal liquid and solid
solutions and a vapor composed of a mixture of
ideal gas species, all at fixed temperature and pres-
sure. A quadratic approach has not previously been
applied to such systems in cosmochemistry, and
was adopted to allow the inclusion of solid solution
models having components with negative fractional
molality, and to incorporate second derivatives of
the system Gibbs energy with respect to composi-
tion, necessitated by the flatness of the Gibbs energy
surface due to the coexistence of multiple solid
and/or liquid solutions. The algorithm follows ear-
lier work on chemical mass transfer in magmatic
systems, in which equilibria were calculated be-
tween nonideal silicate and oxide solid solutions
and a 15-component silicate liquid.7 A program
implementing that work7 was made available to
the geological community in the early 1990’s, in
the form of an executable computer code labeled
“MELTS,” which has been applied with success to
geochemical modeling of the crystallization of dry
natural terrestrial silicate liquids,11, 12 particularly at
low total pressures, Ptot ≤ 1010 dyne/cm2 (= 10 kbar
= 1 GPa).

Models simulating the condensation of gases of
solar nebula composition, at Ptot ≤ 103 dyne/cm2,

have provided fundamental insights into the for-
mation of the earliest solar system materials, the
constituents of the chondrite meteorites. Wildt13

was the first to model condensation in stellar en-
vironments. Urey14 calculated various silicate sta-
bility fields for simple cases. Wood15 derived the
pressure-temperature (P-T) stability fields of liquid
and solid iron, forsterite (Mg2SiO4), and enstatite
(MgSiO3). Larimer16 considered equilibrium con-
densation at 106 and 6.6×103 dyne/cm2. Grossman4

was the first to include mass-balance constraints
in calculating the condensation sequence of a cool-
ing gas of solar composition. Since then, several
groups have performed similar calculations for spe-
cial cases.5, 8, 10, 17 – 21 Lodders and Fegley22 have re-
viewed the history of condensation calculations for
reduced stellar environments.

Previous work on the condensation problem has
suffered from one or a combination of deficiencies:
neglecting the effect of solid solution of major ele-
ments on the stability fields of condensed phases,
lack of consideration of nonideal solid solution of
major elements in minerals, an inability to correctly
treat silicate liquids, or a lack of internal consistency
between models for condensed solution phases.
Yoneda and Grossman5 were the first to successfully
treat liquids composed of the oxides CaO—MgO—
Al2O3—SiO2; however, the most interesting liquid
droplets preserved as glass in the oldest meteorites
are chondrules. These glassy beads contain signifi-
cant dissolved FeO, TiO2, K2O, and Na2O, and usu-
ally include crystalline silicate minerals. Many of
these minerals within chondrules are solid solution
phases, such as olivine (Fe, Mg, Ca)2SiO4, pyrox-
ene (Ca, Mg, Fe2+, Ti4+, Fe3+, Al)2(Si, Al, Fe3+)2O6,
and spinel (Fe, Mg, Fe3+, Cr3+, Al, Ti4+)3O4. The de-
velopment of the algorithm discussed here, and its
application,6 resulted from our belief that the origin
of chondrules could be understood by incorporating
the MELTS liquid model7 into condensation calcu-
lations. The “standard” approach3 to this problem
is well suited to consideration of pure phases, but
less effective when complex solid and liquid solu-
tions are present, particularly those with internal
ordering of substituents, those modeled using com-
ponents that may have negative molecular fractions,
and those that are highly nonideal.

In the general heterogeneous equilibrium prob-
lem, a reservoir of material exists, in the liquid or
gaseous state, with which matter in other states re-
acts, from which matter precipitates or condenses,
or into which matter melts, sublimes, or evaporates.
For example, in a magmatic system, solid mineral
species precipitate from a reservoir of silicate liq-
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uid, and the liquid plus solids constitute the system,
usually considered closed. In the nebular condensa-
tion problem, the gas reservoir, plus the solid and
liquid condensates, constitute the system. In both
examples, the reservoir contains some amount of
every element present in the system, while individ-
ual precipitates or condensates contain subsets of
the elements. At any particular pressure and tem-
perature at which the system is in thermodynamic
equilibrium, there is a unique distribution of mat-
ter between the reservoir and the condensates that
are thermodynamically stable relative to the reser-
voir. This equilibrium state is characterized by an
extremum in the thermodynamic function of state
most convenient to describe the system, here cho-
sen to be the Gibbs free energy. An algorithm for
finding this equilibrium, described in numbered
sections below, is: (1) solve the speciation of the
gas by the BNR technique. (2) Assess the stabil-
ity of each potential condensate relative to the gas
reservoir; add a small amount of the most stable
condensate, if any, to the system. (3) Minimize the
total thermodynamic potential energy of the sys-
tem, by redistributing matter among the reservoir
and stable condensates; see if any other conden-
sates are stable (2), and, if so, repeat (3); remove any
condensates present in vanishingly small amounts,
and repeat 1–3; assess chemical potential balance be-
tween gas and condensed phases.

Sequences of such calculations can be performed
to elucidate the reversible behavior of parcels of
matter in response to changes in temperature or
pressure; however, we do not address here any of
the spatial or temporal aspects of chemical mass
transfer. The algorithms presented here have been
implemented in a computer program (“VAPORS”),
which contains data for 23 elements, distributed
among 374 gas species, and a wide variety of po-
tential condensates.6

Model for Vapor Phase (1)

The vapor constitutes the reservoir from which
solids and liquids condense. The composition of the
vapor, regardless of its speciation, can be described
uniquely by any orthogonal (linearly independent)
subset of the species present, most conveniently by
the basis vector ngas corresponding to the number
of mol of each element present. We can uniquely de-
termine the speciation of the gas (how much C goes
into C2H2, CH4, CO2, etc.) from the thermodynamic
data for the compounds, and thus determine the
Gibbs free energy of the vapor for any T, P, and ngas.

For every gas species, it is assumed that the ideal
gas law holds. This is reasonable at the low pres-
sures (≤105 dyne/cm2, 1 bar = 106 dyne/cm2) of
nebular systems. The internal speciation, or homo-
geneous equilibrium state of the gas at a particular T
and Ptot, is obtained by writing expressions for the
partial pressures of all the species j as functions of
the partial pressures of the monatomic species of the
basis elements i:

Pj = Kj ·
elements∏

i

P
vij
i (1)

where vij is the stoichiometric coefficient of element
i in gas species j, Kj is the equilibrium constant for
formation of gaseous species j from the monatomic
gaseous species at a particular T and Ptot, and Kj is
written in terms of partial pressures. Mole fractions
of species j in the gas are related by an equilibrium
constant Kx

j :

Xj = Kx
j ·

elements∏

i

X
vij
i ,

through Pj = cj

Ctot · Ptot = Xj · Ptot (2)

where cj is the number of mol of species j in the gas
phase, and Ctot is the sum of the cj. The different
K’s are, therefore, related, through stoichiometry of
species, by:

log Kx
j = log Kj +

(
elements∑

i

vij − 1

)

· log Ptot (3)

(the “1” occurs because 1 mol of species j is pro-
duced), so species with more atoms are more stable
at higher total pressure, following Le Chatelier’s
principle. For a particular (fixed) composition of the
gas, there is one mass balance constraint for the total
number of mol ni of each element i in the gas phase:

ni =
species∑

j

vijcj (4)

which can, of course [through eq. (2)], be written in
terms of the Kx

j , enabling construction of a system
of equations suitable for determination of the par-
tial pressures of the basis elements, given Ptot, T,
and the bulk composition vector ngas. This system
of equations has a unique solution for every bulk
composition of the gas. That is, no possibility exists
for the coexistence, at an equilibrium state, of two
immiscible gas phases.

We determine the speciation of the vapor using a
BNR (Brinkley-NASA-RAND) numerical technique
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(reviewed in ref. 1, following ref. 3, cf. ref. 2). In this
method the equilibrium conditions (2) are held rig-
orously, and the deviation of the mass balance eq. (4)
from equality is minimized. That is, convergence is
defined such that

∣∣∣∣∣ni −
species∑

j

vijcj

∣∣∣∣∣ ≤ εg (5)

for all the elements i, where εg is set to 10τ , where τ
is the machine precision, of order 10−31 in our calcu-
lations. Note that we apply eqs. (1) to (4) only to the
gas reservoir, not to condensing species. Unlike the
“standard” technique,3 the calculations described
here treat the gas as a distinct phase, and are per-
formed in modules separate from the very different
procedure used to minimize the Gibbs energy of the
entire system, described below.

Assessing Stability of Condensed
Phases (2)

The vapor is allowed to simultaneously con-
dense one of two liquid solutions, and an unlimited
number of pure stoichiometric solids and complex
solid solution phases. We have implemented
Berman’s23 model characterizing CaO—MgO—
Al2O3—SiO2 (CMAS) liquids using a 12-parameter,
fourth-degree Margules-type function to describe
deviations of thermodynamic mixing functions
from ideality. This model has been used with some
success to describe stable and metastable liquid
immiscibility, and liquidus phase relations, in the
CMAS system.24 Also present is a SiO2—TiO2—
Al2O3—Fe2O3—Fe2SiO4—Mg2SiO4—MgCr2O4—
CaSiO3—Na2SiO3—KAlSiO4—Ca3(PO4)2—H2O
liquid, which is a subset of the 15-component sili-
cate liquid described by Ghiorso and Sack7, 25using
a symmetric regular solution model. Multicom-
ponent solid solution models for olivine26 (Fe,
Mg, Ca)2SiO4, spinel27, 28 (Fe, Mg, Fe3+, Cr3+,
Al, Ti4+)3O4, pyroxene26, 29 – 31 (Na, Ca, Mg, Fe2+,
Ti4+, Fe3+, Al)2(Si, Al, Fe3+)2O6, feldspar32 (KSi,
NaSi, CaAl)AlSi2O8, melilite33 Ca2(MgSi, Al2)SiO7,
and rhombohedral oxides34 (Fe3+

2 , Fe2+Ti, MgTi,
MnTi)O3 have been intercorrelated, and the
15-component silicate liquid model of ref. 7 has
been calibrated against a very large database of
crystal–liquid equilibria using the descriptions of
these solid solutions, all based on the compre-
hensive thermodynamic database of Berman35

for end-member (pure stoichiometric) phases. An
asymmetric binary solution model for Fe-Ni-Si-Cr-
Co solid alloy is also included, calibrated using

published data,36 – 38 following Grossman et al.39

Further information on species and data sources is
listed in ref. 6.

Equilibrium expressions for condensation are
written in terms of the basis composition variables
of the gas, here the monatomic gaseous elements.
For example, the condensation of aluminum oxide
(corundum) proceeds according to the reaction:

2Algas + 3Ogas = Al2O3(solid corundum). (6)

Denoting the Gibbs free energy of formation of
corundum from the monatomic gaseous elements at
a particular temperature and Ptot by Gcor

T , corundum
is stable relative to the gas, if

Gcor
T = −RT · ln

[
Kcor

T
] = −RT · ln

[
elements∏

i

P
vij
i

]

= −RT · ln
[
P2

Al · P3
O
] ≤ 0. (7)

The initial stability of the solids (or liquids) at fixed
Ptot and temperature is determined by reference
to such equations after solving the gas phase spe-
ciation to determine the partial pressures of the
monatomic gas species, which are equivalent to
their activities at low Ptot. The algorithm described
by Ghiorso40 is used for the more complex cases of
highly nonideal solid and liquid solutions, where
mixing properties of molecular end members in so-
lution must be accounted for in equations analogous
to (7). This technique finds the most stable initial so-
lution composition, by matching component activi-
ties to corresponding properties of the gas reservoir.
Once a phase is determined to be thermodynami-
cally stable relative to the gas, its initial composition
is added to the stable condensate assemblage in
some initial “seed” quantity (e.g., 10−7 × the total
mol of elements in the system), which is subtracted
from the bulk composition of the gas. At this point,
the entire system must be adjusted, in terms of the
compositions of gas and condensates, to minimize
the thermodynamic potential energy (Gibbs free en-
ergy) of the system. By initializing with the most
stable initial solution composition relative to the
gas reservoir, evolution toward the global minimum
Gibbs energy of the solution phase, relative to other
phases, is strongly favored, at temperatures well
above miscibility gaps in the solid solution phases.

Minimization of System
Thermodynamic Potential (3)

For each phase p, there is a vector of orthogo-
nal composition variables np, which is the basis set
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of thermodynamic components spanning the possi-
ble chemical variability of that phase. For example
olivine, (Fe, Ca, Mg)2SiO4, is given components
Mg2SiO4, Fe2SiO4, and CaMgSiO4, whereas corun-
dum, Al2O3, is treated as a pure, one-component
phase. Many phases require calculation of ordering
of atoms on sites, or consideration of polymor-
phic phase transitions to establish their minimum
chemical potential energy. These internal, or ho-
mogeneous, equilibrium considerations are treated
separately for the condensed phases, as they are
for the gas, and are thus “transparent” to the sys-
tem minimization algorithm, as is the speciation of
the gas. However determined, there exists a scalar
Gibbs energy Gp associated with each phase p, such
that we can write the chemical potentials of the ther-
modynamic components of p as the vector up =
(∂Gp/∂n)T,P. The Gibbs energy of a system contain-
ing gas plus m condensed phases is just the sum
over all the phases: G = Ggas + G1 + · · · + Gm. The
distribution of matter in a system containing a gas
phase and m condensed phases may be described
in terms of n system components by a column vec-
tor n = [ngas n1 n2 . . . nm]T, the system component
vector, composed of the stacked component vectors
of the separate phases.

To describe the constraints imposed on the entire
system by mass balance, the bulk composition of the
entire system is written as a vector b, of length s. It
is desirable to choose as these s bulk components
the same 23 elements that are used to describe the
gas phase, because we will wish to transfer matter
between gas and condensates as individual atoms,
rather than as compounds (e.g., oxides). A matrix C
is then readily constructed, which relates the vec-
tor n to the bulk component vector b, such that
b = Cn. This equation describes the bulk compo-
sition constraint on the system.

We can now state succinctly the problem of min-
imizing the system thermodynamic potential, G,
with respect to the system components n, subject
to the mass balance constraint b = Cn. Ghiorso41

has reviewed previous approaches to this problem
in the earth sciences and chemical engineering. We
start by simplifying the problem using the method
described by Ghiorso.41 Treating all the n system
components as independent variables, we can write
the chemical potentials, u = [ugas u1 u2 . . . um]T =
(∂G/∂n)T,P. We will also require the second deriv-
atives of G with respect to n, for the entire sys-
tem, which are elements of the Hessian matrix
H ≡ (∂u/∂n)T,P. Matrix H is block diagonal n
by n, with blocks corresponding to matrices Hgas =
(∂ugas/∂ngas)T,P, followed diagonally by a similar

matrix for each one of the condensed phases. Cal-
culation of ugas and Hgas are described in section 4,
below. Suppose we have some initial guess, q, for
the solution to the minimization problem. Use of
the second derivatives allows us to approximate the
Gibbs energy of the system, using a second-degree
Taylor expansion in the n system components, at
some point n near the initial point q:

G = G|q + uT|q(n − q) + 1
2 (n − q)TH|q(n − q)
+ higher order terms (8)

where |q signifies evaluation of the term to the left
at q. If n is very close to q, such that (n − q)T(n −
q) ≈ 0, then the higher order terms can be ignored.
This approximation for G simplifies the minimiza-
tion problem considerably.

Solution of what is now a constrained quadratic
minimization problem can be accomplished us-
ing the algorithm provided by Betts,42 which we
summarize briefly here. The bulk composition con-
straint relates the elements of n such that there
are only n − s independent variables required to
uniquely define n. We can determine an n by n or-
thogonal “projection matrix” K, such that CK = R,
which projects C, s by n, into a new matrix R, s by
n, in which the upper left s by s elements constitute
a nonsingular submatrix R1, and the remaining el-
ements of R are zero. Then, using b = Cn, we can
write RKTn = b, because K is orthogonal, and par-
tition KT so KT = [K1 : K2]T, where K1 is n by s, and
K2 is n by (n−s). Then we can write n = K1n1 + K2n2,
where n1 has length s, and n2 has length (n − s), and
compute n1 using R1KT

1 n = b, leaving the n2 still to
be determined. To minimize

G = G|q + uT|q(K1n1 + K2n2 − q)
+ 1

2 (K1n1 + K2n2 − q)TH|q(K1n1 + K2n2 − q) (9)

with respect to n2, we set the derivative equal to
zero and obtain

KT
2 H|qK2n2 + KT

2 u|q + KT
2 H|qK1n1 = 0 (10)

which is a linear system of equations in (n − s)
unknowns, because only the first term on the left
is unknown. This is solved for n2, which with n1
gives n. Once the vector n has been determined in
this way, we know the direction in which to re-
distribute matter among the gas and condensate
phases to approach the minimum in G, but not the
magnitude of the redistribution. To avoid moving
into potentially infeasible regions of composition
space, a new solution q′ ≡ q + α(n − q) is chosen,
where α is a step length along n, chosen such that
dG(q′)/dα = 0, and such that q′ does not violate

JOURNAL OF COMPUTATIONAL CHEMISTRY 251



EBEL ET AL.

feasibility tests on the compositions of the conden-
sates present in the system. The new solution q’
describes the distribution of atoms between phases,
corresponding to the minimum thermodynamic po-
tential energy of the system, from the point of view
of the previous solution. Approximated at q′, how-
ever, the derivatives in [eqs. (8)–(10)] will have new
values, so q′ becomes the initial guess for obtaining
a new solution. Whether the new system component
vector corresponds to the minimum chemical po-
tential energy of the system is decided by whether
a rearrangement of matter among the system com-
ponents can be found, which further reduces the
system’s chemical potential energy. Therefore, we
define convergence to a minimum as the lack of sig-
nificant change (<10−12) in the Euclidean norm of
the vector n over two attempts to find a better min-
imum.

Once convergence is achieved, the system is
tested for disappearance or saturation of condensed
phases. If the amount of any phase becomes lower
than some threshold value (chosen to be 10−10 mol
per mol of atoms in the system, which is ∼10−3

the amount ever found to be stable, regardless of
the threshold chosen in extensive testing, and fol-
lowing ref. 10), then that condensate is dropped
from the stable assemblage, and the material in it
is returned to the gas phase. We also check the
new solution again, as described earlier, to deter-
mine whether the reservoir is saturated with re-
spect to any other potential condensate phase. If
any phase is dropped or added, the minimization
must be repeated with the new assemblage of sta-
ble condensates. Otherwise, the equilibrium state
of the system has been determined for the current
Ptot, temperature, and bulk system composition. Ex-
tensive, detailed comparisons were made between
results obtained using this algorithm and results
of Yoneda and Grossman,5 who used a standard
BNR technique, modified to handle simple nonideal
solutions. When identical data were used in both
calculations, results were identical to within ∼10−14.
Yoneda and Grossman,5 in turn, carried out exten-
sive comparisons with earlier results (e.g., ref. 4).

Although results obtained by this method in cos-
mochemical applications are consistent with previ-
ous work, multiple nonideal solid and liquid so-
lutions have never been addressed in this way in
the cosmochemical literature, and one might ask
whether the algorithm attains the global minimum
in such systems. One condition for local minima
in the total system is the existence of local minima
in one or more of the models for specific phases:
gas, liquid, or solid(s). That is, the model for one or

more phases must be capable of producing immis-
cibility. We use the same kind of algorithm for the
gas phase as have previous workers, and because
the gas is a mixture of ideal gas species, multiple
minima for the gas do not occur, as implicit in pre-
vious work. The CMAS liquid is known to have
local minima (immiscibility) in certain regions of
its composition space, but these occur well below
the temperatures of our calculations, in SiO2-rich
compositions.24 However, it is conceivable that for
some combination of parameters, we could com-
pute the (meta)stability of a CMAS liquid which
should unmix, and could, therefore, underestimate
the stability of liquid. Yoneda and Grossman,5 us-
ing different algorithms but the same liquid model,
reported no such unmixing, and we match their
results wherever tested, including CMAS–liquid-
bearing systems. The formulation of the MELTS
liquid model is such that saddle points exist on
its Gibbs energy surface, but not local minima, as
discussed by Ghiorso et al.25 The solid solution
models we use (e.g., spinel, olivine, pyroxene) pro-
duce miscibility gaps that closely match those found
in nature and the laboratory, but all the calculations
we perform are at temperatures well above known
miscibility gaps in the systems of interest. Exten-
sive testing with phases added or removed, and
from different initial states, has shown no instances
where this algorithm produced false minima in sys-
tems such as those illustrated in Figure 1.

Derivatives of G for the Gas Phase (4)

The numerical algorithms for the complete sys-
tem require calculation of the change in the ther-
modynamic potential Gp of every stable phase p in
the system, with respect to all possible changes in
the composition of that phase, and also calculation
of the second derivatives of each Gp with compo-
sition. These calculations are performed separately
for each phase, depending on the form of the model
used to describe its thermodynamic properties. This
is rapidly accomplished with a closed form for (Gnk)
for any particular pure phase k, but the calculation
of these derivatives is slower for phases such as
pyroxene26, 29 – 31 and spinel,27, 28 which involve in-
ternal ordering of atoms on crystal lattice sites. For
any particular composition of such solid solutions,
the ordering state must be obtained by iterative so-
lution of statements of homogeneous equilibrium.
Determining the sensitivity of the gas phase to small
changes in composition requires the most numerical
labor at this step.
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FIGURE 1. Stability fields of selected phases in
dust-enriched systems.

Because we are removing elements (e.g., Al
and O) from the gas to form solids (e.g., Al2O3), the
derivatives ugas and Hgas must be taken with respect
to the total mol of those elements in the gas, not
simply with respect to the number of mol of their
monatomic gaseous species. Any change in the bulk
composition of the gas, ngas, described by the 23 ba-
sis elements, will affect mass distribution among all
of its 374 chemical species, and therefore, effect a
change in the Gibbs energy of the gas. However,
there is no analytical solution to the speciation of
the gas. We have devised a numerical method to ap-
proximate the derivative properties of the gas, and
the method works well for the conditions investi-
gated to this point.6, 21 Up to (3 × 23 + 2 × 232)
calculations of speciation in the gas are required
in any particular iteration; however, this can be re-
duced, because only the derivatives with respect to
elements actually condensing in solids or liquids
are required. Nevertheless, this is a time-consuming
problem.

We start at a particular gas composition n0 for
which we have calculated Ggas

0 , and determine
%Ggas along chords to the surface G(ngas), as fol-
lows. We vary ni sequentially for each element i for
which evaluation of (∂G/∂ni)nk )= i , is required, leav-
ing the other elements as at n0, by designating a
new composition n+

i where only element i has been
changed from n0, to ni = n0

i + εi, and a new compo-
sition n−

i where ni = n0
i − εi. We calculate Ggas at

n+
i and n−

i to obtain Gi+ and Gi−, respectively. We
must increase εi until it attains the smallest value
for which |Gi+ − Gi−| > 100τ , where τ is machine
precision, to obtain an adequate, nonzero, approxi-
mation to (∂G/∂ni)nk )= i , at n0. To obtain the Hessian
matrix (∂2G/∂ni∂nj)nk )= i,j for pairs of basis elements
i and j, we vary nj as we did ni, about the previ-
ously defined compositions n+

i and n−
i , obtaining a

total of four gas compositions, n++
ij , n+−

ij , and n−+
ij ,

n−−
ij , which surround n0 in the composition dimen-

sions i and j. As for εi, the variation εj must be
sufficiently large than |G(n++

ij ) − G(n+−
ij )| > 100τ

and |G(n−+
ij ) − G(n−−

ij )| > 100τ . These quantities
yield (∂Gi+/∂nj)nk )= j and (∂Gi−/∂nj)nk )= j , which in
turn, yield (∂2G/∂ni∂nj)nk )= i,j ∼ [(∂Gi+/∂nj)nk )= j −
(∂Gi−/∂nj)nk )= j ]/dni.

In addressing condensation in solar gases, the ini-
tial relative mol numbers of constituent elements
vary by seven orders of magnitude over the 23 most
abundant elements. This poses numerical problems
in the minimization of the thermodynamic potential
for complex systems of gas + solids + liquids. With
the great mass of gas consisting of volatile species
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containing H, He, C, O, and N, the thermodynamic
potential of the gas becomes relatively insensitive
to the decreasing amounts of refractory elements
such as Al, Ca, and Ti, which remain in the gas as
it cools, but it is the behavior of these rock-forming
elements, which is of greatest interest! One way to
assess how closely the system has converged to its
minimum is to calculate the deviation from chem-
ical potential balance of the formation reactions of
each of the stable condensates [e.g., eq. (6)]. The abil-
ity of the algorithm to minimize these deviations is
a function of the ability to calculate ugas and Hgas by
the method outlined above, hence, of machine preci-
sion (τ ). At low temperatures, when some elements
are depleted to vanishingly small abundances in the
gas phase, these deviations become large, and the
calculation is halted. It is a general failing of all al-
gorithms of this type (e.g., ref. 7), that all the basis
components of the system (e.g., elements, or oxides)
must be present in some nonzero amount in the
phase, which constitutes the reservoir, at all steps of
the calculation.

INITIAL STATE

If the calculation is begun at a temperature and
pressure where there are multiple stable condensed
phases, particularly solid or liquid solutions, then
the algorithm takes a great deal of time to determine
the identities of these phases, given no other initial
information. We, therefore, routinely begin calcula-
tions at temperatures sufficiently high that few or
no condensed phases are stable, and iterate to suc-
cessively lower temperatures, for a fixed Ptot and
system bulk composition, using the solution at the
previous temperature step as the initial state. Gen-
erally, the result for a particular Ptot, temperature,
and bulk composition can be used as the initial state
for calculation at a similar set of conditions. Regard-
less of the method used to establish the initial state
of the system, the same result is obtained from the
calculation. The algorithm is in no way optimized
for any particular (e.g., H2-rich) bulk composition
of the system.

Machine and Compiler Considerations

The numerical algorithms require calculations of
the gradient (up) and Hessian (Hp) of the ther-
modynamic potential Gp of every phase p in the
system, with respect to all possible change in its
composition np. As described above, the methods
for approximating these quantities for the gas are

sensitive to numerical precision. At IEEE double
(64-bit) precision, the program fails when the mol
fractions of refractory elements remaining in the
gas become moderately small (order 10−13). At IEEE
quadruple (long double, 128-bit) precision, this limit
is decreased by ∼10 orders of magnitude, suffi-
cient for the success of the calculations described
in ref. 6. In all cases examined in detail, breakdown
of the algorithm is signalled by its inability to dis-
cern the gradient in system composition that points
toward the true minimum, resulting in extremely
small changes leading nowhere useful.

Because full quadruple precision (128-bit, or 32
significant digits) is required of the algorithm, the
computation can only be accomplished in reason-
able time on “big endian” processors. We use the
C programming language, for which the quadruple
precision floating point libraries for the IRIX and
SunPro C++ compilers seem to be particularly ef-
ficient. We obtained ∼2.8× faster results on an SGI
Origin 2000 with R10000 (180 MHz) cpus running
IRIX 6.4 and the MIPSPro C compiler, in bench-
marks on nearly identical code compiled and run
on a Sun Ultra Enterprise 4000 with UltraSparc III
cpus (248 MHz), running Solaris 2.5.1 with the Sun-
Pro v. 4.0 C compiler, in January of 1998. This is
noted to emphasize the sensitivity of these calcu-
lations to the libraries upon which they call, not
to endorse any particular operating system, and
may reflect, in part, our own inability to optimally
“tweak” each configuration. Even in the SGI envi-
ronment, the calculations proceed slowly. On the
R10000 processor, 2 weeks were required to calcu-
late the condensation history of a solar gas enriched
1000 times by a dust of carbonaceous chondrite
composition6 from 2400 to 1300 K in 10◦ steps. As
noted above, most of this time is spent solving spe-
ciation in the gas for variations in its composition,
necessary to set up the system minimization matri-
ces. This speed is running “flat out,” with minimum
file output between temperature steps, no swapping
to disk, and no interactive or console input/output.
Although the algorithm is cpu-intensive, it is rel-
atively compact, requiring 10–15 MB of random
access memory throughout the run, depending on
the number of condensed phases. The availability
of RAM, or the need to swap to disk memory, is not
a factor in any of the speed tests described above.
It would be optimal to use fast, arbitrarily precise
floating point routines in the most sensitive parts of
the calculation, but this goal has proven elusive. The
algorithm would also be highly amenable to paral-
lelization.
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Results

The chondritic meteorites contain spherules
thought to be quenched silicate liquid droplets,
FeO-rich olivines, and other objects of enigmatic
origin, but thought to result from condensation of
a hot gas prior to planet formation. To investi-
gate the possible relationship between condensation
processes and the origin of the constituents of chon-
drites, the above technique was developed to treat
systems where Ptot is high enough, or which are
rich enough in condensable elements, that multiple
complex solid and liquid solution phases condense.
In the gas, the condensable, rock-forming elements
are present in trace amounts, diluted by enormous
concentrations of H and He.6 Because most of the
condensable fraction of solar system matter may
have entered the presolar nebula in the form of in-
terstellar dust, it is reasonable to consider that the
central regions of the protoplanetary solar disk were
enriched, relative to the gas, in dust having the
composition of C1 chondrites, whose composition
is representative of the condensable fraction of solar
system matter. After those regions are totally vapor-
ized, such enrichment increases the effective oxygen
fugacity of the resulting gas, relative to a gas of solar
composition, and promotes the formation of con-
densates at temperatures where they are partially or
fully molten. Detailed results of calculations at sev-
eral combinations of dust enrichment factor and Ptot

have been presented elsewhere,6 but Figure 1 shows
phase relationships over a wide range of dust en-
richments, at Ptot bracketing those thought to obtain
in the inner part of the protoplanetary disk.

The fields for oxides of Ca, Al, and Ti, and for
solid melilite, are thought to be those in which re-
fractory inclusions in meteorites form.5 Together,
olivine (Mg, Fe, Ca)2SiO4, orthopyroxene (Mg, Fe)
SiO3, and metal alloy (Fe, Ni, Co, Cr, Si) solutions
dominate the mineralogy of chondritic meteorites,
and account for the bulk of the condensable fraction
of solar system matter. The stability field of silicate
liquid becomes more extensive with increasing Ptot

and, at any given Ptot, widens with increasing dust
enrichment. For any particular system bulk com-
position, the condensed solid assemblage, and/or
liquid, are rich in CaO, Al2O3, and TiO2 at high tem-
perature, but increase their MgO and SiO2 contents,
relative to CaO, Al2O3, and TiO2, as the temperature
falls. At high dust enrichments, significant amounts
of Fe, Na, and K condense as oxide components in
both solid and liquid silicates at temperatures above
1400 K. It is increasingly clear that the understand-

ing of condensed matter in the early solar system
will depend upon development of better data and
models for liquid and solid solutions, which will,
in turn, require more sophisticated computational
techniques.
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